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Abstract. Mathematical solvers can be parameterized today with a
multitude of different parameters. While default parameter settings of-
ten provide good results, in terms of low runtime, often parameter set-
tings can be found, which speed-up the solving process for a particular
model. Before considering the construction of strategies for optimizing
parameter settings for particular models, it is necessary to understand
the underlying search space. We do so by investigating systematically
the effects of different parameter settings, taking into account the pa-
rameters considered to me most important in the literature. Based on
three pre-existing mathematical models, we explore runtime for solving
them, systematically varying the parameters of the solver. As a result
of our study, we can provide a better understanding of the underlying
search space, that needs to be investigated for effectively perform pa-
rameter tuning of mathematical solvers. Also we highlight that choosing
bad parameters can have significant disadvantages, e.g. compared to the
default parameters.

1 Introduction

Mathematical solvers, such as CPLEX [10], CONOPT [5], or GUROBI [6], are
used to solve mathematical models in varying disciplines. The required runtime
to solve a given model is largely dependent on the complexity of the model,
but also on the solver’s parameterization. While the default configuration in
general provides a good performance, there often exist solver settings that can
improve the runtime. Thus, finding solver parameter settings that can improve
the run-time of a particular model can be considered as a search problem. Due
to the observation that default parameter settings are often superior than any
randomly chosen parameter setting, it raises the issue on the structure of the
underlying search space. The scope of this paper is to systematically analyze
the effects of different parameter settings on the runtime of solving process, and
thus gives a better understanding of the underlying search space.

In the next section we discuss the currently existing approaches for minimiz-
ing the time required for solving mathematical models. In Section 3 we describe
the method and experimentation set-up, used to analyze the search space for



parameter tuning. Our results are presented and discussed in Section 5. After-
wards we conclude our paper, and provide an outlook of further research. This
paper is based on the BSc thesis [14] of the first author.

2 State of the art

In the following, we restrict our analysis to the use of the CPLEX solver, which
is a widely used one. The process of solving a model in CPLEX can be highly
customized by changing a set of parameters used at the start. The process of
searching for parameterization to reduce computation time for solving a partic-
ular model, or a set of models, is referred to parameter tuning. In the following
we highlight the current state of the practice as it is recommended and common
upon modelers.

2.1 Recommendations for the parameter tuning

The reason to deviate from default parameter settings used by mathematical
solvers is the fact that parameters have a high influence on the computation
time of models. This influence can be both positive or negative, depending on
how well the parameter values were chosen. Here we discuss the recommendations
approaches were suggested by IBM [9].

Automated tuning tool for CPLEX The default parameter settings for CPLEX
often lead to satisfactory results. But not all models run with a good-enough
performance using the default settings. Since version 11.0 of CPLEX, the solver
contains an automatic tuning tool. This tool will perform automated tuning tests
using different parameter settings.

Node log tuning Assuming the automated tuning tool does not lead to the desired
performance improvements, IBM recommends to evaluate the CPLEX node log
[12]. By changing the settings of two parameters, the user can alter the log level
and the log interval of the CPLEX node log. The log contains information about
the progress in optimizing the original problem. By interpreting the log, it is
possible to identify the cause of slow performance. This knowledge can be used
to tune specific parameters in order to achieve better performance.

Probing for binary models If the model consists of binary variables, it is possible
to either achieve a significant performance increase or decrease by changing the
probing level of the solver. Probing is a technique used, for instance to solve
Mixed Integer Linear Programming (MILP) models.

Probing is a technique performed between the pre-processing of a model
and the solving of the root relaxation. It investigates the logical implications
of fixing binary variables to either 0 or 1 and exploring the consequences. The
intent of probing is to derive globally valid information. This can lead to a
major performance increase if used on large, complex binary models. If used on



small or simple models, the probing process takes too long, thus increasing the
overall computation time. In CPLEX the user can change the aggressiveness of
the probing process by changing a parameter and increase the probing level.
Additionally, since CPLEX version 10.0 it is also possible to set a time limit for
the probing process. Even if the probing process did not finish, the information
gained during the process can reduce the computing time.

Reducing the accuracy Depending on the model and its purpose, it is some-
times not necessary to find an optimal solution. By changing the emphasis of
the solver it is possible to set specific trade-offs between speed, feasibility, opti-
mality and moving bounds. This trade-off can be further refined by setting an
additional condition in form of a parameter. The parameter value specifies the
percentage of optimality a found solution has at least to fulfill in order to be
accepted as an optimal solution.

2.2 Parameter tuning in the scientific literature

In the broader sense, also work from the field of algorithm selection, and algo-
rithm configuration can be considered as relevant work. However, we limit us
here on the specific of tuning mathematical solvers.

Hutter et al. [7] have applied Machine Learning to solver parameter tuning.
Methods like [7, 15] randomly select model and solver configurations to execute
and use them as training data. Furthermore, methods exist that use a multi
objective approach [4], allowing a user to tune for Time-To-Optimality (runtime),
Proven-Gap or Best-Integer-Solution. Lépez and Stiitzle [13] also make use of an
aggregate objective to find the best compromises between solution quality and
runtime, to achieve good anytime behavior.

A recent review about the scientific literature, and novel approaches you can
also find in [1]. Beside our study, also Baz et al. [4] showed there is great potential
for using non-default settings for mathematical solvers.

3 Methodology

In the following we outline the approach we made, to investigate the overall
search space, and it characteristics. In order to conduct the analysis, a key met-
ric in the form of CPLEX Ticks has been identified. This metric provides a
possibility to compare the performance of different solving runs. CPLEX Ticks
are a deterministic time measurement unit introduced in version 12.4 of the
solver [11]. The goal of ticks is to provide a way to compare multiple runs of
the same model based on their computation effort. One drawback of CPLEX
Ticks is their platform dependency which has to be taken into account during
the experiment setup.



3.1 Goal question metric

To conduct an analysis, a metric has to be defined. It is used to compare the
results gathered during the analysis. Goal Question Metric (GQM) is a mea-
surement model introduced by Basili et al. [2]. A typical GQM model consists
of three parts:

— Goal: It clarifies the basic purpose of the metric, the current issue, the object
and from what viewpoint this object has to be achieved.

— Question: It further characterizes the object set in the goal.

— Metric: Defines with what means progress will be measured.

By applying the GQM approach to this topic, a GQM model can be generated
for use during the analytical process. The goal of the analysis is to investigate the
computation time of MILPs in CPLEX by deviating from the standard param-
eters provided by IBM. The default parameter setting will be used as a baseline
for the evaluation. CPLEX Ticks are used as metric to compare the computa-
tional time of the models. The question that has to be answered is deduced from
the initial goal of the analysis: How does the computation time change when
custom parameter settings are applied? The difference in computation time will
be measured using a percentage quotation that indicates if a custom setting is
faster or slower compared to the default settings. The complete GQM model can
be depicted in Table 1 below.

Table 1: Goal Question Metric Model
Goal Purpose |Explore

Issue computation time of
Object mathematical models

(process) |by utilizing non-default parameter settings
Viewpoint|in IBM’s CPLEX solver.

What is the computation time of the model using
default parameter settings?

Metrics CPLEX Ticks
How does the computation time changes using custom
parameter settings?

CPLEX Ticks with default parameter settings
CPLEX Ticks with custom parameter settings

Question

Question

Metrics

3.2 Selection of relevant parameters

As it is not feasible to test all possible combinations of the 73 parameters in
CPLEX [8] it is necessary to reduce the list to a smaller set of parameters. In
the following chapter, the selection criteria will be introduced and the resulting
parameter set as well as the scope of the analysis will be elaborated.



Selection criteria In order to be considered as relevant, a parameter has to
meet two criteria:

— Time constraints for the analysis.

— The impact a parameter has on the computation time of a model. This im-
pact can highly variate between different models, depending on the model’s
structure and constraints.

STOP parameter sets We will consider two limited sets of parameters used
by Baz et al. [3] in their research on automated parameter tuning using their
Selection Tool for Optimization Parameters (STOP) algorithm. The first set of
parameter as displayed in Table 2 consists of a total of 1296 parameter combi-
nations. Its extended version, as seen in Table 3, is composed of 104’976 combi-
nations.

Table 2: 6 CPLEX parameters used by STOP research [3]

+# Parameter Name Test Settings|Default
1 MIP emphasis switch [0,1,2,3] 0
2 MIP node selection strategy [1,2,3] 1
3 MIP variable selection strategy [0,2,3] 0
4 MIP dive strategy [0,1,2,3] 0
5 MIP Gomory fractional cuts switch [-1,0,1] 0
6 [MIP MIR (mixed integer rounding) cut switch| [-1,0,1] 0
Table 3: 10 CPLEX parameters used by STOP research [3]
# Parameter Name Test Settings|Default
1 MIP emphasis switch [0,1,2,3] 0
2 MIP node selection strategy [1,2,3] 1
3 MIP variable selection strategy [0,2,3] 0
4 MIP dive strategy [0,1,2,3] 0
5 MIP Gomory fractional cuts switch [-1,0,1] 0
6 |MIP MIR (mixed integer rounding) cut switch| [-1,0,1] 0
7 MIP disjunctive cuts switch -1,0,1 0
8 MIP cliques switch -1,0,1 0
9 node presolve switch [-1,0,1] 0
10 MIP probing level [-1,0,1] 0

Scope of the analysis By reducing the CPLEX parameter set from 73 to six,
respectively ten, we still would need to solve the same model thousands of times



during the analysis. Solving the models in a consecutive approach is infeasible
due to time constraints, therefore a concurrent approach utilizing a computer
cluster was used.

4 Experiment setup

4.1 Hadoop cluster

A Hadoop cluster consisting of 20 distributed slave nodes and one master node
was used to conduct the analysis. Most of the slave nodes inside the cluster con-
sist of workstation computers. In addition to those workstations, three server
racks are part of the cluster. As mentioned above, CPLEX Ticks are a platform-
dependent metric. This is crucial, since the cluster consists of nodes with het-
erogeneous hardware configurations. For this reason, the nodes with divergent
hardware configuration were removed from the cluster during analysis.

Figure 1 displays how the analysis is conducted on the Hadoop cluster. A text
file containing one parameter setting per line is used as input. This file is then
split into chunks, each chunk corresponds to one line or parameter setting. The
settings are then distributed by the master to the available slave. The slaves
solve the model using the specified parameter setting and save the result as
text document containing the used parameters and the amount of CPLEX ticks
necessary for the computation process. After the Hadoop task concluded and all
settings are calculated, the files are merged into one and ready for interpretation.

Input Splitting Mapping Output
(a) (b) (c) (d)
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Fig. 1: Schema of CPLEX MapReduce job



4.2 Test data

The analysis was conducted using three different models that were provided
by the Industrial Process and Energy Systems Engineering (IPESE) group at
the Federal Institute of Technology Lausanne (EPFL). The models are named
Eiampll, Eiampl3 and Aladeen. The models have different complexity with com-
putation time using CPLEX’s default settings ranging from seconds to several
hours. Despite the actual purpose of those models, which is not relevant for this
study, they represent rather typical models used in their research.

5 Analysis of the search space

In the following chapter, the results of the analysis will be presented and inter-
preted. The results of each model are represented in a box-plot with a red line
marking the CPLEX ticks using default parameter settings.

5.1 Model: Eiampll

After closer examination of Figure 2, it can be stated that over 75 percent of all
computed settings yielded a worse performance than using default parameters.
The computation time ranged from 19 seconds up to one hour and 17 seconds.
With the default settings taking 42 seconds to compute. Only 94 out of the 1296
settings analyzed parameter settings provided an increase in performance with
a maximum performance raise of up to 54.9 percent.

One possible reason why an overwhelming number of parameters did not
lead to a performance increase but decrease can lie in the simplicity of the
mathematical model and the default parameter values chosen by CPLEX that
already provide a rather high-performance in computation time for most models.

5.2 Model: Eiampl3

The results for this mode were quite extreme as can be observed in Figure 3a.
The range of results spans from 2’211 ticks up to 1.83e08 ticks. 39 out of the
1296 settings were not solved within the one-week time limit and thus do not
appear in the figures.

In Figure 3b the same data is depicted with outliers hidden. Over 75 percent
of all tested settings performed worse than the default settings. Only 143 out of
the 1296 tested settings yielded an increase in performance of up to 27.2 percent.

5.3 Model: Aladeen

As can be examined in the box-plot in Figure 4, the distribution of CPLEX
ticks for the model Aladeen is rather narrow with a small number of outliers
above the upper whisker. After closer examination, we can see that the box-plot
is extremely compact. The computation time ranged from 8 seconds up to one
minute and 34 seconds. With the default settings taking 8 seconds to compute.
432 of 1296 results had an increase in performance with a performance increase
of up to 0.22 percent.



CPLEX Ticks

1.90e+08
1.85e+08
1.80e+08
1.75e+08
1.70e+08
1.65e+08
1.60e+08
1.55e+08
1.50e+08
1.45e+08
1.40e+08
1.35e+08
1.30e+08
1.25e+08
1.20e+08
1.15e+08
1.10e+08
1.05e+08
1.00e+08
9.50e+07
9.00e+07
8.50e+07
8.00e+07
7.50e+07
7.00e+07
6.50e+07
6.00e+07
5.50e+07
5.00e+07
4.50e+07
4.00e+07
3.50e+07
3.00e+07
2.50e+07
2.00e+07
1.50e+07
1.00e+07
5.00e+06
0.00e+00

EIAMPL 1

190000
o
180000 — S
170000 — 8
8
160000 — °
H
150000 —
8
140000 — °©
8
130000 — °
120000 — ©
o
110000 | °
9 o
5 °
i 100000 °
< 8
& 90000 °
5 o
80000 ]
70000
60000 —
- 53824.170
50000 - :
40000 — 3
30000 | :
- 26262.017
20000 -
- 13320.515
10000 — L
...
Fig. 2: Eiampll boxplot
EIAMPL 3 EIAMPL 3
105000 —
3 100000 - - 101473.491
95000 | :
[e]
90000 -|
85000 |
80000 | '
75000 |
70000 |
65000 :
[e]
60000
8 g
£ 55000 :
o ] | |
5 50000 : I 48584.718
g © 45000 —
6 40000
<]
g 35000 |
30000 |
8
8 25000 I 24269.543
E 20000
g 15000 - - 13271.722
10000 | :
8 8130898 -
5000 — '
—8 . — - 2211.722

(a) Full plot

Fig. 3:

(b) Without outlier

Eiampl3 boxplot



ALADEEN

1220 °
1200
1180
1160 —

1140 —

1120

1100

1080 —

CPLEX Ticks

1060 —

1040

1020 —

1000 - 996.9092

980 —

960 —

9441498 - 942.0714

Fig. 4: Aladeen boxplot

5.4 Comparisons

In our analysis so far, we have outlined that for all models performance improve-
ments are possible,by deviating from the standard parameters. However, we have
also outlined, that most combinations lead to larger run-times, and considering
the range of outliers deviations can be very time consuming.

In the following we want to investigate the structure of the search space in
more detail. To allow for a more systematic comparison, we abstract now from
the specific number of ticks, by just considering the factor distance from the
default parameters, i.e. the factor 1 is equal to the number of ticks with the
default setting, while a larger number indicates a larger runtime, while a value
smaller indicates a faster execution.

We have performed this analysis for all three models, and results are shown in
figuresb, 6, and 7. We show a comparison between the set of parameters using the
metric specified in Chapter 3.1. The different parameter settings (shown on the
x-axis) have been numbered based on their sequence in the enumeration. While
the upper figures show each time the full situation. i.e. runtime for the different
parameter settings. The lower figures indicates for the different models evaluated
a more detailed perspective, i.e. we zoomed in the areas where the performance
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of parameters is better than the default parameters. Due to the rather regular
patterns in the lower figures, we can conclude that there exists patterns in the
parameter settings that systematically can lead to faster execution times for
specific models. This can be observed over all three models in Figures 5b, 6b,
and 7b.

However, we have to state that these patterns are specific for each model,
as after a closer examination of the results of all three analyses, no parameter
settings were found that yielded a performance improvement in all three mod-
els. Most likely, we consider that model specific aspects lead different strategy
adjustments within the solver lead to an improved performance.

The overall analysis of the search space of different parameters and their
effects on the runtime of the mathematical solver, we have to state that the due
to the quality of the default parameters, and the often quite big risk of mis-
guessing, the underlying search space is highly imbalanced, i.e. the interesting
parts of the search space, where the runtime is lower than the default parameters
is quite small and typically centered around specific key parameters that are most
relevant for a particular model, that finding them can be considered difficult, and
also optimization and learning strategies should take into account the imbalanced
nature of the underlying search space.

6 Conclusion

Due to a large number of configurations that are possible and the fact that most
solver parameter settings will result in an exceptional high runtime, the sam-
pling space is large and imbalanced. Further strategies that consider optimizing
parameter settings have to take into account the structure of the underlying
search space. We have seen for all models that we very likely can find improve-
ments, along some patterns of parameter settings. However, as there exists no
one-fits-all solution, we have to conclude that parameter adjustment must be
done at least specific for the model at hand. This challenge is still large, due to
the imbalanced structure of the search space, i.e. desired parameter settings are
rare, and a potential high penalty (runtime) if parameters are mis-guessed.

In our future research we are considering mechanisms how parameter-tuning
can be obtained, thereby considering the underlying search space.
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