
Lung Tissue Analysis Using Isotropic

Polyharmonic B–Spline Wavelets

Adrien Depeursinge1, Dimitri Van De Ville2, Michael Unser2, and
Henning Müller1,3

1 Service of Medical Informatics, Geneva University Hospitals and University of
Geneva, CH, adrien.depeursinge@sim.hcuge.ch,
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Abstract. A texture classification system is described, based on isotropic
polyharmonic B–spline wavelets that identify lung tissue patterns from
high–resolution computed tomography (HRCT) images of patients af-
fected with interstitial lung diseases (ILD). Along with several desir-
able properties for isotropic texture analysis, the nonseparable trans-
form with a quincunx subsambling scheme allows a mean of 94.3% of
correct matches among six lung tissue classes. A comparison with a clas-
sical dyadic transform suggests that the isotropic quincunx transform
is preferable for lung tissue analysis. This is part of work on a tool for
integrating visual and clinical features as diagnostic aid for emergency
radiology.

1 Introduction

The interpretation of high–resolution computed tomography (HRCT) images
of the chest showing patterns associated with interstitial lung diseases (ILDs) is
time–consuming and requires high clinical expertise due to rare cases and a large
number of different diseases. The diagnosis of ILD is established from the inter-
pretation of several clinical parameters of the patient in addition to radiological
findings [1]. The most common imaging procedure used is the chest x–ray be-
cause of its low cost and weak radiation exposure. However, chest x–rays appear
as normal in a large portion of diseases and are often unspecific where HRCT
of the chest contains essential visual data for the characterization of lung tis-
sue patterns associated with ILDs [2]. HRCT produces three–dimensional (3D)
images of the pulmonary volumes, avoids the superposition of anatomic struc-
tures, and is well suited for the assessment of lung tissue texture. However, the
increase of data volume compared to the chest x–rays makes the interpretation
task more complex. The high spatial resolution generates a large variety of lung
tissue patterns, which induces confusion of diverse pathologic lung tissues. In
addition, the radiologist has to go through the whole stack of slices, which can
result in interpretation errors by omission [3]. In emergency radiology, radiolo-
gists have recourse to a large diversity of imaging modalities such as conventional



projection radiography, computed tomography (CT), magnetic resonance imag-
ing (MRI), functional imaging (fMRI, PET), and ultrasound applied to different
organs such as the brain, colon, breast, chest, liver, kidney and the vascular and
skeletal systems. They have to provide a first radiological report with ideas on
the diagnosis quickly. Automatic detection and categorization of pathologic lung
tissue patterns can help the radiologists to cope with the complexity and chal-
lenges of interpreting HRCT [4, 5]. The suspicious (abnormal) patterns in the
new, non–interpreted HRCT are highlighted to the radiologist with a proposed
tentative diagnostic [6]. The radiologist has to consider the system as a second
opinion for providing a differential diagnosis.

The taxonomy used by radiologists to interpret patterns in HRCT images of-
ten relates to texture properties, which suggest that texture analysis is relevant
for the characterization of ILD which is typically diffuse. Texture analysis in dig-
ital image processing has been an active research domain over more than thirty
years. In [7], texture in digital images is defined as nonfigurative and cellularly
organized areas of pixels. Early examples of texture features are the autocor-
relation function, textural edginess, measurements derived from mathematical
morphology, run–length and gray–level co–occurence matrices, the latter being
the most popular of the lot [7, 8]. Unfortunately, building co–occurence matri-
ces from HRCT images where grey–levels are corresponding to Hounsfield Units
(H.U.) with values from –1000 H.U. (air) to 1500 H.U. (high density bones) is
unrealistic because the number of possible co-occurrences is simply too large to
be stored and estimated reliably. Complementary to the characterization of spa-
tial dependencies, the distribution of grey–levels values can be studied through
statistical measures of grey–level histograms. The Fourier transform has also
been proposed for texture analysis, based on the property that some image pat-
terns (especially, periodic ones) are well described in terms of sinusoidal compo-
nents [8, 9]. However, the latter is not appropriate for segmentation because the
Fourier transform is global.

1.1 Dyadic Versus Quincunx Wavelet Frames for Texture Analysis

The multiresolution analysis provided by the wavelet transform (WT) is an at-
tractive solution for texture analysis. The signal under investigation is decom-
posed onto a set of wavelet functions at various scales; i.e., representing details
at different resolutions. For example, in the discrete version with dyadic sub-
sampling the analyzed image is iteratively filtered and subsampled by a factor
of 2 in each dimension. The WT is particularly well suited to compactly rep-
resent piecewise–smooth signals, which partly explains its success in biomedical
imaging applications [10]. Wavelet bases are desirable to perform compact data
representations, as they allow orthogonal decompositions. They have fast imple-
mentations, but have the main drawback to lack translation invariance. Discrete
wavelet frames (DWF), on the other hand, are redundant and offer more flexibil-
ity for image analysis. DWF are truly shift–invariant and can be obtained from
a wavelet basis by removing the subsampling stage of the algorithm and upsam-
pling the filters instead. When compared to the WT, the DWF tends to decrease



the variability of the estimated texture features thereby improving classification
performance [11].

Although widely deployed, the separable dyadic form of DWF has two major
drawbacks to perform texture analysis. On one hand, the scale–progression is
large as images are downsampled by a factor of 2 (in each dimension) between
two decomposition levels. Relevant information might be padded out when hav-
ing major energy contained in a narrow subband located between two successive
levels of the dyadic transform. Subtle changes in the scale of lung tissue patterns
(i.e. micronodules versus macronodules) might be neglected by the dyadic scale–
progression [12]. On the other hand, separability allows computational efficiency
because wavelet coefficients within each subband can be obtained by successive
one–dimensional (1D) convolutions along the columns and the rows of the im-
age. Unfortunately, this process tends to favor the vertical and the horizontal
directions, and produces a so–called “diagonal” wavelet component, which does
not have a straightforward directional interpretation. Under the assumption that
lung tissue patterns in axial slices of HRCT data do not have privileged direc-
tionalities, neither horizontal, vertical, nor diagonal, the separable transform is
not appropriate for their analysis.

In Section 3.1, we propose the use of isotropic polyharmonic B–spline wavelets
together with a fine scale–progression (equivalent factor of

√
2 based on the quin-

cunx subsampling scheme). Beside scale–progression and isotropy we demon-
strate that isotropic polyharmonic B–splines have many other desirable proper-
ties for lung tissue analysis.

1.2 Non–Separable Wavelets for Biomedical Texture Classification

During the last twenty years, the WT has been utilized widely in biomedical
applications, as well as for the characterization of textures of biomedical tis-
sues [10]. The increased spatial resolution of modern imaging techniques allows
for assessment from anatomical structures to textures of tissues. More recently,
nonseparable wavelet transforms have been used for detection of pathologic tis-
sues with no a priori privileged directionalities in several imaging modalities.

In [13], the quincunx wavelet transform is used for the characterization of
liver tissue in noisy ultrasonic B–scan images. Compared to the classical WT,
the nonseparable transform allows for an increased classification performance.
However, the use of the compacted pyramidal representation of the subbands is
not appropriate to obtain shift–invariant features for classification.

The redundant quincunx wavelet transform along with support vector ma-
chines (SVM) were used in [14] to classify 5 lung tissue patterns associated with
ILDs and achieved 94.3% of global accuracy. Nevertheless, the classification task
is slightly biased since the training set contains an equal number of instances for
each of the five patterns, which is usually not the case in clinical practice.

In [12], grey–level histograms with discrete wavelet frame features were eval-
uated using a k–nearest neighbor classifier. In this paper, we use isotropic poly-
harmonic B–splines as scaling functions to implement a two–dimensional (2D)
redundant quincunx wavelet transform in order to characterize 6 types of lung



tissue in HRCT data with optimized SVMs. Lung tissue texture classification
using co-occurence matrices, Gabor filters and Tamura texture features was in-
vestigated in [15]. The classification of regions of interest (ROIs) delineated by
the user consitutes the intial steps towards automatic detection of abnormal lung
tissue patterns in the whole HRCT volume.

2 Methods

The dataset used is part of an internal multimedia database of ILD cases con-
taining HRCT images with annotated ROIs created in the Talisman project1.
843 ROIs from healthy and five pathologic lung tissue patterns are selected for
training and testing the classifiers selecting classes with sufficiently high repre-
sentation (see Table 1).

The wavelet frame decompositions with dyadic and quincunx subsampling
are implemented in Java [11, 16] as well as optimization of SVMs. The basic
implementation of the SVMs is taken from the open source Java library Weka

2.

Table 1. Visual aspect and distribution of the ROIs per class of lung tissue pattern.

visual

aspect

class healthy emphysema ground glass fibrosis micronodules macronodules

# of ROIs 113 93 148 312 155 22

# of patients 11 6 14 28 5 5

3 Results

3.1 Isotropic Polyharmonic B–Spline Wavelets

As mentioned in Section 1.1, isotropic analysis is preferable for lung texture
characterization. The Laplacian operator plays an important role in image pro-

cessing and is clearly isotropic. Indeed, ∆ = ∂2

∂x2

1

+ ∂2

∂x2

2

, is rotationally invariant.

The polyharmonic B–spline wavelets implement a multiscale smoothed version
of the Laplacian [16]. This wavelet, at the first decomposition level, can be char-
acterized as

ψγ(D−1x) = ∆
γ

2 {φ} (x), (1)

1 TALISMAN: Texture Analysis of Lung ImageS for Medical diagnostic AssistaNce,
http://www.sim.hcuge.ch/medgift/01 Talisman EN.htm

2 http://www.cs.waikato.ac.nz/ml/weka/



where φ is an appropriate smoothing (low–pass) function and D = [1 1; 1 −1] is
the quincunx subsampling matrix. The so-called order γ tunes the iterate of the
Laplacian operator (comparable to the traditional vanishing moments). Large
values of γ reduce the energy of the wavelet coefficients but increase the ringing
effect [17].

The quincunx scale–progression is finer compared to dyadic decomposition,
with an equivalent downsampling factor of

√
2 instead of 2. Compared to the

dyadic separable case, quincunx subsampling generates only one wavelet subband
per decomposition level (versus three for dyadic). This leads to a direct and easy
interpretation of the subbands; the small number of subbands also breeds small
features spaces, which are preferable for classification.

3.2 Lung Tissue Classification: Dyadic Versus Quincunx

In order to build the feature space for further classification of the ROIs, sev-
eral measures are computed from the original image as well as from the wavelet
coefficients of each subband. On the original images, values of pixels belonging
to the ROIs are categorized into 22 bins of grey–level histograms of Hounsfield
Units (H.U.) in [−1050; 600[. The distributions of the wavelet coefficients in each
subband are characterized through the parameters of mixtures of two Gaussians,
which have shown to characterize distributions of wavelet coefficients well in [18].
With fixed means µ1,2 = µ, the standard–deviations σ1,2 are estimated using
the expectation–maximization (EM) algorithm. Under the assumption that the
global mean of the coefficient values is close to zero (according to the admissi-
bility conditions of wavelets), using two standard–deviations allows a reasonable
fit of the distributions (see Figure 1). The feature vector thus consists of 24 fea-

Fig. 1. Mixture of two Gaussians (µ1,2 = µ, σ1,2) to modelize the distribution of
wavelet coefficients within one subband.



tures for 8 levels of the quincunx transform. Features are extracted for orders
γ = 2, 3, 4. To compare performances, 4 levels of the classical dyadic trans-
form (using frames as well) were performed using B–Spline wavelets of degree
α = 1, 2, 3. Indeed, the equivalent order of derivatives γ corresponds to α + 1.
Using parameters of a mixture of two Gaussians for each subband, the feature
vector contains 36 measures of the dyadic wavelet frames coefficients (more de-
tails can be found in [12]).

Feature vectors from 843 ROIs containing healthy and five pathologic lung
tissues are extracted. 674 instances (80%) are randomly drawn from the full
dataset and used to train and optimize the parameters of Support Vector Ma-
chines (SVMs), which have shown to be effective to categorize texture in wavelet
feature spaces in [19] and in particular lung tissue in [20]. The remaining 169 in-
stances are used for testing. The global experimentation is repeated 30 times and
means of the global classification accuracies along with means of class–specific
accuracies are computed. A more detailed description of the selection of the pa-
rameters of SVMs and a comparison of 5 common implementations of classifiers
families can be found in [20]. Pairwise comparisons of classification accuracies
using dyadic versus quincunx wavelet frames for several orders (α + 1, γ) are
shown in Table 2.

Table 2. Mean accuracies in % with experiments repeated 30 times. Isotropic polyhar-
monic B–spline wavelets with order γ = 3 allowed a mean of 94.3% of correct predic-
tions among the six lung tissue classes with high precision (geometric mean = 89%).

class α = 1, γ = 2 α = 2, γ = 3 α = 3, γ = 4

dyadic 91.1 93.6 92.5
healthy

quincunx 95.9 98.1 92.4

dyadic 97.2 98.7 97.7
emphysema

quincunx 100 100 99.7

dyadic 84.2 88.3 86.3
ground glass

quincunx 85.7 89 87.7

dyadic 95.8 95.2 96.5
fibrosis

quincunx 96.5 96.3 94.5

dyadic 89.8 93.3 88.8
micronodules

quincunx 94.1 95.2 91.7

dyadic 40.3 48 46.9
macronodules

quincunx 54.2 55.5 48.5

dyadic 83.1 86.2 84.8
geometric mean

quincunx 87.8 89 85.7

dyadic 90.6 ± 2.6 92.5 ± 1.4 91.4 ± 2.2
global mean

quincunx 93.3 ± 1.6 94.3 ± 1.6 92 ± 1.9



4 Discussion

Pairwise comparisons shown in Table 2 indicate that quincunx wavelets outper-
form dyadic ones in 91.7% of the comparisons (22 among 24). This global in-
crease in performance is primarily due to the better isotropy properties of these
non-separable wavelets, which is due to their close connection to the Laplacian.
Indeed, the favored directions of the separable transform lead to noisy features
breeding non–homogeneous clusters of instances belonging to the same class in
the feature space, which decreases global classification performance. Although
having influence on global accuracy as well, the finer scale progression allowed
by the quincunx subsampling scheme increases the precision of the classification;
i.e., by avoiding confusion between patterns with well–defined object sizes, such
as micro– and macro– nodules.

Global accuracy values are trustworthy for further usage in clinical routine
as the six classes of lung tissue pattern tested allow for diagnosing a wide variety
of ILDs [2]. Compared to other studies on lung tissue analysis in HRCT data,
our system is closer to clinical routine as the distributions of the classes are
realistic contrary to [14] and we include healthy tissue (which is not the case
in [4]). Indeed, healthy tissue is the most difficult to separate from others as the
variety is by far the largest.

5 Conclusion

The ability of dyadic versus quincunx wavelet transforms to analyze lung tissue in
HRCT data were evaluated on a high–quality dataset. Isotropic polyharmonic B–
spline wavelets with optimized order allowed a mean of 94.3% correct predictions
among six lung tissue classes associated with ILDs with high precision. Pairwise
comparisons with a dyadic transform showed that the polyharmonic wavelets
outperforms the classical separable frames 22 times among 24, which suggest
that the latter is more appropriate for lung tissue analysis in HRCT data.

Further work has to be carried out in order to integrate clinical parameters
for classifying the lung tissue regions, in the same way the radiologists interpret
HRCT images. First experiments showed high potential for improving classifi-
cation performances in [21].
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