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Abstract— Accurate detection of diabetic macular edema
(DME) is an important task in optical coherence tomography
(OCT) images of the eye. A relatively simple and practical
approach is proposed in this paper. A pre-trained convolutional
neural network (CNN) is fine tuned for a classification of
DME versus normal cases. The fine-tuned Inception-Resnet-v2
CNN model can effectively identify pathologies in comparison
to classical learning. Experiments were carried out on the
publicly available data set of the Singapore Eye Research
Institute (SERI). The developed model was also compared to
other fine tuned models, such as Resnet-50 and Inception-v3.
The proposed method achieved 100% classification accuracy
with the Inception-Resnet-v2 model using a leave-one-out cross-
validation strategy. For robustness, the model trained on the
SERI dataset was tested on another dataset provided by
the Chinese University HongKong (CUHK), also with 100%
accuracy. The proposed method is a potentially impactful tool
for accurately detecting DME vs. normal cases.

I. INTRODUCTION

A. Motivation

Diabetic macular edema (DME) and diabetic retinopa-
thy (DR) are the most common serious retinal disorders.
Both cause an irreversible vision impairment [1]. Accurate
identification of DME and DR with progression heavily
depends on advanced retinal imaging techniques. Optical
coherence tomography (OCT) imaging is extensively used
to view and capture small changes in the retina [2]. This
three-dimensional imaging technique is now considered as
standard in the ophthalmology for examination and assess-
ment of the response to retinal treatment. Clinically, when
lesions occur in the macular region, the internal limiting
membrane (ILM) and the retinal pigment epithelium (RPE)
undergo morphological changes [3]. Accurate identification
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Fig. 1. Sample image from the SERI (Singapore Eye Research Institute)
database (a) a DME case and (b) a normal case of an OCT slice.

of these abnormalities as observed in OCT imaging can help
to improve diagnosis of retinal diseases like DME and DR.

Many researchers have developed methods for automatic
detection of DME [2]. Srinivasan et al. [4] proposed a clas-
sification approach to distinguish DME, age-related macular
degeneration (AMD), and normal OCT volumes. They used
pre-processing using Block Matching 3D filtering (BM3D)
and extracted Histogram of Oriented Gradients (HOG) fea-
tures with an SVM classifier. Lemaitre et al. [S5] used
LBP (Local Binary Patterns) features to capture the texture
of OCT images with dictionary learning using a BoVW
(Bag of Visual Words) models. Furthermore, they used a
Random forest (RF) classifier for LBP feature descriptors and
achieved a sensitivity (SE) of 87.5% and a specificity (SP)
of 75%. Awais et al. [6] developed a deep learning approach
using features from a pre-trained VGG network with several
classifiers for DME volume classification. Perdomo et al. [7]
provide an important point of reference by developing the
OCT-NET end-to-end deep learning model. The method
achieves an accuracy of up to 93.75 %. Other advantages
are that the OCT-NET model has a simple architecture with
only 12 layers, so is fast to train.

Variants of CNN architectures have been developed over
the past years, such as Googlenet [8], Resnet-50 [9],
Inception-v3 [10] and Inception-resnet-v2 [11]. The incep-
tion architecture with residual connections performs more ef-
ficiently by making the network deeper and wider. The recent
Inception-Resnet-v2 was chosen for our proposed method
as it has given the best performance on ImageNet in the
2015 ImageNet Large Scale Visual Recognition Competition
(ILSVRC) challenge [11]. The use of a CNN model pre-
trained on natural images and fine-tuned on medical images
is widely accepted [12]. Fine tuning has made it feasible to
use recent networks for our DME pathology classification.
Karri et al. [13] presented a deep learning approach that
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Fig. 2. The overall scheme for fine tuning the Inception-Resnet-v2 for DME vs. normal OCT volume classification.

fine-tunes a pre-trained GoogleNet on an OCT dataset with
DME, dry AMD and normal cases. There are also several
recent techniques that applied deep learning approaches for
DME pathology detection [14]- [15].

Many of the published methods still suffer from limited
performance but good performance is required in real world
applications.

B. Summary of the Contributions

In this paper, we propose an efficient DME vs. normal
classification method based on fine tuning recent CNNs. The
overall contributions of this paper are:

1) We present a simple but effective fine tuning method
using the recent Inception-Resnet-v2 CNN model for
DME vs. normal classification.

The proposed method was also trained on the SERI
dataset and tested on the CUHK dataset, which shows
the network robustness by classifying normal vs. DME.
We compare to the performance of other networks,
such as Inception-v3 and ResNet-50 with fine tuning,
also with good results.

2)

3)

The remainder of the paper is organized as follows: in section
I we provide the proposed method with fine tuning for the
DME classification. The experimental results and discussion
are provided in Section III. In Section IV, critical conclusion
and discussion.

II. METHODS

A. Datasets used

The proposed method uses the SERI and CUHK SD-
OCT image datasets. The SERI dataset was acquired by
the Singapore Eye Research Institute and consists of 32
OCT volumes (16 DME and 16 normal cases). Each volume
contains 128 contiguous 512x1024 pixel B-Scan images.
The evaluation was performed first with a k-fold cross-
validation (leave one patient out) with 32 independent folds
on the SERI dataset and then tested on the CUHK dataset.
The CUHK dataset contains DME (4) and normal (79)
OCT volumes. The overall framework of the proposed DME
disease classification using OCT images is shown in Fig. 2.
The methods include preprocessing, the Inception-ResNet-v2
CNN model and fine tuning at the end.
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Fig. 3. The schema for interior grid modules of the Inception-ResNet-
v2 network [11]. (a) Inception-Resnet-A (b) Inception-Resnet-B and (c)
Inception-Resnet-C block of the network shown in Fig. 2.

B. Preprocessing of OCT data

A typical retinal OCT image has unclear edges with low
signal-to-noise ratio, and hence de-noising can be useful as
pre-processing step. For noise reduction we use a BM3D
filter, which produces a smooth OCT image [16]. BM3D is
a 3D filtering technique in the transform domain using the
Discrete Fourier Transform (DFT) by combining a sliding-
window with block-matching. The proposed approach seg-
ments the Internal Limiting Membrane (ILM) and Retinal
Pigment Epithelium (RPE) OCT layer of the denoised image
for cropping and resizing it to 224x224 pixels [17]. Once
preprocessed, the images are fed into several CNNGs.



C. Inception-ResNet-v2

Inception-ResNet-v2 is a combination of two recent net-
works, residual connections [9] and a recent version of
Inception architecture [10]. The Inception models are famous
for their multi-branch architectures. They have a set of filters
(1x1,3x3, 5x5, etc.) that are merged with concatenation in
each branch. The split-transform-merge architecture of the
inception module is observed as a powerful representational
ability in its dense layers [10]. The residual model is famous
for training very deep architectures. The hybrid Inception-
ResNet-v2 network uses residual connections with good
efficiency [11]. The stem configuration for the Inception-
ResNet-v2 network is not shown here. The interior module of
the network includes Inception-Resnet-A, Inception-Resnet-
B and Inception-Resnet-C blocks shown in Fig. 3 [11]. The
original network is stable by scaling down the residuals
before adding them to the previous layer.

D. Fine tuning for DME vs. normal cases

The proposed method includes fine-tuning an Inception-
Resnet-v2 pre-trained model to identify DME in OCT im-
ages. The parameters in the last fully-connected layer can
adapt better to the DME data. The recent Inception-Resnet-
v2 pretrained CNN model is used to initialize the first several
layers for the fine-tuned network [11]. The last three layers
namely global average pooling, fully connected dense layer
and a softmax layer were replaced to tune DME vs. normal.
The fully connected dense layer has 3074 parameters for
tuning. The softmax layer produces a probability distribution
over 2 classes: DME vs. normal. The weights of all fully
connected layer are randomly initialized. Then, the model is
fine-tuned using an RMSprop optimizer with a momentum of
0.8 and learning rate of 0.0001. RMSprop utilizes the mag-
nitude of recent gradients to normalize the gradients [18].
The experiments are carried out for 10 epochs with a batch
size of 16 images. The proposed method was implemented
entirely in python using a TensorFlow backend on a GeForce
GTX 1080ti card from NVIDIA on linux with an Intel Xeon
2.1GHzx16 CPU with 32GB DDR2 RAM. It takes 8 hours
for training with the above system configuration without
parallel computing for 10 epochs.

III. EXPERIMENTAL RESULTS

All the experiments are evaluated in terms of sensitivity
(Se), specificity (Sp) and finally accuracy using Eq.(1) and
Eq.(2) by considering T'p, Tn, Fp and F'n obtained from
correct prediction. The (Se) and (Sp) shows the performance
of the method with respect to both the DME and normal
classes. The SERI dataset is arranged into 32 independent
folds using k-fold cross validation, where the network was
trained on 31 volumes in the training set and tested on one
volume using a leave-one-patient-out strategy. We consider
the entire volume as DME if 65 or more OCT images were
classified as DME cases by a quorum rule [7]. The fine
tuned Inception-Resnet-v2 gives 100% accuracy, sensitive
and specificity on the SERI dataset on the volume level.
The performance of other networks such as Resnet-50 and

TABLE I
ACCURACY USING SEVERAL CNN MODELS ON THE SERI DATABASE OF
32 (16 DME AND 16 NORMAL) VOLUMES

CNN Sensitivity ~ Specificity ~ Accuracy
Resnet-50 [9] 93.75% 56.25% 75%
Inception-v3 [10] 100% 87.5% 93.75%
Inception-Resnet-v2 [11] 100% 100% 100%
TABLE II

COMPARISON WITH PREVIOUS METHODS ON THE SERI DATABASE.

Method Sensitivity ~ Specificity ~ Accuracy
Awas et.al [6] 100% 81.25% 90.6%
Perdomo et.al [7] 93.75% 93.75% 93.75%
Proposed 100% 100 % 100 %

Inception-v3 is shown in Table I. The best model on the
SERI dataset was then evaluated on the CUHK dataset for
testing. The obtained accuracy of DME vs. normal is 100%
as well.
Tp Tn
—_— Sp=——+ 1
’ b Tn+ Fp M

Acc = Tp+1n )
Tp+Fn+Tn+ Fp

The comparative performance of the method is shown in
Table II. The network performs well in terms of sensitivity,
specificity and accuracy. Also, the plots of accuracy and loss
on the slice level average of 32 OCT volumes on the SERI
dataset using several models is shown in Fig. 4. The average
accuracy on a slice level for Resnet-50, Inception-v3 and
Inception-Resnet-v2 is 86.94%, 99.21% and 99.46% on SERI
dataset.

IV. DISCUSSION

We observed that the Resnet-50 model is performing poor
in terms of specificity as can be seen in Table I. Inception-
v3 performs well compared to Resnet-50. The accuracy of
Inception-v3 reached the baseline method of 93.75% [7].
The model built on the SERI dataset was also tested on a
different dataset named CUHK and achieved a performance
of 100% highlighting the good generalization of the model.
The limitation of fine tuning is that changing the filter
configuration of any layer requires to train that respective
layer from scratch. Furthermore, experiments need to be
performed on larger datasets, as currently both datasets are
of small size. In the future, the system can also be extended
to other pathologies.

V. CONCLUSION

In this paper, an OCT based DME pathology classification
is proposed using fine tuning of Inception-Resnet-v2. It was
evaluated experimentally that the model trained on general
images can be fine-tuned to classify SD-OCT volume data.
The fine tuned model achieved 100% accuracy on the SERI
dataset at the volume level. This method also has the ability
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Fig. 4. Results over 32 OCT volumes using a leave one out scheme with several CNNs on the SERI dataset. Left: accuracy and right: loss

to identify DME on the CUHK dataset using the network
trained on the SERI dataset. The advantage of the proposed
method is the use of recent pre-trained models with limited
data for DME classification.
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