
Reputation Management in Multi-Agent Systems
using Permissioned Blockchain Technology

Davide Calvaresi∗, Valerio Mattioli†, Alevtina Dubovitskaya∗, Aldo F. Dragoni† and Michael Schumacher∗
∗University of Applied Sciences Western Switzerland, Sierre, Switzerland.

Emails: name.surname@hevs.ch
†Università Politecnica delle Marche, Ancona, Italy.

Emails: name.surname@univpm.it

Abstract—The multi-agent framework is a well-known ap-
proach to realize distributed intelligent systems. Multi-agent
systems (MAS) are increasingly employed in safety- and
information-critical domains (e.g., eHealth, cyber-physical sys-
tems, financial services, and energy market). Therefore, these
systems need to be equipped with mechanisms to ensure trans-
parency and the trustworthiness of the behaviors of their com-
ponents. Trust can be achieved by employing reputation-based
mechanisms. Nevertheless, the existing methods are still unable
to fully guarantee the desired accountability and transparency.
Aligned with the recent trends, advocating the distribution of
trust to avoid the risks of having a single point of failure of
the system, this work extends existing efforts on combining
blockchain technologies (BCT) and MAS. To attain a trusted
environment, we provide the architecture and implementation
of a system that allows the agents to interact with each other
and enables tracking how their reputation changes after every
interaction. Agents reputations are computed transparently using
smart contracts. Immutable distributed ledger stores reputation
values, as well as services and their evaluations to ensure
trustworthy interactions between the agents. We also developed
a graphical interface to test different scenarios of interactions
between the agents. Finally, we summarize and discuss the
experience gained and explain the strategic choices when binding
MAS and BCT.

Index Terms—MAS, Trust, Reputation, Blockchain, Smart
Contracts

I. INTRODUCTION

Intelligent systems are increasing the pace of their growth
and expansion in numerous application areas, also pervad-
ing domains dealing with sensitive data such as data pri-
vacy, security, and integrity [1], [2]. Multi-agent systems
(MAS) are often employed in the architecture design of the
intelligent, distributed, and autonomous systems. Although
MAS paradigm offers a broad range of capabilities well
appreciated even in sensitive domains (e.g., e-health [3], [4],
assisted living [5], tele-rehabilitation [6], manufacturing [7],
and eCommerce), ensuring privacy, security, and integrity
of the data (thus guaranteeing trustworthy and transparent
communications) still represent an open challenge [8].

In their models and dynamics, MAS emulate human be-
haviors, hence, ensuring accountable and trusted interactions
between agents is essential but not straightforward. Many
remarkable efforts to develop models and mechanisms to
guarantee secure communications and trust in MAS have been
provided [9], [10], [11]. Yet, evolving application scenarios
and technologies constantly demand viable and sustainable
solutions addressing as much as possible emerging trust and
security requirements. Regardless of the system’s scale, both
open and private distributed systems can be composed of
collaborative and/or competitive agents. Such entities can (i)
pursue the maximization of their own objectives and plans

(e.g., utility function), (ii) join and leave at any time the sys-
tem/community, (iii) organize coalitions, and (iv) manipulate
and exploit each other to foster selfish interests. According
to Ramchurn et al. [12], the interaction among agents can
be characterized by (i) interaction mechanisms, (ii) who can
take part in a given interaction, and (iii) when a given
interaction can take place. To reduce the above mentioned
risks, to simplify the decision-making process, and to enable
autonomous interactions (in terms of “who” and “when”) it is
necessary to introduce a factor/knowledge (possible sufficient)
to classify any agent’s reliability.

Reliability, trust and reputation play a key role in MAS
since the beginning (in order to revise conflicting beliefs and
choose among opinions received from different information
sources [13], [14], [15], [16], see also Falcone et al. (2001)
for a more general argumentation). According to Ramchurn et
al. [12], trust can be formally defined as “a belief an agent
has that the other party will do what it says it will (being
honest and reliable) or reciprocate (being reciprocative for
the common good of both), given an opportunity to defect to
get higher payoffs”.

A means to establish trusted interactions is to implement
reputation-based mechanisms. An agent reputation is usually
computed on previous behaviors and it can be used to infer
about possible future ones. Therefore, in case an agent needs
to demand crucial/relevant information, the reputation can
heavily impact on the decision making process. Moreover,
there is still the need to guarantee that it is properly managed
(e.g., to provide a honest and verifiable way to compute it, to
ensure that its historical values are tamper-proof, and to make
available an updated reputation value).

Recent studies show that binding MAS and blockchain
technologies (BCT) are gathering theoretical contributions
from many fields [17]. Yet, a quest for a practical, scalable,
and privacy-preserving system implementation continues [18].
BCT is a peer-to-peer distributed ledger that provides a trans-
parent and immutable history of all the transactions occurred
a given network [19]. The transactions are digitally signed and
broadcasted by the participants; they are grouped into blocks
in the chronological order, time-stamped, and the content
of the block is hashed. A hash serves as the unique block
identifier, which is stored in the subsequent block, and can
be used to easily verify if the content of the block was
modified. The blockchain is replicated and maintained by
every participant. With this decentralized approach there is
no need for setting up a single trusted centralized entity for
managing the registry. The participants will notice a malicious
attempt to tamper the information stored in the registry, hence
the immutability of the ledger is guaranteed. Thus, the features



of the BCT enable us to implement reliable reputation-based
mechanisms in MAS. Equipping MAS with BCT will enhance
transparency and trust for the reputation management within
MAS, overcoming the limitation of current approaches (e.g.,
need for a trusted third party, a trusted reputation handler and a
reliable reputation-computation methods). In particular, even
in the case of an unknown nature of the agents, malicious
behavior can be timely identified and possibly avoided.
Contributions: This work extends existing efforts on com-
bining BCT and MAS. The novelty relies on structures and
mechanisms to compute the agents’ reputation. In particular,
chaincode functionalities (using Hyperledger Fabric v1.0) have
been coupled with the behaviors of a community of agents
(realized in JADE - Java Agent DEvelopment Framework).
Moreover, the system offers a GUI for managing the agents
at both, community and single-agent levels. Both autonomous
and user-driven behaviors have been implemented to test the
computing mechanisms (smart contracts) using the reputation
(agent’s heuristics).

The paper is organized as follows: Section II presents and
elaborates on the background and related work, Section III
provides an overview of the proposed system and describes
its architecture, Section IV details the mechanism employed
for transparent reputation management, Section V discusses
reputation trends and their interpretations. Finally, Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

This section introduces notions of trust and reputation and
presents some works aiming at merging MAS and BCT. Within
a community characterized by agents with various and het-
erogeneous (possibly overlapping) policies, capabilities, and
roles, the interactions might be subject to factors such as
cost functions, properties, and values evolving over the time.
A reasonable assumption is to have agents with a bounded
rationale. Therefore, aiming at maximizing their expected
utility, agents can only rely on the information (possibly
partial) they have [20].

The trust factor can minimize the effects of the uncertainty
on the decision-making process. Hence, trust is defined as
“a belief an agent has that the other party will do what
it says it will (being honest and reliable) or reciprocate
(being reciprocative for the common good of both), given
an opportunity to defect to get higher payoffs (adapted from
(Dasgupta, 1998))” [12]. A way to have a trusted environment
is to associate a reputation value per agent, thus being able
to discriminate whether it should be part of that community
(showing acceptable behaviors) or it should be purged to
maintain the community trustworthy.

Reputation can be defined as “a collection of opinions
received from other agents” [21]. Generally, it is used to frame
the perception and expectation about someone’s behavior
based on previous interactions (presumably similar to future
ones). Such an indicator is an incentive for positive behaviors
and it is considered a reliable trust building-block.

Agents’ reputation is a pivotal element in trust-based MAS.
Depending on the technologies underlying the MAS, several
techniques have been employed to ensure trust. Trust can be
computed directly by the agents or delegated to a specialized
(possibly third-party) entity. Such an attribute can profoundly
affect the dynamics of an entire community of agents [21].

Moreover, some corner cases need to be addressed too. Ac-
cording to Racmchurn et al. [12], an agent could provide low-
quality services, leave the community as it gets “paid”, and
then, possibly re-join the system avoiding to be connected
to its previous behaviors. A trusted system must prevent such
practices. Authenticity, integrity, transparency, and correctness
of the reputation, are crucial features to make it effective and
reliable. The traditional approaches to manage the reputation
are security-based, institutional, and social, and they operate
as follows:

• security-based: it usually ensures only integrity and
authenticity of data by cryptographic means;

• institutional: it assumes the presence of a central author-
ity observing, controlling, and enforcing agents’ actions.
The vulnerability of such an approach are (i) to be
prone to introduce a single point of failure, and (ii)
if compromised, the reputation can be tampered and
manipulated;

• social: it requires an agent able to model other agent be-
haviors (similarly with the human society). Unfortunately,
it is not always applicable.

Finally, even combining such approaches, the above-
mentioned requirements cannot be met [17].

BCT can be the key to enhance MAS security, and some
attempts at merging these two technologies have already been
done [17]. Ferrer [22] discusses the potential advantages and
limitations of the combination of blockchain technology and
MAS, taking an example of swarm robotic systems. Bottone
et al. [23] presented a mathematical structure for a block-
less, fee-less, distributed ledger technology employable in
wireless sensors networks, Internet of Things, and cyber-
physical systems.

BCT provides immutability of its data repositories (ledgers)
and the data posted on them [24], and facilitates the process
of auditability [25]. Both in research and commercial appli-
cations, reputation systems are gaining a stable share [26].
However, such a rapid growth resulted in generating di-
verging approaches implementing a broad set of solutions.
A few solutions associated the reputation and trust in the
framework of MAS and BCT have been recently proposed,
following the recent trends. For example, Khaqqi et al. [27]
proposed an emission trading scheme with a double aim: to
reduce emission production and stimulate adoption of long-
term abatement technology. Qayumi et al. [28] proposed the
introduction of BCT in agentified computing systems dealing
with potentially “very-large datasets”. Besides several attempts
of binding MAS and BCT can be enumerated [17], [29], no
actual implementation of computing the agent reputation via
smart contracts can be acknowledged yet. Regardless of the
strong recent trend towards employing BCT in different areas,
where trust management is essential, the question whether a
potentially simpler solution can be built around the trusted
party remains. For instance, the authors in [30] argue that often
participants need to trust each other despite using a distributed
ledger. For now we will focus on scenarios when agents have
all the same nature (no different a-priori reputations based on
their different role in the agency), so that BCT is actually
employed to develop trustworthiness of interactions between
agents (only) with respect to their behaviors.

The next section presents an architecture which is an
extended version of the recent work presented in [29]. Trying
to address the latter, and considering that the reputation



is usually associated with the identity of a participant, we
focus on permissioned and private BCT implementation. In
particular, in the permissioned blockchain, the identities of the
agents/users and rights to participate in the consensus (right
to write on the ledger and/or validate the transactions) are
managed by a membership service. Moreover, we describe
the newly developed structures and mechanism computing the
agents’ reputation over the BCT.

III. SOLUTION OVERVIEW AND SYSTEM ARCHITECTURE

In this section, we present an overview of the proposed
system and describe its architecture. Our solution eliminates
the need for assumed trustworthy agents computing the rep-
utation with assumed uniform and unbiased techniques. The
reputation management is delegated to smart contracts, thus
fully benefiting from the main BCT properties (e.g., data
transparency, immutability, integrity).

It is worth to recall that a multi-agent system is composed
of atomic autonomous entities (agents) characterized by an
extendable knowledge, driven by self-developed or induced
objectives able to interact with each other [31]. Such agents are
loosely coupled, interconnected, and organized in networks.
Regardless of distribution, dimensions, and scope, agent com-
munities might have to take into consideration the possible
generation and evolution of undesired/uncontrolled behaviors.
Thus, assuming that the agents can possibly manifest malicious
behaviors, it has been decided to use the reputation as a
discriminating factor to operate in the community. In turn,
set a given threshold, the reputation can become a reason for
expelling an agent from the community.

JADE has been chosen as the framework employed to de-
velop the MAS given its compliance with the FIPA3 standard
and its simplicity in creating and handling agents [32]. Fabric
Hyperledger (v1.0) [33] has been chosen as a permissioned
BCT component due to its maturity (development and docu-
mentation) and its open-source nature.

A. System Architecture, Agent Identity, and Certificates Man-
agement

In the dynamics of the agent community, the two technolo-
gies mentioned above get firstly connected in the management
of the identities of the agents. To be able to interact with
each other and operate on the ledger, the agents need to
register and obtain the credentials, including certificates of
the corresponding public keys. Therefore, two main classes
of agents have been created:

BC-A : regular agent operating in a given community, in which
all the interactions are recorded on the blockchain;

CA-A : agent handling the registration in a given agents com-
munity. In particular, the CA-A is in charge of interacting
with the certification authority (CA) component of Hy-
perledger; the CA-A also offers a possibility of encoding
rules and conditions for the enrollment. In the settings
of multiple CAs, available in more recent versions of
Hyperledger, similar multi-signature approaches can be
employed to manage mutliple CA-As.

Although having different functions, both CA-A and BC-A
have the same structure (Figure 1). The agent is composed of:

• core: the agent instance in JADE,
• view: the functionality and user interface details,
• behavior: the list of possible actions,

• model: the adapter to operate on the underlying BCT,
• controller: the component connecting view and model.
The BCT components are:
• Certification Authority (CA): an entity providing valid

identities and certificates for the members of the
blockchain network.

• Membership service: an entity that identifies CA(s)
trusted to define the members of the network. An MS can
identify specific roles an actor might play either within
the scope of the network and sets the basis for defining
access privileges [34].

• Ledger: the immutable, sequenced, tamper-resistant chain
of blocks that records all the transactions and the database
state.

• Chaincode: a program (also known as smart contract) that
is developed to interact with the ledger.

• Invoke: the APIs called when the invoke transaction is
received, in this case from the agents, to process any
transaction proposals of assets.

• Assets: a collection of key-value pairs recorded as trans-
actions in the ledger and the respective functions.

BC-A

InvokeChaincode

Assets Ledger

Register	Agent	
Add	Service	
Register	Interaction	
Map	Agent-Service	
Edit	Agent	
Edit	Service	
Delete	Agent	
Delete	Servie	
Update	Reputation	
Create	Activity

CA-A
Membership	Service Issue	Valid	Identities	

Identify	Roles	
Manage	CRL

Certification	
Authorities

Core BehaviorView Controller Model

Register	Agent	
Add	Service	
Add	Interaction	
Edit	Agent	
Edit	Service	
Delete	Agent	
Delete	Service	
Update	Reputation

Issue	Certificate	
Verify	Credentials

Fig. 1. Conceptual design of the system components.

In this implementation, every agent (BC−Ai) hosts a peer
that maintains the ledger and executes the chaincode. However,
agents and peers can also be decoupled over the network.

B. The Ledger: Agents, Reputations, Services and Interactions
Conceptually, the ledger stores (i) the information about the

service(s) provided by the agents1, (ii) the information about
the interactions that took place in the community, and (iii) the
related evaluation from both service’s demander and executor.

It is worth to recall that in Hyperledger Fabric v1.0 the
ledger consists of two distinct, though related, components:
(i) World State database (to maintain the current state of a
set of ledger states) and (ii) Blockchain - immutable sequence
of blocks, each of which contains a set of ordered transac-
tions. Concerning the World State database, two alternatives
technologies were available: CouchDB and LevelDB (used in
the presented solution). CouchDB allows “richQueries” but
cannot prevent “phantom reads”. Although LevelDB does not
offer the possibility to directly perform “richQueries”, it has
a relational data model, support SQL queries, and provide
support for the indexing, it is not affected by “phantom
reads” and can overcome the mentioned limitation by using

1in the form of a tuple: {agent; service(s); additional info}



composite keys as indices. Thus, the relational mapping has
been handcrafted. Figure 2 shows the representation of the
system’s elements in the DB.

IdService
Name
Description
Cost
Time
...

Service
IdReputation
IdService
IdAgent
AgentRole
Value

Reputation

0..n1

IdServiceAgentAssociation
IdService
IdAgent
Cost
Time

ServiceAgentAssociation

0..n

1

IdAgent
Name
Address
...

Agent
0..n 1

IdInteraction
IdWritierAgent
IdDemanderAgent
IdExecutorAgent
IdExecutedService
TimeStamp
Value

Interaction

0..n

1

0..n

1

0..n

1

Fig. 2. Relational schema of the implementation on levelDB.

LevelDB saves the tables in json format. Listing 1 shows
the implementation in GO2 of the reputation table.

1 type Reputation struct {
2 ReputationId string `json:"ReputationId"`
3 AgentId string `json:"AgentId"`
4 ServiceId string `json:"ServiceId"`
5 AgentRole string `json:"AgentRole"`
6 Value string `json:"Value"`
7 }

Listing 1: Reputation Structure in the Ledger.

To allow the Level-DB World State to execute complex
queries, we created a composite keys-indices mechanism. In
particular, if an agent is offering a given service for the
first time, the mechanism is triggered during its publication
(assigning a “neutral” starting value: 6/10). If an agent is
demanding a given service for the first time, such a mechanism
occurs after the creation of the record interaction.

In the developed system, the composite key is char-
acterized by agentId - serviceId - agentRole -
reputationId; this key is the pointer to a given value
(address: reputationId) in the DB. This enables execution
of the queries such as ”SELECT Agent(s) WHERE (...)”
(partial-key queries). Moreover, if more complex queries are
necessary, the system executes partial-keys and simple queries
in cascade. Such an index is not required to be associated with
a value. Hence, the queried values can be extracted from the
composite-index itself.

2https://golang.org/

When creating the composite keys-indices, the agent role
(demander/executor) is checked first. Then, the previous (or
initial) value of its reputation is accessed. Finally, given the
evaluation of an interaction, the agent reputation is updated
accordingly (see Listing 2).

1 func CreateAgentServiceRoleIndex(reputation *Reputation, stub
2 shim.ChaincodeStubInterface) (agentServiceRoleIndex string, err error){
3 indexName := "agent˜service˜agentRole˜reputation"
4 agentServiceRoleIndex, err = stub.CreateCompositeKey(indexName,
5 []string{reputation.AgentId, reputation.ServiceId,
6 reputation.AgentRole, reputation.ReputationId})
7 if err != nil {return agentServiceRoleIndex, err}
8 return agentServiceRoleIndex, nil}

Listing 2: Reputation composite keys-indices creation.

In JADE, the entity connecting an agent and a service(s)
offered by the agent is called Directory Facilitator (DF)3. This
entity and the respective functions have been replaced by the
BCT. This design choice enables to:

• avoid a single point of failure (if the DF is unique in the
community),

• reduce the response time when inquired by regular agents,
• improve accessibility and transparency,
• ensure immutability and traceability.

C. GUI
The agents’ behaviors are both automated and manual

(action and choices are delegated to the user). To manually
interact with the agents, and therefore with the blockchain,
there is the classic command line interface and a customizable
graphical interface. Figure 3 shows the interface that enables
to create and register the agents (needed to test the platform).
Figure 4 presents the interface to manage such agents (e.g.,
enabling, disabling, and eliminating agents).

Fig. 3. View to add agents into the community.

Fig. 4. View to manage the agents.

3 http://www.fipa.org/specs/fipa00023/



Figure 5 shows the interface that enables to add and modify
the services that a given agent is offering. To require a service
execution, we provide the interface depicted on Figure 6.
A pre-filtering and sorting can be applied by selecting the
optional features (e.g., cost, time, and reputation). Finally, an
interface developed to accept or reject requests, to communi-
cate with other agents, and negotiate the interface to compose
and manage the messages is shown on Figure 7.

Fig. 5. View to add services into the agent.

Fig. 6. View to search and ask for a service.

Fig. 7. View to reply and send messages.

IV. INTERACTIONS AND REPUTATION MANAGEMENT

Features such as tracking the service evolution over the
time (e.g., costs, offered performance, and availability) can be
easily introduced, thus enabling to employ counter-measures
in case of speculations or selfish behaviors. Therefore, we
decided to associate the concept of reputation with every agent
per service, as an evaluator in the role of demander and/or
executor. The implemented architecture enables to provide:

• an overall reputation value rating the general (average)
agent’s reputation;

• a task specific value of a given service and role (deman-
der/executor).

Once an agent is registered, it can require and/or provide
some services. The reputation is initially set to a default value.
Assuming direct interactions (e.g., CNET based) both the
agents (demander and executor) must be able to evaluate the
output of the interaction at its completion.

Then, once received both evaluations, a smart contract is
triggered and the executor is notified with the evaluation
provided by the demander. If such an evaluation is significantly

different from the one provided by the executor and the
latter accepts to revise it accordingly, the new reputation
value is computed and the ledger is updated (Figure 8(a)).
Otherwise, if the difference between the evaluation overpasses
a given threshold, a disagreement resolution process is started
(Figure 8(b)).

eval

BCT EX DM

Service Negotiation

donedone + eval

ok - revise

revise eval?

(a)

EX = Executor; DM = Demander

no
revise eval?

(b)

Disagreement resolution policy

eval(EX)
≄

eval(DM)

Fig. 8. Conceptual design of the system components.

Disagreements and conflicts can happen due to the auton-
omy and heterogeneity of the MAS components, as well as
due to possible malicious behaviors. A considerable number
of scientific contributions cope with conflict resolution in the
MAS frameworks [35], [36], [37]. Different approaches can
be employed based on the particular scenarios of using MAS,
the model of expected behavior, and outcomes of individual
agents. Currently, in our system, we consider the two following
scenarios:

• agreement on a specific value (with a minor variance),
• disagreement (the evaluations of demander and executor

have a misalignment greater than a customizable thresh-
old).

In the case of disagreement, we employ the simple approach
that consists of the following steps: (i) proposing the agents
to revise the evaluations (enables to identify unintentional
mistakes) and (ii) consulting another agent with a higher
reputation. One has to notice that it is possible to employ other
existing approaches and policies for disagreement resolution.

To handle the disagreement resolution the system provides
APIs at the agent level (JADE). By doing so, it is possible
to trigger several investigations upon the disagreeing values.
From the smart contracts side, the function provided to support
the investigations is to check the evolution (over the time)
of the reputations of both demander and executor. It enables
detection of the behavior patterns that can lead to malicious
trends, systematic errors, or just to a single fault.



0 20 40 60 80 100 120 140 160 180 200 220

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Time (s)

R
ep

ut
at

io
n

va
lu

e

A
B
C

Fig. 9. Identified basic reputation trends.

V. DISCUSSION

In this section, we discuss how we interpreted agents’
behavior and reliability using the transparent reputation man-
agement implemented in our system. First, we present possible
agent’s behavior trends, second, we discuss how they can be
interpreted based on the agent’s role (demander or executor of
a service). Finally, we discuss the cases of missing evaluations
and their potential impact on the agents’ reputations.

Figure 9 shows basic reputation trends that can be used
to characterize the agent’s behavior. We assume that at the
moment of the registration every agent gets a “fair” reputation
value of 6 out of 10. Implementing several dynamics and
varying the nature of the agents’ behaviors, we have been able
to identify three simple types of trends (see Figure 9).

Figure 9 - A corresponds to the case when the reputation
remains constant. Such behavior can occur if (i) the agent’s
performance is stable, or (ii) there was no activity (i.e., no
service requested or provided, or the agent was off-line).
Figure 9 - B depicts the case when the reputation values
are increasing and approaching the maximum reputation value
threshold (10 in our simplified example). In Figure 9 - C
the reputation of the agent decreases, approaching the lower
bound threshold. The latter, combined with the inclination of
the curve, can be used when taking the decision of excluding
the agent from the community.

Figure 9 shows the behavioral trends, however, the actual
reputation may be a composition of the basic trends presented
above. Figure 10 shows a possible scenario, where each point
of the graph corresponds to the punctual reputation value based
on the evaluations provided by both demander and executor
concerning a given interaction. Evaluation methods and quality
of the performance offered by the agents can present consid-
erable variability which is reflected in the fluctuations of the
agents’ reputations.

The behavioral trends can be interpreted based on the agent
role. Table I summarizes the possible interpretations for the
executor and demander for every trend identified and discussed
above. The trends are significantly easier to interpret. For

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
3.5

4

4.5

5

5.5

6

6.5

7

7.5

Time (s)

A

Fig. 10. Identified composite reputation trends.

instance, if the reputation value of the executor grows over
the time, this agent can be seen as a reliable service provider,
constantly improving the quality of its service. However, in
the case of the composition of the trends, interpretation may
not be straightforward. Yet, outliers perturbing the reputation’s
trend can be used to detect malicious behavior, a single mistake
of the service provider, or unintentionally made errors when
providing evaluations. The relevance of the trend can be

Fig. 9(A) Fig. 9(B) Fig. 9(C) Fig. 10(A)

Exe Stable

Bad
evaluators(s),
Performance in
decline

Good Executor
Unpredictatble,
Time-limited
problem

Dem Stable

Bad
executor(s),
Possible
malicious
intentions

Good evaluator

Honest
mistake,
Single bad ac-
tion

TABLE I
POSSIBLE INTERPRETATIONS OF THE IDENTIFIED REPUTATION TRENDS.

interpreted based on the time (for how long a given value
is maintained) and on the number of evaluation (number of
interactions and evaluations occurred). The combination of
the slope of a curve with the number of points also plays an
important role. It can be used to detect unintentional mistakes
in evaluation, as well as inactivity of an agent.

Currently, we are analyzing potential corner cases that can
occur when our system is in use. These include a missing
evaluation from a demander (currently, there is no mechanism
to enforce the demander to provide an evaluation), an executor
(it can be off-line, and therefore the evaluation will never be
provided), or both. We are also investigating a possibility to put
timing constraints for providing evaluations, in particular for
the executor. Introduced in a smart contract, such constraints
will enable identification of the situations when the deadline
of the execution of the service is missed. Thus, the reputation
has to be updated accordingly.



VI. CONCLUSIONS AND FUTURE WORK

This paper addressed the challenge of enforcing trust in
multi-agent systems by implementing mechanisms for trans-
parent reputation management using block- chain technology.
We present the design and development of a system based on
JADE and Fabric Hyperledger v1.0.

Our system achieves a trustworthy community by extending
the management of the agent identity to the membership
service of Hyperledger Fabric, by distributing the association
agent - offered service(s) using the ledger, and by imple-
menting the mechanisms to immutably store and transpar-
ently compute agents’ reputations based on the evaluations
of the interactions between the agents. Several behaviors of
the agents were simulated to test the proposed system. The
results show promising directions to undertake. The system
appears robust and scalable. Moreover, its graphical interface
simplifies the interactions making the tests much faster and
easier with respect to a classic command line interface and
providing a possibility to employ this system in various use-
case scenarios. Extending the interface will enable us to obtain
extensive evaluation results for specific use-case scenarios and
interactions.

The application of relatively new technology such as BCT
are challenging. This latter is not fully framed by standards
and has not been widely adopted yet. Although the benefits
of combining BCT and MAS are justified and a prototype of
the proposed solution has been implemented, some technical
limitations persist. For example, a few challenges that still
need to be addressed are: (i) avoiding single point(s) of failure
of the system by defining a reasonable mapping between
real entities and distributed components (membership service,
orderer) of the underlying blockchain technology (Hyperledger
Fabric), (ii) leveraging cryptographic solutions for providing
better security and privacy, (iii) verifying the correctness of
the implementation of the smart contract, and (iv) adopting
and adapting the blockchain and agent technology in the real-
world systems.

REFERENCES

[1] H. C. Wong and K. Sycara, “Adding security and trust to multiagent
systems,” Applied Artificial Intelligence, vol. 14, pp. 927–941, 2000.

[2] W. He, X. Gao, W. Zhong, and F. Qian, “Secure impulsive synchroniza-
tion control of multi-agent systems under deception attacks,” Information
Sciences, 2018.

[3] D. Calvaresi, A. Claudi, A. Dragoni, E. Yu, D. Accattoli, and
P. Sernani, “A goal-oriented requirements engineering approach for
the ambient assisted living domain,” in Proceedings of the 7th
International Conference on PErvasive Technologies Related to
Assistive Environments, ser. PETRA ’14, 2014, pp. 20:1–20:4. [Online].
Available: http://doi.acm.org/10.1145/2674396.2674416

[4] A. Dubovitskaya, V. Urovi, I. Barba, K. Aberer, and M. I. Schumacher,
“A multiagent system for dynamic data aggregation in medical research,”
BioMed research international, vol. 2016, 2016.

[5] D. Calvaresi, D. Cesarini, P. Sernani, M. Marinoni, A. Dragoni, and
A. Sturm, “Exploring the ambient assisted living domain: a systematic
review,” Journal of Ambient Intelligence and Humanized Computing, pp.
1–19, 2016.

[6] D. Calvaresi, M. Schumacher, M. Marinoni, R. Hilfiker, A. Dragoni,
and G. Buttazzo, “Agent-based systems for telerehabilitation: strengths,
limitations and future challenges,” in proceedings of X Workshop on
Agents Applied in Health Care, 2017.

[7] F.-S. Hsieh, “Modeling and control of holonic manufacturing systems
based on extended contract net protocol,” in American Control Confer-
ence, 2002. Proceedings of the 2002, vol. 6, 2002, pp. 5037–5042.

[8] Y. Hedin and E. Moradian, “Security in multi-agent systems,” Procedia
Computer Science, vol. 60, pp. 1604–1612, 2015.

[9] B. Yu and M. P. Singh, “An evidential model of distributed reputation
management,” in Proceedings of 1st international conference on Au-
tonomous Agents and Multiagent Systems. ACM, 2002, pp. 294–301.

[10] S. Ramchurn, D. Huynh, and N. Jennings, “Trust in multi-agent sys-
tems,” The Knowledge Engineering Review, p. 1–25, 2004.

[11] Y. Hedin and E. Moradian, “Security in multi-agent systems,” Procedia
Computer Science, vol. 60, pp. 1604 – 1612, 2015, knowledge-Based
and Intelligent Information and Engineering Systems 19th Annual
Conference, KES-2015, Singapore, September 2015 Proceedings.

[12] S. D. Ramchurn, D. Huynh, and N. R. Jennings, “Trust in multi-agent
systems,” The Knowledge Engineering Review, vol. 19, pp. 1–25, 2004.

[13] A. Dragoni, F. Mascaretti, and P. Puliti, “A generalized approach to
consistency based belief revision,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 992, pp. 231–236, 1995.

[14] A. Dragoni and P. Giorgini, “Distributed belief revision,” Autonomous
Agents and Multi-Agent Systems, vol. 6, no. 2, pp. 115–143, 2003.

[15] A. Dragoni and S. Animali, “Maximal consistency, theory of evidence,
and bayesian conditioning in the investigative domain,” Cybernetics and
Systems, vol. 34, no. 6-7, pp. 419–465, 2003.

[16] A. Dragoni and P. Giorgini, “Learning agents’ reliability through
bayesian conditioning: A simulation experiment,” Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 1221, pp. 151–167, 1997.

[17] D. Calvaresi, A. Dubovitskaya, J. P. Calbimonte, K. Taveter, and
M. Schumacher, “Multi-agent systems and blockchain: Results from a
systematic literature review,” 2018.

[18] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in International Workshop on Open Problems in
Network Security. Springer, 2015, pp. 112–125.

[19] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[20] L. J. Savage, The foundations of statistics. Courier Corporation, 1972.
[21] F.-S. Hsieh, “Modeling and control of holonic manufacturing systems

based on extended contract net protocol,” in American Control Confer-
ence, 2002. Proceedings of the 2002, vol. 6, 2002, pp. 5037–5042.

[22] E. C. Ferrer, “The blockchain: a new framework for robotic swarm
systems,” arXiv preprint arXiv:1608.00695, 2016.

[23] M. Bottone, F. Raimondi, and G. Primiero, “Multi-agent based simula-
tions of block-free distributed ledgers,” 2018.

[24] A. Zuiderwijk, M. Janssen, and C. Davis, “Innovation with open data:
Essential elements of open data ecosystems,” Information Polity, vol. 19,
no. 1, 2, pp. 17–33, 2014.

[25] S. Kozlowski, “An audit ecosystem to support blockchain-based account-
ing and assurance,” in Continuous Auditing: Theory and Application.
Emerald Publishing Limited, 2018, pp. 299–313.

[26] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation
systems for online service provision,” Decision support systems, vol. 43,
no. 2, pp. 618–644, 2007.

[27] K. N. Khaqqi, J. J. Sikorski, K. Hadinoto, and M. Kraft, “Incorporating
seller/buyer reputation-based system in blockchain-enabled emission
trading application,” Applied Energy, vol. 209, pp. 8–19, 2018.

[28] K. Qayumi, “Multi-agent based intelligence generation from very large
datasets,” in Cloud Engineering (IC2E), 2015 IEEE International Con-
ference on. IEEE, 2015, pp. 502–504.

[29] D. Calvaresi, A. Dubovitskaya, D. Retaggi, A. Dragoni, and M. Schu-
macher, “Trusted registration, negotiation, and service evaluation in
multi-agent systems throughout the blockchain technology,” Interna-
tional Conference on Web Intelligence, 2018.

[30] T. Locher, S. Obermeier, and Y.-A. Pignolet, “When can a distributed
ledger replace a trusted third party?” preprint arXiv:1806.10929, 2018.

[31] S. J. Russell and P. Norving, “Norvig,” Artificial Intelligence: A Modern
Approach, pp. 111–114, 2003.

[32] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE. John Wiley & Sons, 2007, vol. 7.

[33] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in Proc.
of Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[34] IBM, “hyperledger-fabric online documentation,” https:
//hyperledger-fabric.readthedocs.io/en/release-1.2/, [Accessed 10/9/18].

[35] C. Tessier, L. Chaudron, and H.-J. Müller, Conflicting agents: conflict
management in multi-agent systems. Springer Science & Business
Media, 2006, vol. 1.

[36] S. Resmerita and M. Heymann, “Conflict resolution in multi-agent
systems,” in IEEE Conference on Decision and Control, vol. 3, 2003,
pp. 2537–2542.

[37] W. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman, “Normative
conflict resolution in multi-agent systems,” Autonomous agents and
multi-agent systems, vol. 19, no. 2, pp. 124–152, 2009.

http://doi.acm.org/10.1145/2674396.2674416
https://hyperledger-fabric.readthedocs.io/en/release-1.2/
https://hyperledger-fabric.readthedocs.io/en/release-1.2/

