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Abstract

In this paper, we investigate the influence of the clinical
context of high–resolution computed tomography (HRCT)
images of the chest on tissue classification. Evaluation of
the classification performance is based on a high–quality
multimedia data extracted from clinical routine. The clin-
ical attributes with highest information gain ratio show to
be relevant and consistent for the classification of lung tis-
sue patterns. A combination of visual and clinical attributes
allowed a mean of 93% of correct predictions of testing in-
stances among the five classes of lung tissue with optimized
support vector machines (SVM), which represents a signifi-
cant benefit of 8% compared to a pure visually–based clas-
sification.

1 Introduction

The interpretation of high–resolution computed tomog-
raphy (HRCT) images of the chest from patients affected
with interstitial lung diseases (ILDs) is challenging and
time–consuming even for experienced radiologists. The
term interstitial lung disease accounts for around 150 ill-
nesses of which many forms are rare. Images play an im-
portant role for building the diagnosis and patients may not
require surgical lung biopsy when the clinical and radio-
graphic (HRCT) impression is consistent with a safe diag-
nosis [10]. The most common imaging procedure used is
the chest x–ray because of its low cost and weak radiation

exposure. However, chest x–rays are negative in a large
portion of diseases and often unspecific where HRCT of
the chest contains essential visual data for the characteriza-
tion of lung tissue patterns associated with ILDs [23]. The
three–dimensional form of HRCT data requires significant
reading time, effort, and experience for a correct interpre-
tation. Owing to this intrinsic complexity of the interpre-
tation of HRCTs, an image–based computerized diagnostic
aid tool can bring quick and precious information to less
experienced radiologists and non–chest experts [2, 8, 22].
Moreover, radiologist’s ability to interpret HRCT images is
likely to change based on the domain–specific experience,
human factors and time of the day where computerized im-
age analysis is 100% reproducible.

1.1 The clinical context of HRCT images

When analyzing an image, one interprets its content ac-
cording to a given context. For example, an image showing
a heavenly beach is not interpreted in the same manner if
seen in a holiday leaflet or in a report on tsunamis. This
is particularly true when analyzing medical images. Ra-
diologists do never interpret HRCT images without taking
into account the clinical context. For example, discovering
some fibrotic findings in a lung belonging to an 80–years–
old patient is not as surprising as finding some in a lung of
a 25–years–old young man. Several clinical parameters –
in particular the age of the patient (see Fig. 1) – have ma-
jor influence on the visual aspect (density) of HRCT im-
ages of the chest [17, 21]. In Figure 1, one can see that



Figure 1. Healthy tissues from a 25–years–old
man on the left, and from an 88–years–old
man on the right. Both images have identi-
cal window level settings.

healthy tissue from the 88–years–old man has lower mean
density with more pre–fibrotic lesions compared to the ho-
mogeneous healthy tissue of the 25–years–old man. To ac-
curately analyze HRCT images an image–based computer-
ized diagnostic aid system for ILDs must integrate the clin-
ical context of the images.

1.2 Contextual image analysis

Although fundamental, the context is rarely used in
computer vision applications. On the one hand, collect-
ing contextual information beside images is usually time–
consuming. One the other hand, a high–level of knowledge
of the application domain is required to find relevant con-
textual parameters. The selection of parameters for contex-
tual medical image analysis has to be carried out based on
domain–specific literature along with knowledge bases of
computer–based diagnostic decision support systems [11].

An early review of the integration of context for pattern
recognition can be found in [24] where Bayesian models are
used to implement compound decision theory.

Context has been used in content–based image retrieval
(CBIR) where information from textual annotations of im-
ages is fused with image features [28] (i.e. grey–level his-
tograms and texture features). In [3], a CBIR system com-
bines visual statistics with textual statistics directly in the
feature vector space representation. Inter–media medical
image retrieval is carried out in [16] using textual features
semantically parsed and described with the Unified Medi-
cal Language System (UMLS) along with color and texture
features. The visual and textual information is combined
in the similarity measure. Investigation of the effectiveness
of combining text and image for retrieval including med-
ical image retrieval is one of the main goals of the CBIR
benchmarking campaign ImageCLEF1 [12, 18].

1http://www.imageclef.org

A combination of radiologic findings on chest radio-
graphs and clinical parameters to provide probability out-
put of 11 possible ILDs using an artificial neural network is
carried out in [1]. By using these probabilities, radiologists
were able to significantly improve their diagnosing accura-
cies. However automatic detection of relevant patterns in
the chest radiographs was not investigated.

Utilization of knowledge of disease location to improve
detection offibrosispatterns in HRCT data is carried out
in [30]. The location of the patterns show to significantly
improve detection performance but requires an accurate
segmentation of the anatomy of the lung.

Many image–based diagnostic aid systems for ILDs
achieved high classification accuracy of lung tissue patterns
in HRCT data [22, 25, 26] and showed to be effective in
clinical routine [2]. Yet, most of these systems are based on
the visual data only (HRCT images). To our knowledge no
system attempted to integrate clinical parameters for auto-
matic detection of lung tissue patterns associated with ILDs
in HRCT data.

Texture analysis of lung images using Wavelet frames
was investigated in [7] and support vector machines (SVM)
showed to be optimal for the categorization of lung tissue
using quincunx Wavelet frames in [6]. In this paper, we
study the influence of the integration of the clinical context
of HRCT images on classification performance of 5 lung
tissue patterns associated with ILDs.

2 Methods

The dataset used to investigate the influence of clinical
parameters on classification accuracy of lung tissue is part
of an internal multimedia database of ILD cases containing
HRCT images created in the Talisman project. 99 relevant
clinical parameters were chosen according to the 15 most
frequent ILDs [13] based on the literature [14, 27], along
with knowledge bases of computer–based diagnostic deci-
sion support systems [11]. Discussions and remarks from
lung specialists, radiologists and the medical informatics re-
search group (SIM2) at the University Hospitals of Geneva
(HUG) allowed an iterative review of the selected param-
eters as well as standardized units and data format to be
used. The parameters that were not available from the elec-
tronic health record (EHR) were removed. An HTML form
and PHP scripts were used to collect the clinical parameters
and to store them into a MySQL database. When multi-
ples instances of clinical parameters (e.g. laboratory data)
were available in the EHR, the instance as near as possible
to HRCT examinations was retained. 96 patients with con-
firmed diagnosis have been retrospectively collected at the
HUG since the year 2003. For each patient, clinical param-

2http://www.sim.hcuge.ch/



Table 1. Distribution of the ROIs & patients
per class of lung tissue pattern

healthy emphysema ground glass fibrosis micronodules

# of ROIs 63 58 148 312 155

# of patients 5 4 14 28 5

eters were filled as much as possible and a total of 1104 re-
gions of interest (ROIs) of lung tissue patterns were drawn
in full–resolution DICOM images by two experienced ra-
diologists. The slice thickness of the images is limited to
1mm. A graphical user interface implemented in Java was
developed in order to meet the needs of the radiologists for
the various annotation tasks.

736 ROIs from healthy and four pathologic lung tissue
patterns belonging to 56 patients with filled clinical param-
eters are selected for this study (see Table 1). Patterns that
are represented by less than 4 patients are left aside. The
selected patterns arehealthy, emphysema, ground glass, fi-
brosis and micronodules. Distributions of the classes are
highly imbalanced as the largest classfibrosiscontains 312
ROIs and the smallest class only 58 ROIs. There is a mean
of 147.2 ROIs per class.

Implementation of the SVMs’C–support vector classi-
fication is taken from the open source Java libraryWeka3

using a wrapper forLIBSVM4. The image feature extrac-
tion and the optimization of SVMs is implemented in Java.
Quincunx Wavelet frames are implemented in Java [9].

3 Results

3.1 The clinical feature space

The clinical parameters entered in the MySQL database
are not directly usable for data–mining. Pre–processing
steps are required to build a workable feature space. Nomi-
nal variables are divided into binary features. Textual vari-
ables and binary variables that contained one single modal-
ity are left aside. After having gathered binary and contin-
uous variables, the created clinical feature space contains
(anew) 99 attributes (78 binary and 21 continuous). The
filling rate of the retained parameters is 64.8%, which sig-
nifies that for each patient, approximately 35 attributes of99
have missing values. Since leaving aside cases with miss-
ing values is not conceivable, mean values were substituted.
For example, over the 56 selected patients, the parameter
hostHIV has 4yes, 51noand 1unknownvalue.yesvalues

3http://www.cs.waikato.ac.nz/ml/weka/
4http://www.csie.ntu.edu.tw/ cjlin/libsvm/

are coded with 1,no with 0 and thus the missing value is
substituted by the mean: 0.073.

3.2 Combining features

Visual features consist of texture features with 22 bins
of grey–level histograms of Hounsfield Units (H.U.) within
the ROIs, along with meanµi and varianceσi of quincunx
Wavelet frame (QWF) coefficients extracted at 8 scalesi.
An additional featureairpix measuring the number of pix-
els of the ROI with value inferior to−1000 H.U. (which
corresponds to the density of air) is used. A complete de-
scription and evaluation of the visual feature space can be
found in [6, 7].

In order to create a multimodal feature space, clinical at-
tributes described in Section 3.1 and visual features are nor-
malized and concatenated into one single feature vectorv.
The number of clinical attributes selected is studied. Indeed,
due to missing values, binarization or irrelevance according
to the studied diseases, some features might introduce noise
by scattering homogeneous clusters of instances in the fea-
ture space. A feature selection is thus required to build an
effective set of attributes. The information gain ratioIGratio

is used to rank the clinical attributes [20]. Gain ratio is de-
rived from the information gain measureIG originally used
by Quinlan in decision trees in [19]. Compared toIG the
gain ratio will not give advantage to attributes with a high
range of possible values. As the clinical feature space is
populated with binary as well as continuous attributes, it is
highly preferable to use theIGratio

for ranking. Table 2 lists
the first 20 clinical attributes with highestIGratio

. When
usingIG, the 10 attributes with highestIG are continuous,
which confirms thatIG is biased by the nature of the vari-
able. The correlation matrix of the feature space containing
the visual features along with the first 20 clinical attributes
is shown in Figure 2.

3.3 Influence of clinical parameters on the
classification accuracy

In order to study the effect of the integration of the clin-
ical context of HRCT images on the classification accuracy
of the lung tissue patterns, optimized SVMs with a Gaussian
kernel are used to categorize ROIs from the multimodal fea-
ture space described in Section 3.2. SVMs with a Gaussian
kernel have shown to be effective to categorize lung tissue
patterns from visual features in [6] and are adapted to mine
clinical parameters as shown in [5] where SVMs are used to
detect nosocomial infection from a clinical feature space.

The methodology used for the evaluation of the influ-
ence of clinical parameters on classification accuracy is or-
ganized as follows: 50 patients (90%) are randomly drawn
from the full dataset and used to train and optimize the



Table 2. List of the first 20 clinical parame-
ters with highest IGratio

. Abbreviations: crp: C
reactive protein, wbc: white blood cell, vs: sedimentation
speed.

rank IGratio
clinical parameter type

1 0.5486 findings physicalgeneralslymph binary

2 0.5194 hosthemopathy binary

3 0.5194 pastmedicallymphom binary

4 0.5062 host chemotherapy binary

5 0.4772 pastmedicalneoplasm binary

6 0.4685 findings physicalgeneralsfever binary

7 0.4641 findings physicalvisual binary

8 0.4419 laboratoryangiotensin continuous

9 0.4377 laboratoryhemoglobin continuous

10 0.4212 age continuous

11 0.4184 findings physicalgeneralsarthralgy binary

12 0.406 medicationgold binary

13 0.4025 laboratoryhematocrit continuous

14 0.4006 laboratorycrp continuous

15 0.3948 medicationcyclophosphamides binary

16 0.3853 laboratorywbc continuous

17 0.3814 medicationcyclines binary

18 0.3721 medicationcorticosteroidduration continuous

19 0.3716 laboratorywbc neutrophilic continuous

20 0.3644 laboratoryvs continuous
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Figure 2. Correlation matrix of the combined
feature space. Indexes of the clinical param-
eters corresponds to their rank described in
Table 2.
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Figure 3. Mean accuracies based on the
number N of clinical parameters ordered by
IGratio

. Combined features with optimal N =
20 clinical parameters allowed a mean of
93% correct predictions of testing instances
among the five lung tissue classes.

SVM. The remaining patients are used for testing. As
classes are highly imbalanced, the training set is built from
stratification, which consists at selecting at least one pa-
tient per class for training. This avoids testing with un-
seen classes. The training set is used both for grid search
for optimal parameters and adjustment of the maximum–
margin hyperplane of the SVMs. Optimized parameters of
the SVM are the cost of the errorsC and the widthσ of
the Gaussian kernel. A grid search is carried out within the
intervalsC ∈ [1; 100] andσ ∈ [10−2; 102]. For every coor-
dinate of the grid, a 10–fold cross–validation (CV) is carried
out on the training set. Optimal parameters(Copt, σopt) that
allowed best mean CV accuracyAcv are used to train the fi-
nal model on the entire training set. A preliminary coarse
grid search was performed to locate regions of the space
with highAcv values.

In order to determine the optimal numberN of clinical
attributes to be added to the feature vectorv, the global
experimentation described above is repeated 30 times for
eachN ∈ [10; 90]. Means of the classification accuracies
obtained with the test set using visual features, clinical fea-
tures and combined features according toN are shown in
Figure 3.

4 Interpretation

4.1 Relevance of clinical attributes

The relevance of the clinical attributes for classifying
lung tissue patterns in HRCT data is subject to many ex-



ternal factors such as the availability of the parameters in
the EHR, its binarization required to be added tov and
relevance according to the studied diseases. Indeed a pa-
rameter such as the result of a lung biopsy is obviously
highly informative for characterizing the lung tissue but is
rarely carried out and available in the EHR (the parame-
ter biopsylung interstitial fibrosishas 87% missing values
and is nevertheless ranked to26th position according to
IGratio

value). The categorization and binarization has also
major influence on the quality of clinical data. At last, the
relevance of the parameter according to the studied diseases
is of course primordial.

The presence of the parameter find-
ings physicalgenerallymph(which stands for the enlarge-
ment of lymph node(s)) at the top of the list is not surprising
as it usually highlights the presence of a host illness. Idem
for the parameterfindingsphysicalgeneralfever located
at the 6th rank. As observed in Section 1.1, the age
has an important influence on the visual aspect of lung
tissue (see Figure 1) and it is not astonishing to find it at
the 10th rank. However, the presence of the parameter
findingsphysicalvisualat the7th rank which characterizes
visual anomalies (i.e. exophtalmy, cataract, ...) is most
certainly the result of a coincidence.

The study of the correlation of the multimodal feature
space is carried out in Figure 2. Correlations among the
visual features are detailed in [6]. A first look at the cor-
relation matrix shows that clinical features are very little
correlated with the visual features. On the second look
one can observe that clinical feature number 13,labora-
tory hematocrit, is strongly anticorrelated with the means
µi of the QWF and highly correlated toairpix the number
of pixels of air within the ROIs. An explication for this is
that large homogeneous regions of air, characterizingem-
physemapatterns, will cause hypoxia and may elicit an in-
creased production of red blood cells by the kidney, and
thus increase the level of hematocrit. This phenomenon is
indeed commonly observed in cases affected with chronic
obstructive pulmonary disease (COPD) [4], characterized
by HRCT images showingemphysemapatterns.

4.2 Influence of the clinical context on
lung tissue classification

Influence of the clinical context of HRCT images on lung
tissue classification accuracy is studied in Figure 3. As
baseline performance, let us consider the mean accuracy
of 85% achieved by using visual features only. It seems
clear that the optimal numberN of clinical attributes both
for classifications based on clinical features only and com-
bined features is 20. It allowed a mean of 93% correct
predictions of testing instances among the five classes of
lung tissue, which represents a significant benefit of 8%

compared to a pure visually–based classification. Fluctu-
ations of the performances according toN are the result of
interactions among the various groups of features. Varia-
tions of the performance are consistent untilN = 30. For
N = 50, the clinically–based classifications obtain a lo-
cal maximum whereas classifications using combined fea-
tured have a local minimum. This highlights the fact that
the clinical parameters scatter homogeneous clusters of in-
stances in the feature space. By adding 10 more parameters
(N = 60), clusters are re–organized and the mean accuracy
with combined features rises again. The observed fluctua-
tions suggest that features issued from distinct sources must
be mined separately, and the fusion of the results has to be
carried out by combining the output of hierarchical classi-
fiers as in [15], or by using a different kernel for each data
source [29].

5 Conclusions

In this paper, the influence of the clinical context on lung
tissue classification from HRCT data was investigated. A
combination of visual and clinical attributes allowed a mean
of 93% of correct predictions of testing instances among
the five classes of lung tissue with optimized SVMs. This
represents a significant benefit of 8% compared to a pure
visually–based classification. Accuracy values are trustwor-
thy for further usage in clinical routine as we never train and
test with ROIs that belongs to the same patient. The fluctu-
ations of performances according to the number of clinical
attributes used suggests that features issued from distinct
sources must be mined separately in order to preserve ho-
mogeneous clusters of instances in the feature space.
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