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Abstract. Diabetes Type 1 is a metabolic disease which results in a lack of insulin production, causing high glucose levels in
the blood. It is crucial for diabetic patients to balance this glucose level, and they depend on external substances to do so. In
order to keep this level under control, they usually need to resort to invasive glucose control methods, such as taking a sample
drop of blood from their finger and have it analyzed. Recently, other directions emerged to offer alternative ways to estimate
glucose level, using indirect sensor measurements including ECG monitoring and other physiological parameters. This paper
showcases a framework for inferring semantically annotated glycemic events on the patient, which leverages data from mobile
wearable sensors deployed on a sport-belt. This work is part of the D1namo project for non-invasive diabetes monitoring, and
focuses on the representation and query processing of the data produced by the wearable sensors, using semantic technologies
and vocabularies that extend existing Web standards. Furthermore, this work shows how different layers of data, from raw
measurements to complex events can be represented and linked in this framework, and experimental evidence is provided of how
these layers can be efficiently exploited using an RDF Stream Processing engine.
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1. Introduction

Hypoglycemia characterizes a state of low glucose
level in the bloodstream. While for non-diabetic peo-
ple this state is relatively rare due to adequate regula-
tion of the glucose level, it can lead to life threatening
effects for diabetic patients, ranging from headaches
to judgment impairment and loss of consciousness.
To help diabetic users regulate their glucose level, the
standard method consists in collecting a drop of blood
from the finger and analyze its glucose level using a
glucometer. While this method is reliable as it is per-
formed through a direct measurement, it is not very
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convenient and requires the user to pinch her finger for
each new observation. Furthermore, this method does
not allow for a continuous monitoring, but rather a spo-
radic sampling of the glucose level. Alternatively, con-
tinuous glucose monitoring can be achieved using an
under-the-skin sensor which relays glucose informa-
tion to an electronic receiver. This method has a gran-
ularity of a sample every few minutes. However, the
position of the sensor makes it cumbersome for an ex-
tended usage, limiting its applicability. For this reason,
alternative non-invasive techniques (i.e. not requiring
the user to compromise her physical integrity) have
been studied recently [7,31,3].

This paper describes the approach taken by the au-
thors for representation and query processing of hypo-
glycemic events using semantic technologies and stan-
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dards. This work is inscribed in the context of the
D1namo project, a non-invasive approach to detect hy-
poglycemic events based on the continuous collection
of sensed data from an off-the-shelf sensor sport-belt.

Existing approaches for monitoring patients with
chronic diseases generally rely on wearable devices
that generate raw data, with no or little additional in-
formation to make it possible for other applications
to understand and interpret this data. The integration
of applications and intelligent algorithms in personal-
ized health require standard and semantically-rich data
representations, which can be interpreted, consumed
and integrated automatically. Furthermore, in scenar-
ios such as the continuous monitoring of ECG signals
and patient activity, this information is produced as
a continuous stream of data, which needs to be pro-
cessed online and under certain time constraints. For
instance, consider the example of a diabetologist want-
ing to check activities of the user 1 hours before ev-
ery hypoglycemic event, or checking ECG waveform
when the breathing rate go higher than a certain thresh-
old. Dedicated applications can embed these queries
and rules, if they share a common understanding of the
data produced by the devices, and of the events derived
from them. While there have been previous works fo-
cused on event-based processing of rules in diabetes
applications [4], there is still a need for well-principled
and semantically rich data representation models that
can be queried dynamically using declarative and stan-
dard languages.

To cope with these challenges, a semantic approach
is proposed for representing hypoglycemic events,
anomalous features, activities and energy expenditure,
so that these annotated data can be ingested by a se-
mantic complex event processor in a monitoring mo-
bile platform. The main contributions of this paper can
be summarized as follows:

(i) This paper provides detailed description of the
semantics-aware modeling and processing tech-
niques exploited in the D1namo framework. This
approach allows to detect glycemic events using
a non-invasive wearable device, while integrating
semantic technologies to allow advanced stream
processing about the user’s condition.

(ii) A full description of the D1namo ontology is
provided. It extends existing standards for repre-
sentation of sensor data, provenance information
and dataset annotations.

(iii) The authors show how the ontology is used
to represent the data acquired by the wearable

device, and the derived high-level events pro-
duced by the machine learning algorithms of the
D1namo platform [26], which combine observa-
tions about physiological symptoms and energy
expenditure in order to detect glycemic events.

(iv) The semantically enriched data model is used
to feed an RDF stream processing engine, which
is capable of executing continuous queries over
the live data. The authors also provide experimen-
tal evidence of the efficiency of the query process-
ing.

The remainder of the paper is structured as fol-
lows: In Section 2, the general approach of D1namo
is presented, from data acquisition to event genera-
tion and prediction. Section 3 describes the semantic
model for representing the D1namo sensors, observa-
tions, datasets and provenance information. Section 4
focuses on the execution of RDF stream processing
queries over the data generated by the sensing devices
and the processing modules. A general description of
the current experimentation is presented in Section 5.
A discussion about the results and existing challenges
follows in Section 6 before a description of the related
work in Section 7 and conclusion.

2. System overview

The driving idea behind the D1namo project is that
hypoglycemic events can be detected by examining in-
direct symptoms that can be revealed by specific pat-
terns in the ECG and other parameters. Given that the
market already offers affordable sensing devices that
measure these parameters, the D1namo approach has
an enormous potential for self-monitoring and preven-
tion for patients with this chronic condition.

More specifically, the D1namo system taps into the
data generated by a Zephyr Bioharness [34] sensor
belt worn by the user. The belt generates high fre-
quency readings for accelerometers, breathing sensor
and electrocardiogram (ECG). The pipeline followed
by D1namo to go from raw sensor readings to the un-
derstanding of the user’s blood glucose level is de-
scribed in Figure 1 [26].

First, the data is acquired from the Bioharness sen-
sor belt and preprocessed to reduce noise. It is then
used to generate two semantic models for classifying
hypoglycemic events, respectively based on physio-
logical symptoms of hypoglycemia and energy expen-
diture.
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Fig. 1. Data processing models in D1namo. The data is acquired from an off-the-shelf sensor belt and preprocessed to reduce noise. It is then
used to generate two semantic models for classifying hypoglycemic events, respectively based on physiological symptoms of hypoglycemia and
energy expenditure.

Physiological model (ECG) Energy expenditure model
HB fiducial points location Heart rate
HB fiducial points amplitude Breathing rate
ST segment shape Vector Magnitude Unit (VMU)
QTc interval Energy intake

Insulin intake
Table 1

List of the features used in the two models defined for classifying
hypoglycemic events.

2.1. Preprocessing.

The Bioharness captures multiple physiological sig-
nals from the patient. However, the different signals
are collected with an important amount of noise, which
varies from one parameter to the other. While the ac-
celerometer readings are relatively clean, the breathing
signal (which measures the extension and compression
of the thorax of the patient) is subject to a high fre-
quency white noise, and is also moderately affected by
the re-adjustment of the belt by the patient. A low pass
filter isolates the oscillations due to the breathing of the
user while removing the noise. As for the ECG signal,
it presents variable noise: When the user stands still,
the noise is very limited and the shape of the ECG is
clearly distinguishable. However, under moderate and
heavy activity, the ECG becomes very noisy due to ar-
tifacts generated by muscle contraction as well as dis-
placement of the belt’s electrodes on the skin. Since the
noise of the ECG signal is correlated with the move-
ment of the user, a normalized least mean squares filter
is applied to the ECG signal. For this, the accelerome-
ter signal is used as interference signal, therefore mak-
ing use of the correlation between the two signals to
mitigate the impact of the noise.

2.2. Extracting physiological features.

Once the noise is attenuated, the features that are
used by the two models to detect hypoglycemic events
(Table 1) are extracted.

The physiological model relies essentially on ECG
features. This is based on the findings described in
[19], where the authors explain how hypoglycemia
alters ventricular repolarisation, therefore influencing
the ECG of the user. Based on this assertion, fiducial
points1 of the ECG are extracted to be used as features
for training the model. In order to extract these points,
the approach taken by Yazdani et al. [33] is leveraged.
This approach analyses the mathematical morphology
of the signals. Top-hat and bottom-hat transforms will
accentuate peaks and valley in the ECG signal, and av-
eraging the both allows to isolate the QRS segments
efficiently.

The energy expenditure model takes as input the
heart and breathing rates, the energy intake and the
insulin intake. The heart rate of the user is extracted
at the same time as the QRS complex. The breathing
rate is computed as the local maximums of the breath-
ing signal preprocessed as described in the previous
section. The VMU feature is computed as the mag-
nitude of the vector having for coordinates at time t
the values of the 3-axis accelerometer of the sensor
belt. The energy intake is obtained based on the log
of meals and snacks entered by the users. This infor-
mation is semantically enhanced by querying the Fit-
bit food database2. This database allows for a seman-

1Key points that characterize a heart beat: identified by the P, Q,
R, S, T labels and can be seen in Figure1

2http://dev.fitbit.com/docs/food-logging/
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Fig. 2. Generation of semantic events. The events are generated as a result of the machine learning models derived from the raw data of the
sensors. The D1namo ontology is used to encode these events and produce streams of RDF, which can be directly used by heterogeneous
applications, or indirectly through an RSP engine that executes complex continuous queries. In the D1namo use case these queries are used to
encode notifications and rules for the medical personnel.

tic annotation of the intake and activity events, which
can be represented in terms of an ontology. This in-
cludes the event context, meal cat. Two types of in-
sulin are considered, the long acting insulin which is
release in the bloodstream over up to 42 hours, and the
fast insulin lasting a couple of hours. A model is built
to characterize the amount of insulin that is available
in the blood stream at a certain time. Finally, the three
quantities described above are combine to evaluate the
glucose available in the blood stream.

2.3. Model learning.

Once the two sets of features presented in Table
1 are extracted, they can be used to train in parallel
two models. The physiological approach is used for a
classification model differentiating heart beat in nor-
mal glycemic conditions and heart beats under hypo-
glycemia. On the other hand, the energy expenditure
approach yields a regression which can be used to es-
timate the glucose level of the user at time t, allowing
a finer observation of glycemic events.

Once the model is learned, the different detected
events can be encoded in a semantically rich represen-
tation that can be exploited, processed and integrated
with other data sources. One of the main standards
for data modeling and interchange with rich semantics
support on the Web is RDF [28]. In order to use this
standard for generating streams of high-level events, a
vocabulary or ontology that describes the domain of in-
terest is required. While the general approach of high-
level events is domain independent, for the concrete di-
abetes domain a dedicated D1namo ontology was de-
signed (see Section 3). Once the stream of RDF events
encoded with this ontology are produced, they can be
fed to an RDF stream processing (RSP) engine, capa-
ble of executing complex event queries. Finally, end-

user applications can connect to the continuous results
produced by the RSP engine, including mobile person-
alized health apps, monitoring visualizations, or noti-
fications for physicians and nurses. This ecosystem of
raw sensor data to semantically enriched events is de-
picted in Figure 2.

3. Semantic Representation: the D1namo
Ontology

One of the key challenges in the context of D1namo
is to coherently integrate different sensor data sources,
which can be combined in order to generate higher-
level data. This is the case, for instance, for the gen-
eration of activity-detection events, which in fact are
produced from the combination of different sensor
streams: accelerometer, breathing rate, etc. While it
would be possible to engineer this integration in an ad-
hoc fashion, this solution is costly in the long term,
and leads to poor maintainability. Furthermore, it re-
quires system integration developers to have dataset-
specific information in order to fuse the data correctly.
As an alternative, semantic approach is taken, based
on an ontology-based model that uses existing Web
standards for knowledge representation. More specif-
ically, the D1namo ontology3 is propose. Specified
in OWL [16], this ontology is in turn based on well
known standard vocabularies for representing sensor
data and observations. Furthermore, this section de-
scribes how the D1namo datasets can be annotated
using semantic constructs, enhancing discoverability
and self-describability. The provenance annotations
are also included, which make it possible to trace how
a certain dataset was produced, which methods were
used and which original datasets were processed.

3D1namo ontology: https://github.com/jpcik/
d1namo/blob/master/d1namo.owl
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3.1. Sensor Description in D1namo

Metadata plays an essential role in order to allow
discoverability and self-description of sensor datasets.
In the case of D1namo, the sensor metadata can be
structured at different levels: one can consider the Bio-
Harness device as a sensor that captures multiple prop-
erties, or instead, as a sensor system that is composed
of different internal sensing devices, each measuring
a particular type of signal. Choosing one or the other
structures depends on the granularity that is required
for the metadata. For example, if individual accuracy
and calibration specifications are needed for each de-
vice, then a fine grained description would be more ap-
propriate. Furthermore, this metadata includes not only
information about the sensor and its characteristics, but
also meta-information about the generated datasets and
how they can be accessed and exploited. The usage
of existing vocabularies is critical, and the adoption of
standards is recommended, specially if the data is ex-
pected to be used across different applications.

Taking this into consideration, the D1namo ontol-
ogy extends the widely used Semantic Sensor Network
ontology (SSN-O [9]), which is described in the stan-
dard OWL language and is extensible for different do-
mains of use. The ontology includes the definitions
of sensors that can be physical devices, but also vir-
tual sensors. The latter may refer to software entities
that produce observations based on other sensor data.
In this way,different layers of sensors can be created,
starting from those that capture raw data, to higher-
level events that aggregate and process observations
from lower layers. For instance, one can consider the
excerpt of the D1namo ontology in Figure 3, showing
some of the sensor classes and subclasses. Under the
SSN-O Sensor class one can find both devices (e.g. ac-
celerometers, ECG sensors), virtual sensors (e.g. activ-
ity monitors) and human-as-sensors, which refer to ob-
servations that patients can perform themselves about
their condition. This includes, for example, annota-
tions about their general health, food ingestion, how
they slept, etc.

Notice that these are generic sensor classes, and
more concrete sensor classes can be defined, e.g. the
Zephyr Bioharness device used in the D1namo project.
We illustrate this in the following code snippet4. The
d1na:ZephyrBioharness sensor class defines
the characteristics of all the particular devices of this

4For brevity, prefixes are used in all RDF turtle code snippets,
which can be expanded by looking at the ontology sources.

kind. For instance, Listing 1 specifies that this class is
subclass of a breathing rate and ECG sensor. Then it is
possible to specify that a particular device (e.g. identi-
fied as :bioharness_1 is an instance of the defined
sensor class, and it is capable of observing breathing
rate and ECG wave forms.

d1na:ZephyrBioharness a owl:Class;
rdf:subClassOf d1na:BreathingSensor;
rdf:subClassOf d1na:ECGSensor.

:bioharness_1 a d1na:ZephyrBioharness;
ssn:observes d1na:breathing_rate;
ssn:observes d1na:ecg_waveform.

Listing 1: Example of the Bioharness sensor descrip-
tion in RDF using the SSN-O and D1namo ontologies.

It is also possible to further establish restrictions
on the sensor characteristics. For instance, the Zephyr
Bioharness, being also a breathing sensor, should be
restricted in such a way that it observes breathing prop-
erties (e.g. breathing rate, peak, etc). This is exempli-
fied in the following ontology excerpt.

:BreathingSensor a owl:Class ;
rdfs:subClassOf ssn:SensingDevice;
rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty ssn:observes;
owl:someValuesFrom d1na:Breathing ] .

Listing 2: Defining restrictions for the observed prop-
erties of a sensor.

In a slightly more complex scenario, measure-
ment capabilities, such as the sensor frequency, can
be represented. The SSN-O ontology provides the
ssn:Frequency class that can be extended, and
used to provide a restriction specified as a measure-
ment capability, as it is shown in the snippet below:

:ZephyrBioharness a owl:Class ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty ssn:hasMeasurementCapability ;
owl:allValuesFrom :BioharnessBreathingRateCapability ] .

:BioharnessBreathingRateCapability a owl:Class ;
rdfs:subClassOf ssn:MeasurementCapability;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty ssn:hasMeasurementProperty ;
owl:someValuesFrom :BioharnessBreathingRateFrequency] ] .

:BioharnessBreathingRateFrequency a owl:Class ;
rdfs:subClassOf ssn:Frequency .

Listing 3: Restricting the frequency specification for
the Bioharness sensor using SSN-O.

Finally, once these restrictions are defined, concrete
values can be defined, e.g. 25 Hertz frequency for the



6

Fig. 3. D1namo Ontology. This excerpt shows the different types of sensors and the hierarchy that is built for the D1namo project. Sensors
include physical devices, such as an Accelerometer; virtual sensors, such as the machine learning models, and human-as-sensors, i.e. annotations
provided by the patient themselves.

Bioharness breathing rate, as in Listing 4. The ap-
proach presented here, relies on existing vocabularies
for declaring quantities5 and units of measurement.

:bioharness_breathingRateCapability a owl:NamedIndividual ,
:BioharnessBreathingRateCapability ;
ssn:hasMeasurementProperty :bioharness_br_frequency .

:bioharness_br_frequency a owl:NamedIndividual ,
:BioharnessBreathingRateFrequency ;
qu:unit unit:hertz ;
qu:numericalValue 25 .

Listing 4: Bioharness breathing rate frequency of 25
herz.

A visual example of the definition of the measurement
capabilities and properties is provided in Figure 4. This
definition focuses on the frequency and response time
. Other properties such as accuracy, latency, etc. can
be defined similarly, following the recommendations
of SSN-O.

3.2. Sensor Observations

The D1namo ontology can also be used to anno-
tate the observation generated by the wearable sen-
sors. The framework extends mainly the SSN-O mod-
ule that deals with observations, and the context in
which they are produced. The main extensions are
driven by the different observed properties that the sen-
sors capture, i.e. in the case of D1namo ECG, breath-
ing rate, accelerometer, etc. So for each of these prop-
erties, a class was created, that represents observations
of this kind (e.g. d1na:ECGObservation defines

5Ontology for Quantity Kinds and Units http://purl.
oclc.org/NET/ssnx/qu/qu

Fig. 4. D1namo Ontology. This excerpt shows how the different
capabilities and measurement specifications are specified for the
D1namo sensors, e.g. the frequency and response time of the sen-
sors.

the class of observations about ECG). In the same way,
a subclass of ssn:ObservationValue is created
for each different types of properties. As an example,
the following snippet shows an RDF representation of
such an observation and its corresponding observation
value. It includes important information including the
feature of interest (what is observed), the sensor that
performs the action, the timestamp, the unit of mea-
surement, etc.

:ecg_obs1 a d1na:ECGObservation ;
ssn:observedProperty d1na:ecg_waveform ;
ssn:featureOfInterest d1na:skin ;
ssn:observedBy :bioharness_belt_1 ;
ssn:observationResult :ecg_obsvalue_1 ;
time:inXSDDateTime "2016-03-31T23:20:00"^^xsd:datetime .

:ecg_obsvalue_1 a d1na:ECGObservationValue ;
qu:numericalValue "345.00"^^xsd:float ;
qu:unit :millivolt .

Listing 5: Example of an ECG observation in RDF us-
ing the D1namo ontology.
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3.3. Dataset descriptions

The D1namo project produces a data flow in which
intermediate datasets can potentially be reused for
other purposes, including additional symptomatic anal-
ysis, data processing audits, or even for totally dif-
ferent research purposes. In order to do so,the differ-
ent datasets produced during the dataflow can be sys-
tematically annotated, starting from the raw datasets
produced by the Bioharness device, the data cleaning
process and the complex machine learning models de-
scribed previously. The DCAT vocabulary6, which al-
lows defining catalogs and datasets, is used for this
purpose. A catalog may include several datasets, e.g.
one dataset can represent one or more time series pro-
duced by a sensor. A dataset can also group several
sensor readings, especially if these are related to the
same observed property. These aggregations can be
configured as virtual sensors. As an example, consider
an ECG waveform dataset (Listing 6) produced by a
virtual sensor that refines data from raw ECG signals
from the BioHarness sensor. Furthermore the dataset
metadata can be combined with the SSN ontology, in
order to include specific information about the sensor,
such as measurement capabilities, calibration, etc. .

:ecg_patient1_2015-06-06 a dcat:Dataset;
dct:title "ECG waveform data";
dcat:theme d1na:ecg_waveform;
dct:issued "2015-16-06"^^xsd:date;
dct:publisher :LSIR-EPFL;
ssn:isProducedBy :bioharness_1.

Listing 6: Dataset description.

The key feature of the annotated datasets is the pos-
sibility to represent provenance information among
them. For instance Listing 7 shows how the high level
hypoglycemic events predicted by the physiological
model is annotated as a derived dataset from the pro-
cessed sensor data. The PROV-O7 ontology is used, as
recommended by W3C when interchanging and rep-
resenting provenance information. It is based on four
main concepts: Entities, which are physical or digital
entities, i.e. the datasets in our case. Activities, which
are actions that happen to an entity, i.e. transforma-
tion, processing, generation, modification, etc. Agents,
which perform or are responsible of the activities upon
the entities. The example below represents a hypo-
glycemia event dataset as an entity, which is generated

6DCAT: https://www.w3.org/TR/vocab-dcat/
7PROV-O ontology: https://www.w3.org/TR/prov-o/

by an activity, described as a physiological model per-
formed by the D1namo machine learning algorithms.

:hypoglycemic_events_patient1_2015-06-06
a prov:Entity;
prov:wasGeneratedBy :physiologicalModel_patient1_2015-06-06;
prov:wasDerivedFrom :ecg_patient1_2015-06-06;
prov:wasDerivedFrom :breathingRate_patient1_2015-06-06;
prov:wasAttributedTo :d1namoML.

:d1namoML a prov:Agent;
prov:actedOnBehalfOf :LSIR-EPFL.

:physiologicalModel_patient1_2015-06-06
a prov:Activity, d1na:PhysiologicalSymptomsModel;
prov:used :ecg_patient1_2015-06-06;
prov:used :breathingRate_patient1_2015-06-06;
prov:wasAssociatedWith :d1namoML;
prov:endedAtTime "2015-06-07T02:02:02Z"^^xsd:dateTime.

Listing 7: Dataset description.

4. RDF Stream Processing in D1namo

One of the main challenges for managing the
dataflow in D1namo is the streaming nature of the sen-
sor data produced by the Bioharness belt. While tradi-
tional RDF and Linked Data standards and technolo-
gies have shown to be effective for addressing hetero-
geneity problems in static or semi-static datasets, for
highly dynamic streams it is not always appropriate.
To fill this gap, RDF Stream Processing (RSP8) ex-
tensions have been introduced in recent years, includ-
ing both data models, query languages and processing
engines for streaming data [2,20,5].

4.1. CQELS Continuous Evaluation

Of these RSP engines, CQELS [20] provides a sim-
ple model based on timestamped triples, on which con-
tinuous windowed queries can be evaluated. CQELS is
one of the most stable and efficient engines for RDF
stream processing, compared to the existing alterna-
tives [21]. CQELS queries are evaluated against live
sensor data as soon as it is available, using a language
that extends the standard SPARQL [13]. In the con-
text of D1namo, CQELS can be used at different lev-
els in order to get live results and notifications based
on the datasets produced by the data pipeline. As it is
depicted in Figure 5, raw data produced by the sen-
sors could be queried even before the data cleaning
process is effectuated, or after the processed data has

8RDF Stream Processing W3C CG https://www.w3.org/
community/rsp/
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Fig. 5. D1namo data flow, starting from the raw data acquisition, pre-processing and model learning, to the generation of actionable events. All
datasets produced during these stages are represented using semantic metadata, as described in Section 3, and CQELS can register continuous
queries to get results as soon as the data is available.

been transformed into actionable events (e.g. hypo-
glycemic events). CQELS is capable of consuming
multiple streams, and is able to answer to several con-
tinuous queries registered simultaneously. Thanks to
the data model described in Section 3, CQELS can be
used at any of these stages using a unified and coherent
semantic model.

For example, Listing 8 represents an excerpt of a
stream of breathing rate observations, represented us-
ing the D1namo ontology described in Section 3. For
brevity the timestamp is represented as a [t] annota-
tion.

[t] :sensor_p5/obs/breathing_rate_20150501T053300491
a d1na:BreathingRateObservation

[t] :sensor_p5/obs/breathing_rate_20150501T053300491
ssn:observedBy :sensor_p5

[t] :sensor_p5/obs/breathing_rate_20150501T053300491
ssn:observedProperty d1na:breathing_rate

[t] :sensor_p5/obs/breathing_rate_20150501T053300491
ssn:featureOfInterest d1na:skin

[t] :sensor_p5/obs/breathing_rate_20150501T053300491
time:inXSDDateTime "2015-05-01T05:33:00.491+02:00"

[t] :sensor_p5/obs/breathing_rate_20150501T053300491
ssn:observationResult
:sensor_p5/obs/breathing_rate_20150501T053300491/obsvalue

[t] :sensor_p5/obs/breathing_rate_20150501T053300491/obsvalue
a d1na:BreathingRateObservationValue

[t] :sensor_p5/obs/breathing_rate_20150501T053300491/obsvalue
qu:numericalValue 3798.0

Listing 8: Example of a stream of observations.

Notice that these streams are not stored by CQELS
but they instead flow through the system, and it dis-
cards the unnecessary old values when they are no
longer needed for query evaluation. A query in CQELS
is specified declaratively, extending SPARQL with
window operators. An example CQLES query that re-
quests ECG waveform values and observations in the
last 100 ms is specified in Listing 9. The main addi-
tion in CQELS is the STREAM construct, which ref-
erences in this case a D1namo stream identified by a
URI, and includes a time range window of 100 ms.

PREFIX d1na:<http://hevs.ch/aislab/vocab/d1namo#>
PREFIX qu:<http://purl.oclc.org/NET/ssnx/qu#>
PREFIX ssn:<http://purl.oclc.org/NET/ssnx/ssn#>

SELECT ?obs ?val
WHERE {

STREAM <http://hevs.ch/aislab/d1namo/stream> [RANGE 100ms]
{

?obs ssn:observedProperty d1na:breathing_rate .
?obs ssn:observationResult ?obsval .
?obsval qu:numericalValue ?val .

}
}

Listing 9: CQELS query for the D1namo breathing rate
observations.

Although the CQELS engine provides a ready-to-
use API, it needed to be further adapted to the rest of
the platform, and a simple programming interface de-
veloped in Scala was added. This interface is avail-
able as open-source code in Github9. The Scala code
snippet below shows how a CQELS engine is instanti-
ated, starts consuming a stream, registers a query, and
finally obtains results continuously. A CQELS engine
instance can be created with default parameters as:

val cqels=new CqelsEngine

Then, different streams can be launched. In this exam-
ple, a time series stream is initiated with a constant rate
of 10 ms. Any custom stream can be engineered by
implementing an RDF stream interface.

val stream1=new StreamTimeSeries(cqels,props,10)

Finally, a query can be registered to the system, and a
listener will be called each time there are results com-
ing from the engine. For brevity, the full query string
is omitted.

9Github repo: https://github.com/jpcik/d1namo
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val q=s"""SELECT ?obs """
val listener=cqels.selectListener(getResults)
cqels.registerSelectQuery(q,listener)

Notice that the listener receives a method as an input.
This method will be invoked every time a result is pro-
duced. As an example, the method below simply prints
the variable mappings to the standard output.

def getResults(data:Map[String,Any]):Unit={
println("mappings: "+data.mkString)

}

4.2. RSP Query Evaluation: Discussion

The previous sections described how live sensor
data can be processed using CQELS, although these
queries have certain limitations in terms of what can be
expressed with their respective languages (e.g. limited
inference support, sequencing, federation, etc.). Con-
tinuous queries in this context can be most useful for
providing notification based on the observed proper-
ties, not so much on the raw data but more on the com-
plex event that are generated after the machine learn-
ing models have been executed, i.e. for processing the
glycemic events, or the activity recognition results. As
an example, the excerpt below shows two sample Hy-
poglycemic and Systolic observation events that could
be appended to the stream.

hypo1 a :HypoEvent;
:observedAt "2016-03-03T20:30:31";
:hasValue 45.3.

syst1 a :SystolicObs;
:observedAt "2016-03-03T20:30:31";
:hasValue 145.

This type of data would require more complex data
pattern queries that exploit the temporal dimension of
the data. One application of such a query could be to
find hypoglycemia events happening before a systolic
observation that goes beyond a certain threshold. The
current capabilities of RSP engines such as CQELS
do not allow for this expressiveness, which requires
the so-called Complex Event Processing operators, e.g.
sequencing and time pattern matching. Using a CEP-
enabled RDF Stream query processor, such as the pre-
liminary work described in CQELS-CEP [10], rules
could be evaluated on the incoming events, e.g. se-
quences over a sliding window, as on the example be-
low encoded as a query:

SELECT ?h1,?sys
FROM NAMED WINDOW :win ON ex:eventStream [RANGE 1h]

WHERE {
WINDOW :win {

SEQ({?h1 a :HypoEvent},
{?h2 a :SystolicObs;

:hasValue ?sys.
FILTER (?sys>140)} )

}
}

Although this type of CEP queries have not been in-
tegrated yet in the system, mainly because of the un-
availability of a reliable system that implements them,
there is a latent potential for future works on the topic,
integrating classical stream processing and CEP tech-
niques.

5. Experimentation

This section describes the different experiments that
have been performed in order to validate the use of
CQELS for processing RDF streams of the data gen-
erated by the Bioharness sensor. It essentially focuses
on the output throughput of the system, i.e. the num-
ber of results per unit of time. The throughput is a
relevant property for evaluation purposes, as it gives
a clear idea of the scalability and efficiency of the
querying system. The different parameters for the ex-
periments were varied, including different input rates,
multiple queries, and simultaneousness. The experi-
ments are driven by the different requirements of the
D1namo project. First, events need to be represented
using a standard machine-readable data model (i.e.
RDF), available as a stream. Then, the system should
support multiple streams simultaneously, given that
several devices produce different datasets (e.g. ECG,
breathing rate, etc) which need to be consumed and
combined at the same time. Furthermore, these streams
need to run at different speed, ranging from few entries
per day (e.g. exercise logs) to thousands per second
(e.g. ECG). Finally, it is needed to run several concur-
rent queries over the RDF streams, and executed con-
tinuously, for instance for generating alerts and notifi-
cation on the live data. The full set of queries is avail-
able in the Github repository. All the experiments were
performed on an Intel Core i7 3.1 GHz, 16 GB.

The throughput of the system has been the main
metric in these experiments, as it provides an idea of
the load that the system can sustain. In the first exper-
iment, the throughput of a single query (queries fol-
low a pattern similar to Listing 9) is compared with the
ideal throughput that would be produced under perfect
conditions. As it can be seen in the results in Figure 6,
for lower and middle rates the CQELS evaluation fits
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Fig. 6. Execution of a CQELS query. Throughput compared with the
ideal behavior (maximum possible throughput). The CQELS execu-
tion follow the ideal behavior closely, except for very high streaming
rates (1ms).

with the ideal conditions, and only degrades signifi-
cantly for very high rates, e.g. 1 ms.

However, a query can also consume multiple sensor
data sources, each from different observed properties.
The next evaluation was to compare the throughput of
a stream that includes only one observed property, and
another stream that points to several different proper-
ties. As it can be seen in Figure 7, there are no ma-
jor differences except for very high input rates (1 ms).
Notice that the figure displayed the results through-
put, and in most cases this implies a much larger input
dataset.

Fig. 7. Adding observed properties to the stream fed to CQELS.
Adding the different feature properties used in D1namo, e.g. breath-
ing rate, peak, ECG waveform, accelerometer, etc. The throughput
is not affected by adding these properties for high rate up to 5 ms.

Next, the authors analyzed the results after regis-
tering multiple queries within CQELS. Depending on
the number of continuous queries (all of them of the
same complexity), the engine can work differently, un-

til it reaches saturation. As we can see in Figure 8, 1,
5, 20, 50 simultaneous queries were evaluated. Log-
ically, more queries produce more results, increasing
the overall throughput. However, it can be seen that the
throughput starts deteriorating for high sensor rates,
and this applies to most of the query settings. This de-
terioration is more visible for larger number of simul-
taneous queries (e.g. 50), although this is not really a
problem for D1namo.

Fig. 8. Adding multiple queries to CQLES. The system is able to
respond to simultaneous queries, even if the throughput slightly de-
creases.

Finally, Figure 9 shows how a series of streams can
be fed to the same CQELS engine. Again for low-
medium input rates, and high number of streams will
negatively impact the result throughput. Different in-
put rates were tried while using 5, 25, 50 ad 100 sensor
streams to feed the system. The system suffers a no-
ticeable deterioration of the throughput when the num-
ber of streams reaches the first hundred.

Fig. 9. Adding several streams to the pipeline is sustained by the
system. For very high rates of 5ms and 1 ms the system throughput
degrades, specially for a large number of concurrent streams.

In summary, the CQELS engine can be success-
fully used to represent and implement queries over the
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D1namo data, reaching close to optimal performance
for low and mid rates. Even when the system is under
heavy load, it is able to continue under lower capacity,
although it will differ more and more from the ideal
behavior, as soon as the rates increase.

6. Discussion

As it has been seen, the D1namo ontology can
be used not only for the representation of metadata,
but also for large data streams of events encoded as
RDF triples. The experimental results show that these
streams can be consumed and processed under very
high load conditions, i.e. up to tens of thousands of
data items per second. The requirements of velocity
for stream processing of events in the D1namo project
range from sporadic acquisition (e.g. food intake) to
intensive monitoring (e.g. ECG signals). The ability
to answer continuous queries over these streams us-
ing extensions of standard languages such as SPARQL,
is an objective advantage not only for interoperability,
but also for discovery and formulation of notification
rules. This may enable in the future the integration of
autonomous intelligent applications that feed from the
RDF streams of events, thanks to the inherent seman-
tics embedded on the data. Moreover, these semantic
representations can be used to feed event processing
rules specialized in the health domain, such as in [4].

As a concrete application and validation of the
whole approach, a close collaboration has been estab-
lished with the medical staff at the Hospital of Riviera-
Chablais, in order to collect data from diabetes type
1 patients. The study counts with the approval of the
local ethical committee board. The acquired data con-
tains the signal acquired by the sensor belt for 4 days,
but also glucose readings coming from a continuous
glucose monitoring system Ipro 2 (Medtronic) which
collects a glucose measurement per 5 minutes. These
measurements are used as a ground truth for the train-
ing and evaluation of the models. Insulin and food in-
takes were also collected as manual annotations from
the participants. The long process of patient recruit-
ment and gathering of statistically significant volumes
of data will provide us with the means to validate
the whole D1namo approach in the near future, even
though the data processing framework and the seman-
tic representation and query evaluation have already
been shown to be effective for the types and amounts
of data collected.

7. Related work

Recent years have seen the development of non-
invasive methods aiming at replacing the drop of blood
to evaluate glucose level. Recently, Google introduced
a smart lense [29] in order to sense glucose level from
tear fluid. In [7,8,3], the authors leverage signals such
as accelerometer data and heart rate in order to re-
fine the insulin dosage provided by pumps and ar-
tificial pancreas. For the same purpose, in [32], the
author uses energy expenditure and galvanic skin re-
sponse to estimate the food intake along with glu-
cose measurements. Closer to our concerns, [31] in-
tegrates accelerometers, heat-flux sensors, thermistors,
ECG electrodes and galvanic skin response sensor to
predict glucose level, physical activity and energy ex-
penditure. Other systems that integrate mobile devices
and wearables for diabetes patient data management
include [12,18,17,22].

Related work also exists on related tasks such as ac-
tivity detection using wearables [11,1], although these
are in most cases not integrated with ECG or other in-
dicators that can lead to detection of glycemic events.

Other approaches have taken totally different direc-
tions, aiming at the design of systems that specialize
on food intake analysis for risk prevention in diabetes
patients [24,30].

While there have also been proposals for ontology-
based activity detection [6,27], to the best of our
knowledge semantics-based approaches are so far un-
explored for combining physiological and energy ex-
penditure data in a glucose estimation system. Other
general health monitoring works include [23,15], al-
though they do not consider streams of semantically
enriched events, or the use of RDF stream processing
engines. More specifically, for diabetes there have also
been previous attempts that used ontologies for repre-
sent diabetic patient records and observations [25,14],
although none of these approaches considers live data
processing to detect patterns of interest.

8. Conclusion and Future Work

This paper presents the semantic representation and
processing aspects of D1namo, a non-invasive ap-
proach to detect glycemic events from mobile sen-
sor data. It describes a physiological and an energy
expenditure model to classify these events, and how
these events, raw data and provenance information
can be modeled using standards-driven ontologies, and
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queried using extensions for RDF stream processing.
To complete this approach, a validation of the infer-
ences described above will be performed with glucose
readings from diabetes type 1 patients. This will re-
quire the completion of the formulation of the physio-
logical and energy expenditure models, expressed us-
ing the semantic model detailed in this paper. The pa-
tient studies is expected to bring light into the advan-
tages and potentially the practical issues of this ap-
proach. An additional future work will be to include
the detection algorithm into a mobile platform that will
exploit the semantically enriched data through a com-
plex event processor, providing alerts and recommen-
dations.
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