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1 SUMMARY 

Key Words: Optimized Machine learning, Data mining, Energy prediction, Microgrid 

This work presents a data-intensive solution to predict the different energy flux in a microgrid. The ability 10 

to predict locally the energy considering meteorological uncertainty can play a key role in the management of 

microgrid. Our approach is to provide an easy implemented and flexible solution to predict the consumption and 

the production at the building level based on the machine learning technique and tested on the real use cases in a 

residential and tertiary sector. A new evaluation of the consumption is realized: the point of view is energy and 

not only electrical. The energy consumption is decomposed between the heating, the hot water, the electrical 15 

devices, the lighting and the ventilation consumptions. A prediction every hour is provided to create scenarios to 

pilot devices. We provide an original optimized method to limit the input data number. A classification and a 

prediction for the electrical consumption in a tertiary sector are provided for the next hour with an accuracy over 

the 98% +/- 1%.  

2 INTRODUCTION 20 

 

PV is the fastest-growing energy technology since 2002 with an average increase of 48% [COC-2012]. The 

majority plants are grid-connected systems and a high penetration of PV (like in the case of islands) raises issues 

for the grid-operators. Subsequently, forecasting the power output of the PV plant is necessary to assure the grid 

stability. A large amount of research studies in the domain lay emphasis on predicting solar radiation which is a 25 

key data to improve the results. Neural networks are widely used to this purpose and manage to reach a MAPE 

around 7% on monthly and day-ahead solar radiation forecast [COC-2012]. We can cite the example of A. Mellit, 

a reference author in the subject who achieve a MAPE less than 6% for day-ahead solar radiation in Algeria 

[MEL-2006]. Regression trees are not widely used but show a MAPE of 33% for PV production prediction [Nom-

2011]. The studies concern a wide choice of photovoltaic installations and data type, (study on 12 PV cells in the 30 

laboratory or 14,000 m2 of panels) with ARIMA models or neural networks [ZAM-2014] [GRA-2016] [GUL-

2016]. 

The consumption prediction models are very important, time scales are multiples and the predictions are made 

by the hour, the day, the month, the year, and so on. [REB-2015] [MOU-2016] [CHE-2016]. In [ZHA-2016], the 

consumption time series is predicted by a hybrid method with a regression followed by a learning method and 35 

the SVM algorithm. A disaggregation’s of the global load curves are also performed to identify the electrical 

appliances [PAR-2011]. Other studies create simplify models and the building is modeled by a single equivalent 

electrical circuit (RC, R2C2, R3C2, R6C2) [JAZ-2002] [ARB-2015].  
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3 METHODOLOGY 40 

3.1 Energy problem Characterization 

We begin by a decomposition of the global energy need for a system without the heating, the hot water, the 

lighting, the ventilation and the specific electrical named EUSE : 

𝐸 𝑡(𝑖) = (𝐸𝐻𝑒𝑎𝑡𝑖𝑛𝑔  +  𝐸𝐻𝑜𝑡_𝑊𝑎𝑡𝑒𝑟 + 𝐸𝑈𝑆𝐸 +  𝐸𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛  +   𝐸𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔  ) 𝑡(𝑖)      (eq. 1) 

The system can be connected at the decentralized production. With EENRE t(i) the photovoltaïque solar pannel 45 

production and EENRT t(i)  the thermal solar pannel production, we have: 

𝐸 𝑡(𝑖) = (𝐸𝐻𝑒𝑎𝑡𝑖𝑛𝑔  +  𝐸𝐻𝑜𝑡_𝑊𝑎𝑡𝑒𝑟 + 𝐸𝑈𝑆𝐸 +  𝐸𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛  +   𝐸𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔  −  𝐸𝐸𝑁𝑅𝐸 −  𝐸𝐸𝑁𝑅𝑇  ) 𝑡(𝑖)   (eq. 2) 

A part of these energy can be controlled based on the different prediction. The system can have an electrical 

storage battery : 

𝐸 𝑡(𝑖) = (+/−𝐸𝐻𝑒𝑎𝑡𝑖𝑛𝑔  +/− 𝐸𝐻𝑜𝑡_𝑊𝑎𝑡𝑒𝑟 +/− 𝐸𝑈𝑆𝐸 +/− 𝐸𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛  +/−  𝐸𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔  +/−  𝐸𝐵𝑎𝑡𝑡𝑒𝑟𝑦 −  𝐸𝐸𝑁𝑅𝐸 −50 

 𝐸𝐸𝑁𝑅𝑇  ) 𝑡(𝑖)            (eq. 3) 

3.2 Transform Datas 

The data collected depends of the sensor selected to measure the consumption and the production which influence 

the data process. In the case of the identification of the electrical devices, a study per second is required for the 

electrical devices with short cycle times. In this paper, we apply a median filter of size 60 to remove high 55 

frequency at the global load curve level. In a case of no stable electrical network, it may ne possible to complete 

by a data process based on the voltage [HAR-1992].  

3.2.1 Events detection 

The power thresholds identify the short variations during a predetermined period. These techniques enable 

identification of the electrical events. It is between 40 Watts and 50 Watts 15 VAR for reactive power [HART-60 

1992] to identify all electrical devices. This events identification can be done from a sliding average over a 

window of time to be defined according to the problem.  

𝐸𝑣𝑒𝑛𝑡𝑠 𝑡(𝑖) =  [𝐷𝑎𝑡𝑒, ∆𝑃 𝑡(𝑖), ∆𝑄 𝑡(𝑖)]         (eq. 4) 

3.2.2 Statistics 

The statistics patterns are computed for the powers and the events. The mean, the minimum, the maximum, the 65 

standard deviation are computed each hour. 

3.2.3 Time characterization 

The different variables from the time variable can be extracted to have statistics per period with the month ,m 

ranging from 1 to 12, the days of the year from 1 to 365, the days of the week from 1 to 7 (Monday, Tuesday, 

Wednesday, Thursday, Friday, Saturday and Sunday), the hour h from 0 to 23 and the days corresponding to 70 

cantonal school holidays characterized by a Boolean variable 0 or 1.  

3.2.4 Production planning integration 

 the consumption prediction, In the tertiary and industrial sector, the arrival and departure times of staff and the 

days worked as input information help in the quality of the training set by creation of specific training set. The 

production planning enables to identify the people number adjusted with the production. For example, in the 75 

restaurant case, the restaurant may be open for the lunch and not for the dinner and open the weekday and not the 

week-end. These information’s enable to create a specific training by period. In the residential case, a production 

planning associated with the heating and the hot water is added.  pump is associated. This heat pump controls the 

heating and the hot water. A training model is created for days k from Monday to Friday (from 1 to 5) and another 

model for Saturday and Sunday (6 and 7). 80 



 

 

3.2.5 Meteo Data integration 

For the collection of meteorological data, we analyzed like World wea. ther online, Open Weather map, 

Meteoblue, Meteosuisse, Observations, Meteocentrale. The advantage of suppliers such as Meteoblue, 

Meteosuisse, Meteonews and Meteocentrale is the control of data by meteorologists which adjust them according 

to the changing meteorological context. The Meteosuisse is the solutions this project.  the dataset contains 85 

historical real measures and forecast values of temperature and radiation. The forecasted weather values are a 

one day-ahead prediction in 2014. 

3.2.6 Classification 

For the hot water and the heating, a supervised training is computed. If the energy is above a threshold, it is 

labeled ON, otherwise OFF. The same learning is done for the hot water per hour. 90 

In the solar production and the others energy flux, the number of classes has not been predetermined and we are 

talking about unsupervised learning. These techniques determine the classes to characterize the electrical 

consumption and the solar panel production. In this paper, the EM (expectation-maximization) algorithm is 

proposed to decompose the time series [VIC-2015] and create the classes represented by a Gaussian. 

3.3 Train model 95 

Our objective is to provide the prediction in the next hour to manage the microgrid:  

𝐸 𝑡(𝑖 + 1) = (+/−𝐸𝐻𝑒𝑎𝑡𝑖𝑛𝑔  +/− 𝐸𝐻𝑜𝑡_𝑊𝑎𝑡𝑒𝑟 +/− 𝐸𝑈𝑆𝐸 +/−  𝐸𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛  +/−  𝐸𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔  +/−𝐸𝐵𝑎𝑡𝑡𝑒𝑟𝑦 − 𝐸𝐸𝑁𝑅𝐸 −

 𝐸𝐸𝑁𝑅𝑇  ) 𝑡(𝑖 + 1)             (eq. 5) 

The solutions are provided by the software KNIME with an industrial deployment. A connection between the 

database and the software is created and the data are proceeding each hour.  The techniques predictions described 100 

in Introduction are tested with the linear method (ARIMA model and linear regression) and the no linear method 

(MLP, PNN, SVM, Random Forest and the GBT, Boosted Tree gradient). 

We must ensure an equitable distribution among the different classes, especially that which requires a particular 

interest, such as the peak power consumption or production. A step called "boostsrap" can be necessary if classes 

are underrepresented. This step is particularly adapted to our problem of predictions of sudden variations of the 105 

consumption or the production and that algorithms like the AdaBoost or the Gradient Boosting Tree. Finally, 

different training model are represented by the planning production described in 3.2.3. 

3.4 Evaluation 

In our binary problem, the evaluation is realized by the Receiver Operating Characteristic (ROC) curve. It is a 

measure of the performance of a binary classifier. In no binary problem, the evaluation is realized by statistics 110 

computed. the coefficient of determination (R²), the Mean Square Error (MSE), the RMSE (root mean square 

deviation), the Mean Absolute Error (MAE), the mean squared difference (MSD) [BER-2010].  

3.5 Optimization 

3.5.1 Optimized the weather data predicted 

Meteorological data are essential in particular for the solar and the heating predictions. The prediction values 115 

provided by MeteoSwiss included extreme luminosity and temperature errors corresponding to local phenomena. 

An error is defined between the real and the predicted data for the temperature predictions and an error for the 

luminosity. A training model of the error associated with the time identification described in 3.2.2 is characterized 

by a non-parametric method. 

 120 

 

 

Figure 1: Method to optimize the weather data predicted 
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3.5.2 Variables number impact 

The aim is to define a minimal inputs variable without decrease the prediction scored. Different algorithms are 125 

tested and evaluated in 2.4. At the output of the different implementations of the decision trees, the statistics 

provide the construction of the tree and enable a hierarchy in the input variables. The sum of statistics is 

computed for the construction of the three first levels. By iteration the number of the input variables is reduced 

based on their importance in the construction of trees. At each iteration, the scored of the prediction or the 

classification is computed describe in 3.4. 130 

 

 

 

 

Figure 2: Method to optimize the weather data predicted 135 

3.5.3 Frequency impact 

The difference the prediction results is computed between the data at the second aggregate per minute and one 

data per hour to predict the next hour. 

4 USE CASES 

Techno-Pôles microgid is the use case contextualized in the I-BAT Swiss Project and ENTROPY European 140 

project. The data are displayed in real-time through: http://www.technopole-vert.ch. An Advanced Metering 

Infrastructure (AMI) based on the Internet of Things (IoT) has been implemented. This deployment provides 

energy-related parameters such as the overall building load curves and a wireless network of IoT-based smart 

meters to measure and control appliances. The Techno-Pôle of Sierre, the sunniest city in Switzerland as a 203 

kWp PV plant that represents 1200 m2 of the roof surface. A weather station has been recently installed in 2015 145 

and will provide more accurate weather data for the microgrids energy management. The site gathers 500 people 

working for 50 companies including private service providers as well as research institutes like HES-SO which 

carried out the microgrid project. The microgrid can also operate as an energy storage management demonstrator 

as batteries of 25 kWh with a remote control of charge/discharge have been installed. 

             Figure 3: Statistical results at the output of the different algorithms for the prediction of overall electricity  150 
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The metering infrastructures provide at the one hertz frequency parameters (load curves from the photovoltaic 

plant provided by ELKO, and the grid consumption provided by Sierre-energy) and high frequency parameters 

(devices measures from the Ecowizz Zigbee smart meters). The information system contains the elements 

necessary for the storage of data via NO-SQL as the data is formatted in JSON which connected with Knime 

software for the prediction. 155 

In this paper, we present our result through the restaurant of this technopole. In the tertiary sector, days and hours 

outside the production schedule are removed from our training and test data set. For the restaurant, the weekend 

is removed and only the hours between 6am and 5pm are represented in our training dataset corresponding to the 

production planning. For the restaurant, the electrical consumption includes the ventilation, the lighting, and the 

specific electrical devices like the oven (eq. 6). The heating and the hot water are provided by the radial panel. 160 

𝐸 𝑡(𝑖 + 1) = ((+/− 𝐸𝑈𝑆𝐸 +/−  𝐸𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛  +/−  𝐸𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔)  −  𝐸𝐸𝑁𝑅𝐸  ) 𝑡(𝑖 + 1)  +/−𝐸𝐵𝑎𝑡𝑡𝑒𝑟𝑦   (eq. 6) 

The dataset contains the data from September 1st 2013 to October 31st 2014 and the October 2014 is the test set. 

In output of the classification, each hour is labeled by a class c. A historic of each input variables for the last two 

days is created to identify one hour. 

E  t(i) = [Date ; Statistics Power Phase 1
 t(i),… , Statistics Power Phase 1

 t(i − 48), 165 

Statistics Events  t(i),…, Statistiques Events  t(i − 48) 

WeatherReal_Datas _City𝑆𝑖𝑒𝑟𝑟𝑒 t(i),…., WeatherReal_Datas _City𝑆𝑖𝑒𝑟𝑟𝑒 t(i) t(i − 48), 

WeatherNew_Predicted_Datas _City𝑆𝑖𝑒𝑟𝑟𝑒 t(i + 1),…, WeatherNew_Predicted_Datas _City𝑆𝑖𝑒𝑟𝑟𝑒 t(i − 48) 

Yearj , Monthm , Dayj, WeekDayjs , Hourh, Jour fériés0.1, Vacances scolaires0.1, Classesc ]    (eq. 7) 

5 RESULTS 170 

5.1 Evaluation of the classification 

At the end of unsupervised learning, the electricity consumption for the restaurant is represented by six classes 

(Table 38). The Class 6 represents the peak power of the restaurant during the considered period. The Gradient 

Boosted Tree best classifies the six classes representing power consumption (Table 1) with 98% +/- 0.6 accuracy.  

Table 1 : Electricity consumption described by gaussian  175 

Energy Clusters Mean (kWh) Standard deviation Repartition % 

Electrical Energy 

consumption, 

tertiary Sector 

0 2.304 0.535 10 

1 4.448 1.29 24 

2 8.961 2.392 18 

3 16.622 2.539 18 

4 22.982 2.449 9 

5 28.246 1.927 35 

6 : Power peak 31.866 4.367 2 

Table 2 : Classification results for the electricity load curve 

Models Classification results Standard deviation 

PNN 84.6 +/- 1.2 1.6 

MLP 88.8 +/- 1.3 1.5 

SVM 91.8 +/- 1.1 1.6 

Random Forest 96.1 +/- 0.7 1.5 

Gradient Boosted Tree 98.0 +/- 0.6 0.8 

 



 

 

5.2 Evaluation of the prediction 

For the electricity consumption, the decision tree and the Gradient Boosted Tree provides the best results. The 

average difference in absolute value is 1,162 kWh for the GBT (Table 1). The precision of the models is explained 180 

by the repetition at specific times of stages to prepare the meals. A priori data collected by the restaurant as the 

number of customers planned or special orders (eg company parties) can improve the accuracy of our 

mathematical models.  

Tablle 3 : Comparison of the Statistical results per algorithms for the Electrical consumption prediction for the restaurant 

Models MAE MSE RMSE MSD R2 

MLP 1.9 5.4 2.1 0.2 0.64 

PNN 1.9 5.4 2.1 0.2 0.64 

Linear Regression 2.3 5.4 2.1 0.2 0.64 

ARIMA 2.2 5.4 2.2 0.2 0.64 

RF 1.5 4.5 2.1 0.1 0.95 

GBT 1.2 4.3 1.9 0.1 0.98 

Figure 4: Electrical consumption prediction for the restaurant with the Gradient Boosting Tree (Year, Day, hour) 185 

5.3 Optimization results 

5.3.1 Optimization meteo data 

To characterize the error, a history based on the actual and predicted data is created. This history represents the 

input data of our mathematical model. The training data correspond to measurements from January 1, 2010 to 

August 31, 2012. Test data are from September 1, 2012 to March 31, 2014.  190 

Table 5 : Characterization of the errors for the luminosity before and after our method  

Variables number Min Mean Median Max Std. Dev 

History error -910 5.5 0.1 1116 304 

New error -550 7.1 0 510. 203 
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5.3.2 Variables number optimization 

In this test, our objective is to determine the impact of the quantity of our input data in the variation of the result. 

The 15 best variables to predict the electrical consumption prediction for the restaurant is the standard deviation t (-

1), the standard deviation t (-2), the minimum power t (-1), the median power t (-1), the standard deviation Median 195 

Active power t (-1), the maximum events t (-1), the maximum Variations active power t (-2), the standard 

deviation events t (-1), the Minimum events t (-1), the Standard deviation Median events t (-1). 

Table 6 : Variables number impact for the Electrical consumption prediction for the restaurant 

Variables number MAE MSE RMSE MSD R2 

4160 1.4 4.4 2.1 0.1 0.94 

300 2.0 8.6 2.9 0.1 0.89 

150 1.9 7.5 2.7 -0.1 0.90 

50 2.0 8.2 2.8 -0.3 0.89 

15 2.22  10. 3.2 -0.1 0.86 

5.3.3 Frequency optimisation 

We also test the difference in our results between the data at the second aggregate per minute and one data per 200 

hour to predict the next hour. The average error of the deviations increases by 0.5 kWh (Table 7). The daily 

average electricity consumption curve follows the same pattern. In the tertiary sector, the companies follow a 

precise production schedule during the day, contrary in the residential sector [LUC-2017].  

Table 7 : Electrical consumption prediction results with different period for the restaurant 

Models Period MAE MSE RMSE MSD R2 

Random Forest 1 min 1.488 4.494 2.12 0.124 0.946 

Random Forest 1 hour 2.133 11.36 3.371 -0.273 0.863 

6 CONCLUSION 205 

Several methods and algorithms have been tested and we can conclude that the Combinatorial Random 

Forest and Gradient Boosting Tree is particularly adapted to our problem with predictions around 98% +/- 0.6. 

These techniques with the boosting are very useful in the context of the energy prediction in particular for the 

consumption and the production peaks which represent only a few % in the training set.  

From an information system point of view, the Combinatorial Random Forest and Gradient Boosting Tree 210 

analysis allows us to limit the number of data, create a simple model and guarantee the same level of precision, 

It is possible to interpret the prediction by analysis of the statistics in output of the random Forest algorithm. 

The identification of the human presence is an essential parameter both for the piloting and and the prediction of 

energy consumption. To create a non-intrusive system, it is easier to understand this problem in the residential 

and tertiary sector by integration of a production planning. This allows us to target model training on what 215 

interests us here, predict overall power consumption during business hours. We think that we should first focus 

on the microgrids in the tertiary and industrial sector, where the human variable is more predictable by the 

definition of business occupation schedules.  
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