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ABSTRACT

Diagnosing Interstitial Lung Diseases (ILD) is a difficult task. It requires experienced chest radiologists that
may not be available in less-specialized health centers. Moreover, a correct diagnosis is needed to decide for an
appropriate treatment and prognostic. In this paper, we focus on the classification of 3 common subtypes of ILDs:
Usual Interstitial Pneumonia (UIP), Non-Specific Interstitial Pneumonia (NSIP) and Chronic Hypersensitivity
Pneumonitis (CHP). We propose a graph model of the lungs built from a large dataset. The structure of the
graph is inspired from medical knowledge of disease predominance, where the nodes correspond to 24 distinct
regions obtained from lateral, anterior-posterior and vertical splits of the images. The adjacency matrix is built
from distances between intensity distributions of distinct regions. Graphs models are interpretable and were
successfully used in neuroimaging. However, to the best of our knowledge, this is the first attempt to use a graph
model of the lungs for classifying ILDs. In the particular case of ILDs, graph methods are relevant for the following
reasons. In order to differentiate between the subtypes, not only the types of local patterns of the disease are
important but also their anatomical location. Therefore, we hypothesize that the comparison between regional
distributions of Hounsfield Unit (HU) values is relevant to discriminate between the considered ILD subtypes.
For instance, typical UIP shows a spatial predominance of reticular abnormalities and honeycombing in the
peripheral regions of the lung bases. Therefore, we expect a marked difference of HU distributions between the
central and peripheral regions of the lung bases. Moreover, the construction of the graph leads to an interpretable
patient descriptor. The descriptor led to encouraging area under the Receiver Operating Characteristic (ROC)
curve in 0.6-0.8 for one-versus-one classification configurations, which also showed to outperform feature sets
based on a simple concatenation of regional HU distributions.
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1. INTRODUCTION

Interstitial Lung Diseases (ILD) is a group of more than 150 disorders of the lung tissue of varying origin causing
texture and intensity changes of the lung parenchyma with a characteristic distribution within the lung anatomy.
Thus CT diagnosis of most ILDs is based on the presence/absence of characteristic parenchymal alterations (e.g.
ground glass, reticulation, honeycombing, micro-nodules) in specific regions of the lungs.! These findings are
summarized in Table 1.

Several studies highlighted the difficulty to correctly establish the diagnosis of ILDs based on Computed
Tomography (CT) scans alone as the same patterns are commonly found in different diseases.” While most
studies focused on the detection and classification of these patterns,® their distributions in the lungs (upper vs.
lower lungs, central vs peripheral) are known additional discriminating features that were captured by only a
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Table (1) Radiological CT findings for Usual Interstitial Pneumonia (UIP), Non-Specific Interstitial Pneumonia
(NSIP) and Chronic Hypersensitivity Pneumonitis (CHP).**

Typical UIP Typical NSIP Typical CHP
Peripheral, Basal. Subpleural, Basal, Symmetric. Predominance in the middle lung fields.
Reticular abnormality. | Ground glass and reticular opacity. Ground-glass and reticular opacity.
Honeycombing. Irregular lines. Possible Honeycombing.
Mosaic attenuation and air trapping.

small number of prior quantitative studies. Depeursinge et al.” demonstrated the wealth of a regional approach
for the computed diagnosis using a geometric atlas of the lungs and regional texture features. More recently,
a study from Jun et al.® highlighted the discriminative power of a texture comparison between upper-lower,
anterior-posterior and central-peripheral parts of the lung. This paper builds on this previous work with a dataset
of 450 labeled cases and with 3 classes of ILDs, Usual Interstitial Pneumonia (UIP), Non-Specific Interstitial
Pneumonia (NSIP) and Chronic Hypersensitivity Pneumonitis (CHP). Instead of studying the features of the
regions of the lung, we focus on the definition of a graph model of the lungs, defined in Figure 3. This type of
graph was introduced by Dicente et al.,” to study the relations between features extracted in lung subregions.
This graph was already tested on patients with pulmonary circulatory diseases'® and with Tuberculosis.'!

2. METHODS
2.1 Dataset

In our experiments we used the Lung Tissue Research Consortium (LTRC) public dataset®. It consists of 462
CT scans of ILD patients. Seven patients were excluded in our experiments due to inconsistencies in the DICOM
headers, such as non-coherent number of acquisitions. The final dataset used consisted of 184 UIP patients, 59
CHP patients and 208 NSIP patients. Figure 1 shows one axial CT slice from each considered ILD class.

UIP CHP NSIP

Figure (1) Examples of axial views of CT scans from patients with each of the three diseases considered.

2.2 Lung Graph Model Construction

The purpose of encapsulating regional distributions of Hounsfield Unit (HU) values into a graph structure is to
leverage inter-regional comparisons of voxel intensities. These comparisons are relevant to distinguish between
the ILD subtypes according to their respective spatial predominance (see Table 1). For instance, typical UIP
shows a spatial predominance of reticular abnormalities and honeycombing in the peripheral regions of the lung
bases. Therefore, we expect a marked difference of HU distributions between the central and peripheral regions
of the lung bases.

*https://1ltrcpublic.com/, as of January 21 2019.
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We modified the fully automated pipeline introduced by Dicente et al.'® to obtain specific graph models of
the lungs for each disease. Our pipeline is composed of five steps, which includes (i) segmentation of the lung
fields to create a mask of the lungs, (ii) subdivision of this mask into regions to create an atlas, (iii) extraction of
the features for each region, (iv) creation of the distance matrix encoding the comparison between the regional
features, and (v) creation of the graph model from a statistical test for all elements of the distance matrix to
highlight the most relevant connections between regions.

We used the automatic lung segmentation algorithm developed by Dicente et al.'? to extract the lung fields.
We initially divided the lungs using a geometric atlas introduced in,'3 based on the 3D model of the lung developed
by Zrimec et al.'* This atlas includes 36 regions generated from 4 axis divisions: coronal (right/left), sagital
(anterior/posterior), vertical (apical/central/basal), and axial (peripheral/middle/central). For a small number
of patients with strongly affected anatomy, this atlas produced very small or even empty regions. Therefore, we
reduced the number of regions to 24 by fusing the peripheral and middle regions (see Fig. 3). This procedure
produced more balanced region volumes.

For each region of the atlas we computed a normalized 10-bin histogram of the HUs. We decided to include
at least 97% of the pixels of every patient in the histogram, hence, we chose the histogram limits from -1024
to 296 HU (see Fig. 2). A total of 25 patients had at least one region with less than 100 pixels. A surrogate
histogram was created for these missing regions by averaging each bin of the adjacent regions.
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Figure (2) Example of a normalized histogram of the HU distribution in each of the 24 regions of the atlas for
one patient with UIP.

For each patient n =1,..., N we create the 24 x 24 distance matrix D,,:
dKSl,l dKSl,z dKS1,3 ce dKSl,24
dKS2,1 dKSz,2 dKSz,B s dKS2,24
dKSz4,1 dK524,2 dKSz4,3 ce dKS24,24

The matrix elements dksg, ; are obtained from the Kolmogorov-Smirnov (KS) distance between the HU histograms
of regions i and j. This matrix is symmetric and only the distances in the upper triangular are kept. The
vectorization of this upper triangle of D,, creates a 276-dimensional feature vector characterizing how similar (or
dissimilar) the intensities of an anatomical region are to another. The feature vectors from specific ILD subtypes
are then used to create ILD-specific graph models, where feature- (i.e. edge-) selection based on statistical
testing is used to create the final graph adjacency matrix and associated feature vector v for its further use in
ILD classification.

2.2.1 ILD-Specifc Graphs and Distance-Based Features

The next step is to create graph models that are specific to each ILD by selecting the edges that are most
significantly different between the ILD subtypes. We expect a reduced graph that highlights only the relevant



edges for the classification of these three diseases. Therefore, we need to determine if there are edges for which
the inter-class difference between the distribution of KS distances is statistically significant when considering the
three ILD populations.

As there are edges for which the distribution of the KS distances in the same class is non-normal, we decided
to use the non-parametric Kruskal-Wallis test on the means KS distance (u;;) for each edge dks, ; with the
following hypotheses (the indices 4, j are omitted to simplify the notations):

Ho : putp = ponp = pnsp,
Hi : At least two of the population means are different.

Edges for which Hy was rejected with a significance level a = 0.05 were kept. This resulted in a p-matrix
constituting the adjacency matrix of the graph: a 24 x 24 matrix from the distance matrix of every patient. Each
value is the p-value for a specific edge (see Fig. 4). This matrix reveals edges for which the distribution of the
distance between one the two classes is dissimilar. Feature vectors vg;st were created from the set of distances
(i.e. edges) for which the test was significant.

Similarly, one-versus-one and one-versus-all graphs and feature sets were constructed for ILD subtypes pairs
and single ILD subtypes using a Mann-Whitney U test instead of the Kruskal-Wallis.

Figure (3) Example of a fully connected graph model of the lung based on 24 distinct regions (inspired from?).

3. EXPERIMENTAL SETUP

The relevance of the proposed graph features vqis; is evaluated with one-versus-one classification configurations.
A naive Bayes classifier was used, as it showed better results in preliminary experiments when compared to
Support Vector Machines (SVM). We compared the performance of the proposed feature vector vqist with
a feature vector based on the regional distributions of HU. In particular, it consisted of 10-bin histograms
characterizing the distribution of HUs in each region (see Fig. 2), resulting in a 240-dimensional feature vector
vyyu. The classification performance was estimated with a 10-fold Cross-Validation (CV). For each fold of the
CV, the test (either Kruskal-Wallis or Mann-Whitney U) was carried out to select features and the naive Bayes
model was built and evaluated with Receiver Operating Characteristic (ROC) curves. The Area Under the ROC
Curves (AUC) were averaged over the folds and reported.



4. RESULTS
4.1 ILD graphs

First, the p-matrix was built when considering all three ILD subtypes and using the Kruskal-Wallis test (see
Fig. 4). A subset of 12 regions were found to have at least one significant connection with another region.

Region 1

Region 3
Region 5
Region 7
Region 9
Region 11
Region 13

Region 15

Region 17
Region 19
Region 21

Region 23

Figure (4) ILD-specific graph adjacency matrix resulting from Kruskal-Wallis tests (called p-matrix) when
considering all three populations (UIP, CHP and NSIP). Every value above 0.05 was artificially set to 0.05 for
visualization purposes to consider only significant p-values. Regions for which no edge were associated with a
rejection of Hy are omitted from the p-matrix.

In order to build ILD subtype-specific graph models, the Mann-Whitney U test was used in one-versus-all
configurations. The weight of the edges is defined as 1 — p for each disease constructed from the p-matrix of a
class versus the 2 others. The graphs for UIP, CHP and NSIP are depicted in Figures 5, 6 and 7, respectively.
Only edges with weights above 0.99 are shown. Notice that the significant edges are not the same for each
disease.

4.2 TILD Classification

The classification performance for the feature vectors vgis; and vgy are compared in Fig. 8. A Student-t test
assuming non-identical variance was used to determine whether the average AUC was significantly different
between wvgisy and vgy. The test revealed statistically different mean AUCs only in the case of CHP versus
NSIP (p = 0.0435), whereas UIP versus CHP and UIP versus NSIP were not significant with p = 0.7105 and
p = 0.0953, respectively.

5. DISCUSSIONS AND CONCLUSIONS

The goal of this study was to investigate the relevance of graph-based inter-regional comparisons of HU distri-
butions in the lung to characterize ILD subtypes. The results suggest that adjacency between regions of the
lungs is a relevant descriptor for UIP, CHP and NSIP, which are the three most common ILD subtypes, where
classification performance with AUCs in 0.6-0.8 were observed. The performance was higher when using the
graph features when compared to a baseline concatenation of regional HU histograms with around four times
less features (see Figure 8). The image analysis pipeline is fully automatic.
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Figure (5) UIP-specific graph visualization.
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Figure (6) CHP-specific graph visualization.
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Figure (7) NSIP-specific graph visualization.
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Figure (8) Classification performances for all three one-versus-one configurations. The two feature vectors vyy
and the proposed wvqist are compared. Error bars correspond to the standard error. While vyy has a fixed
dimensionality of 240, the average dimensionalities of vgist are 56.4 £ 6, 82 + 3.8 and 30.6 &+ 6.9 for UIP versus
CHP, CHP versus NSIP and UIP versus NSIP, respectively.

The proposed graph approach allows gaining insights on the relevant regional comparison in the context of a
particular ILD subtype. We observed from the global p-matrix (see Fig. 4) that most of the edges coming from
the posterior basal middle-peripheral are relevant. This is consistent with the reported CT findings of UIP and
NSIP in the literature,! that points at these specific regions (see Table 1). In addition, we can also see relevant
edges from the posterior central middle-peripheral region. This may be associated with typical CHP findings.
The interpretation of subtype-specific graphs shown in Figures 5, 6 and 7 is difficult. One striking observation is
the small number of significant edges in the UIP-specific graph (see Fig. 5). This suggests that inter-regional HU
comparisons are less relevant than for NSIP and CHP. This is also confirmed by the classification performances
reported in Fig. 8, where only CHP versus NSIP had a significantly improved AUC when using vq;sy as compared
to using concatenated HU histogram features vyy.

In future work, we plan to construct the graphs by extracting texture features that may be highly relevant
due to the nature of the diseases.” Their combination with HU measurements are expected to allow optimal ILD
classification performance.
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