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Abstract. Tuberculosis (TB) remains a leading cause of death world-
wide. Two main challenges when assessing computed tomography scans
of TB patients are detecting multi–drug resistance and differentiating
TB types. In this article we model the lungs as a graph entity where
nodes represent anatomical lung regions and edges encode interactions
between them. This graph is able to characterize the texture distribu-
tion along the lungs, making it suitable for describing patients with dif-
ferent TB types. In 2017, the ImageCLEF benchmark proposed a task
based on computed tomography volumes of patients with TB. This task
was divided into two subtasks: multi–drug resistance prediction, and TB
type classification. The participation in this task showed the strength
of our model, leading to best results in the competition for multi–drug
resistance detection (AUC = 0.5825) and good results in the TB type
classification (Cohen’s Kappa coefficient = 0.1623).
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1 Introduction

Tuberculosis (TB) is an infectious disease that remains a persistent threat and
a leading cause of death worldwide. An important task is to detect when the
TB organisms become resistant to standard drugs. The multi–drug resistant
(MDR) form of the disease is a difficult and expensive form to recover from.
The gold–standard methods for MDR detection are expensive and may take up
to several months [1]. Therefore, there is a need for quick and cheap methods
of MDR detection. The identification of TB types (TBT) is another important
task, as different types of TB may require different treatments. Several visual
patterns can be seen in a Computed Tomography (CT) volume of a patient with
TB in the lungs, some of them characteristic of a specific TB type. However,
the final classification of the disease requires additional analyses, besides the
CT images [2]. An automatic image analysis system that can identify holistic
patterns of lungs with TB, not evident through simple visual assessment of CT
images, can be very useful for radiologists.



Graph modeling is a complete framework that was previously proposed for
brain connectivity analysis but has rarely been applied to other organs [3]. Graph
methods divide the brain into fixed anatomical regions and compare neural acti-
vations between regions [4]. In [5], we presented a basic graph model of the lungs
capable of differentiating between pulmonary hypertension and pulmonary em-
bolism. Both diseases present similar visual defects in lung CT scans. However,
they differ in their distribution throughout the lung. The graph was based on
dividing the lung into several regions and using these regions as nodes of a graph.
The regions were described using Hounsfield Unit (HU) distributions, extracted
from Dual Energy CT (DECT) scans. Preliminary results showed that a single
CT did not contain enough information about the HU distribution to differen-
tiate between the diseases and a more advanced description of the regions was
needed.

In this article, we present a more complex version of the graph model to
characterize the lungs. The new model describes each region of the lung using
state–of–the–art 3D texture descriptors. Our hypothesis is that a holistic anal-
ysis of the relations between regional texture features is able to encode subtle
differences between patients with separate TB types and to assist in an early de-
tection of drug resistance patients. We tested our texture–based graph model of
the lungs in the ImageCLEF 2017 TB challenge, where it was compared against
8 other methods, obtaining the best results in the MDR detection task. The
following section contains a brief overview of the subtasks and dataset of the
ImageCLEF 2017 TB task. More detailed information on the task can be found
in the overview article [6]. Section 3 explains the process of building the texture
graph model of the lungs and all the variations tested for this task in detail. The
results obtained by this approach in the task are shown in Section 4. Finally,
Section 5 concludes with lessons learned working on the data with our approach.

2 ImageCLEF Challenge

The ImageCLEF (Image retrieval and image analysis evaluation campaign of the
Cross-Language Evaluation Forum, CLEF) has organized challenges on image
classification and retrieval since 2003 [7]. Since 2004, medical image retrieval and
analysis tasks have been organized [8, 9]. The ImageCLEF 2017 [10] challenge
included a task based on CT volumes of patients with TB, the ImageCLEF 2017
TB task [6]. In this task, a dataset of lung CT scans was provided and two
subtasks were proposed. For both subtasks volumetric chest CT images with
different voxel sizes and automatic segmentations of the lungs were provided.

MDR detection task: This subtask was a 2–class problem that consisted on
detecting MDR based on a series of CT images. The dataset was composed
of 444 CT volumes, divided into training and test sets as shown in Table 1. By
visual inspection, the CT volumes of this task did not present any relevant visual
difference that distinguished MDR from drug–sensitive (DS) patients.



Table 1. Number of CT images for the MDR detection and TBT classification tasks.

MDR dataset

Patient set Train Test

DS 134 101
MDR 96 113

Total patients 230 214

TBT dataset

Patient set / TBT Train Test

Infiltrative 140 80
Focal 120 70
Tuberculoma 100 60
Miliary 80 50
Fibro–cavernous 60 40

Total patients 500 300

TBT classification task: The TBT subtask was a classification problem with
five classes, corresponding to five TB types: Infiltrative, focal, tuberculoma, mil-
iary, and fibro–cavernous. The patterns present in the several TBT patients were
already quite discriminative, e.g. the patients with fibro–cavernous TB presented
distinctive caverns in their CT image (see Figure 1). The dataset for this subtask
consisted of 800 CT volumes. The detailed number of patients for each class is
shown in Table 1.

Infiltrative Focal Tuberculoma

Miliary Fibro–cavernous

Fig. 1. Examples of the five tuberculosis types in the TBT subtask. The CT slices are
shown using a HU window with center at -500 HU and width of 1400 HU

3 Texture–based Graph Model of the Lungs

We propose a general pipeline (see Figure 2) to automatically obtain a texture–
based graph model of the lungs that is composed of four steps: 1) automatic



Fig. 2. Construction pipeline of a texture–based graph model of the lungs: First, the
lungs are automatically segmented. Then, they are divided using a geometric atlas with
36 regions. From each region, texture features are extracted. Finally, the graph is built
using the regions in the atlas as nodes. The edges contain the similarities between the
3D texture descriptors.

segmentation of the lung fields; 2) division of the lung mask into regions; 3)
extraction of local biomedical texture features in each region; and 4) construc-
tion of the lung graph encoding the comparison between the regional features.
Following this general pipeline, several graph models were investigated in this
work and tested on the ImageCLEF 2017 TB task. The models obtained were
produced varying the texture descriptors used in each lung region, the number of
connections used to build the graph (edges), and the type of comparison between
the regional features (weights).

Preprocessing pipeline: The graphs built were based on 3D texture features
that require having isometric voxels. Therefore, we first resampled the CT vol-
umes and the masks. After analyzing the multiple resolutions and the inter–slice
distances found in the dataset, a voxel size of 1 mm was used to capture a max-
imum of information. We used the lung masks provided by the organizers, that
were obtained with the method described in [11].

Geometric atlas of the lungs: In this article we use as a lung division the
atlas introduced by Depeursinge et al. [12]. This atlas contains 36 geometric
regions produced by intersecting four axis segmentations: coronal (right/left),
sagital (anterior/posterior), vertical (apical/central/basal), and axial (periph-
eral/middle/central). These regions are based on the 3D model of the lung pre-
sented by Zrimec et al. [13]. Each region of the atlas is referred to as r. Figures 2,
3, and 4 contain a 3D visualization of this atlas.

3.1 3D Texture Features

Two state–of–the–art 3D texture feature types were selected to describe the
texture in each atlas region r. The first method is a histogram of gradients
based on the Fourier transform HOG (FHOG) introduced in [14]. We used 28 3D
directions for the histogram obtaining a 28–dimensional feature vector per image



voxel v (fH(v) ∈ R28). The second descriptor is the locally–oriented 3D Riesz–
wavelet transform introduced by Dicente et al. in [15]. The parameters used
in this work correspond to the ones obtaining the best classification results of
synthetic 3D textures in the above mentioned article. These are: 3rd–order Riesz
transform, 4 scales and 1st–order alignment. This configuration provides 40–
dimensional feature vectors for each image voxel. The feature vector for a single
voxel was then defined as the weighted sum of the absolute Riesz response along
the 4 scales, obtaining a 10–dimensional feature vector (fR(v) ∈ R10). Finally,
the average (µ) and standard deviation (σ) of these descriptors were extracted
from each region r, hence obtaining four region descriptors (see Equation 1).

µH(r) = µv∈r(fH(v)) µR(r) = µv∈r(fR(v))

σH(r) = σv∈r(fH(v)) σR(r) = σv∈r(fR(v))
(1)

3.2 Graph Model of the Lungs

A graph is a structure that contains a set of nodes N and a set of relations
between the nodes, called set of edges E . In particular, edge–weighted graphs
are graphs in which a value is assigned to each edge, i.e., there is a function
w : E → R. From now on, the graphs in this work are considered to be edge–
weighted graphs with no self–loops.

Given a division of the lungs with n regions {r1, . . . , rn}, we define a graph
model of the lungs G = (N , E) as a set of n nodes N = {N1, . . . , Nn} connected
by a set of m edges E . Ei,j is defined as the edge connecting nodes Ni and Nj

with associated weight wi,j . The weights are functions of the texture features
extracted in the lung regions. Using the 36–region atlas as a lung division, the
graphs were finite with 36 nodes, i.e., N = {N1, . . . , N36}. Figure 3 contains a
3D visualization of the graph elements using this atlas.

Using a fixed number of nodes and the same connections for all patients
allow us to compare the patient graphs by comparing their adjacency matrices.
Given a graph G = (N , E) with 36 nodes, its adjacency matrix A is defined as
the 36 × 36 square matrix with elements ai,j = wi,j if Ei,j exists, and ai,j = 0
otherwise. Since no self–loops are allowed, ai,i = 0 ∀i ∈ {1, . . . , 36}. These
matrices can be characterized by the ordered list of their elements in a vector
form. Then, the comparison of graphs of different patients can be reduced to a
vector comparison, where standard machine learning techniques can be directly
applied. For a patient p with graph Gp and adjacency matrix Ap, we define the
patient descriptor wp as the ordered list of weights wi,j , using the order induced
by the vectorization of the matrix Ap.

3.3 Graph Architectures

Using the geometric atlas with 36 regions as a base, several undirected weighted
graphs were defined varying the number of edges and their weights. The number
of edges varied according to the connections considered between the nodes. The
different configurations of node connections correspond to different pruning levels



Fig. 3. Prototype visualization of the graph elements defined in Section 3.2. Left: 3D
visualization of the geometric atlas used where six regions are not visible to show the
atlas interior divisions. Right: Complete graph built from the geometric atlas. Ni and
Nj are the nodes corresponding to regions ri and rj , respectively. Ei,j is the edge
connecting the nodes Ni and Nj . All the other edges are shown in light gray.

of the complete graph with 36 nodes and we refer to them as graph architectures.
Three graph architectures were designed (shown in Figure 4), each one with
a different adjacency matrix A. Figure 5 shows the matrix A for each graph
architecture using the same local features. The difference between them is the
number of elements ai,j ∈ A informed.

– Graph Complete: This is the complete 36–node graph. For every pair of nodes
Ni and Nj with i 6= j an undirected edge Ei,j exists. The total number of
edges in this case is 630 ( 36·35

2 ).

– Graph 66 : Based on the region adjacency defined by the geometric atlas,
there is an edge Ei,j between nodes Ni and Nj if regions ri and rj are
neighbors in the atlas, i.e., if the regions are 3D adjacent. This graph contains
in total 66 edges.

– Graph 84 : This graph architecture has the same 66 edges as Graph 66. In
addition, it includes 18 edges connecting each pair of nodes representing
symmetric regions in the atlas with respect the left–right division of the
lungs.

3.4 Graph–based Patient Descriptors

The weight wi,j of an edge Ei,j was defined using four different measures between
the features of the corresponding nodes Ni and Nj . Considering fi and fj the
feature vectors of regions ri and rj respectively, the measures used are:

– Correlation distance (corr): wi,j = 1− corr(fi, fj).

– Cosine similarity (cos): wi,j = 1− cos(fi, fj).

– Euclidean distance (euc): wi,j = ‖fi − fj‖2.

– Norm of the sum (sumNorm): wi,j = ‖fi + fj‖2.



Graph Complete Graph 66 Graph 84

Fig. 4. 3D visualization of the three graph architectures (or pruning levels) designed.

A for the Graph Complete A for the Graph 66 A for the Graph 84

Fig. 5. Example of adjacency matrices for the three graph architectures shown in
Figure 4. The matrices were created using the same features in each atlas region. Hence,
the elements present in the three matrices contain the same values. The adjacency
matrices differ in the non informed elements (blanks).

The feature vector wp of a patient p is defined as the ordered list of weights
wi,j (see Section 3.2). The adjacency matrices Ap are symmetric, and only half
of the elements are needed to characterize them. Depending on the graph used,
this feature vector is 630–, 66–, or 84–dimensional.

3.5 Graph–based Patient Descriptor Fusion and Classification

Given a graph model of the lungs, a patient descriptor vector wp was obtained.
In particular, for each of the regional texture descriptors extracted (µH , µR,
σH , and σR), a different graph model was obtained, thus generating a different
patient descriptor wp. For the classification experiments, we tested several com-
binations of these patient descriptors. Therefore, we defined the derived patient
descriptor vector ŵp, containing a combination of these patient descriptors wp.



In this section, the different steps designed to obtain the derived patient descrip-
tor vectors ŵp are explained. Moreover, the classification setup is detailed.

Patient descriptor normalization: The patient descriptors wp were normal-
ized with respect to the set of training patients Ptrn . Two normalizations were
tested: Z–score and box normalization between 0 and 1, referred to as Gauss-
Norm and [0,1] respectively. Since each component of a vector wp corresponds
to the weight of a different edge in the graph, the normalizations were performed
over all the vector components together to preserve the relations induced by the
graph structure. w̄p denotes the normalized patient descriptor of a patient p.

Patient descriptor concatenation: Fixing a graph structure (Graph Complete,
Graph 66, or Graph 84) and a measure between the regional features (corr, cos,
euc, or sumNorm) (see Sections 3.3 and 3.4), four normalized patient descriptor
vectors w̄p were obtained. These are: w̄µH

, w̄σH
, w̄µR , and w̄σR . Five concate-

nations of these descriptors were tested in our experiments in order to better
describe each patient:

– Mean and std of FHOG: ŵ = (w̄µH
||w̄σH

).
– Mean and std of 3DARiesz: ŵ = (w̄µR ||w̄σR).
– Mean of FHOG and 3DARiesz: ŵ = (w̄µH

||w̄µR).
– Std of FHOG and 3DARiesz: ŵ = (w̄σH

||w̄σR).
– Mean and std of FHOG and 3DARiesz: ŵ = (w̄µH

||w̄σH
||w̄µR ||w̄σR).

Feature space reduction: The dimension of the feature space was much larger
than the number of patients in some of the experiments, e.g. when using the
Graph Complete architecture or the feature concatenations. To avoid the known
problems of overfitting, two feature space reduction techniques were tested, both
applied in the training phase. The first one selected the dimensions that best cor-
related with the training labels. The second one only kept those dimensions with
a standard deviation higher than the mean standard deviation of all dimensions.
Both techniques reduced the size of the feature space by two approximately and
are referred as to mostCorr and mostStd, respectively.

Classification: Multi–class SVM classifiers with RBF kernel were used in both
subtasks, particularly, 2–class SVMs for the MDR task and 5–class SVMs for the
TBT task. Grid search over the RBF parameters (cost C and gamma γ) was ap-
plied. Since the data were normalized, both C and γ varied in {2−10, 2−9, . . . , 210}.
The best C and γ combination for a run was set as the one with highest cross–
validation (CV) accuracy (10–fold) in the training set of each subtask.

4 Experiments

The ImageCLEF 2017 TB task was divided into two phases. In the first phase,
the organizers released for each subtask a set of patient CT volumes as training



set with their lung masks and ground truth labels. In the second phase, the test
set with the corresponding lung segmentations were provided. However, the test
labels were never released. The evaluation of the methods was performed by the
organizers of the task based on the predicted labels submitted by the partic-
ipants. In this section we detail the tested and submitted runs. Moreover the
results of other participants provided by the organizers of the task are detailed.

4.1 Tested Runs

Considering all the different configurations explained in Section 3, 648 runs were
obtained per subtask. Table 2 summarizes all possible options for each configu-
ration step using the same codename as in the result tables.

Table 2. Possible configurations for each step. With these variations there were 648
combinations: 3 graph architectures × 4 edge weights × 3 texture features × 3 feature
measures × 2 feature normalizations × 3 feature reductions.

Graph model property Options

Graph architecture Graph Complete, Graph 66, Graph 84

Edge weight corr, cos, euc, sumNorm

Texture feature FHOG, 3DARiesz, FHOG and 3DARiesz

Feature measure mean, std, mean and std

Feature normalization [0,1], GaussNorm

Feature reduction none, mostCorr, mostStd

4.2 Submitted Runs

A total of ten runs could be submitted in the ImageCLEF 2017 TB task, consid-
ering the submitted runs of both subtasks. Therefore, five runs were submitted
for each subtask. For both subtasks, we first selected the five runs with best
scores considering only the CV accuracy on the training set (Acctrn). Tables 3
and 4 show the identifier and run setup of the five selected runs with top Acctrn
for each subtask, respectively. Then, subgroups of these five runs were combined
using late fusion to obtain new run files. Four new run files were obtained per
subtask, identified by the suffixes TopBest2, TopBest3, TopBest4, and TopBest5.
The late fusion was computed using the probabilities that the SVM classifier re-
turned and the mean probability of belonging to each class. Finally, we submitted
three original runs with the best scores and two fused runs per subtask.

The following tables show the results obtained set by the submitted runs
on the training (Acctrn) and the final performance in the competition (Acctst).
The final ranking was based on the AUC for the MDR subtask and on the un-
weighted Cohen’s Kappa coefficient (Kappa) for the TBT task. Table 5 shows
the results for the MDR subtask provided by the task organizers. The run iden-
tifiers MDR TopBest3 and MDR TopBest5 were obtained by late fusion of the 3



Table 3. Runs for the MDR subtask with the best scores based on the CV accuracy
in the training set.

Run Id. Graph Texture features F. measure E. weight F. norm. F. reduct. Acctrn

MDR Top1 Graph 84 FHOG and 3DARiesz mean and std corr GaussNorm mostCorr 0.6900
MDR Top2 Graph 66 FHOG and 3DARiesz std cos [0,1] mostCorr 0.6856
MDR Top3 Graph 84 FHOG mean corr [0,1] none 0.6812
MDR Top4 Graph 66 FHOG and 3DARiesz mean and std corr [0,1] mostCorr 0.6725
MDR Top5 Graph 66 FHOG mean corr GaussNorm mostCorr 0.6725

Table 4. Runs for the TBT subtask with the best scores based on the CV accuracy in
the training set.

Run Id. Graph Texture features F. measure E. weight F. norm. F. reduct. Acctrn

TBT Top1 Graph 66 FHOG and 3DARiesz mean and std sumNorm GaussNorm none 0.5276
TBT Top2 Graph 84 FHOG and 3DARiesz mean and std sumNorm GaussNorm none 0.5174
TBT Top3 Graph 66 FHOG and 3DARiesz mean and std sumNorm [0,1] none 0.5112
TBT Top4 Graph 66 FHOG and 3DARiesz mean and std sumNorm GaussNorm mostCorr 0.5112
TBT Top5 Graph 84 FHOG and 3DARiesz mean and std sumNorm [0,1] none 0.5092

and 5 best runs respectively. The results for the TBT task are shown in Table 6.
Again, the run identifiers TBT TopBest3 and TBT TopBest5 correspond to the
late fusion of the 3 and 5 best runs respectively.

Table 5. Results of the MDR detection task. We participated as the MedGIFT group.

Group Name Run Id AUC Acctst Acctrn #Rank

MedGIFT MDR Top1 0.5825 0.5164 0.6900 1
MedGIFT MDR TopBest3 0.5727 0.4648 – 2
MedGIFT MDR TopBest5 0.5624 0.4836 – 3
SGEast MDR LSTM 6 probs 0.5620 0.5493 – 4
SGEast MDR resnet full 0.5591 0.5493 – 5
MedGIFT MDR Top2 0.5337 0.4883 0.6856 10
MedGIFT MDR Top3 0.5112 0.4413 0.6725 17

5 Discussion and Conclusions

This article presents a novel graph–based framework to model the lung fields
based on regional 3D texture features. The parts of this framework can be
adapted to describe multiple diseases affecting the lung parenchyma. In par-
ticular, more than 600 configurations were tested to describe patients with TB.
The participation in the ImageCLEF 2017 TB task provides an objective com-
parison between methods, since the ground truth for the test set was never
released. The global description of the lungs provided by the graph model al-
lowed the detection of MDR patients better than any other approach submitted
in this challenge. Moreover, it also showed to be useful in the distinction of the
different TB types. According to the results in the ImageCLEF 2017 TB task,



Table 6. Results of the TBT classification task. We participated as the MedGIFT
group.

Group Name Run Id Kappa Acctst Acctrn #Rank

SGEast TBT resnet full 0.2438 0.4033 – 1
SGEast TBT LSTM 17 wcrop 0.2374 0.3900 – 2
MEDGIFT UPB TBT T GNet 0.2329 0.3867 – 3
SGEast TBT LSTM 13 wcrop 0.2291 0.3833 – 4
Image Processing TBT-testSet-label-Apr26-XGao-1 0.2187 0.4067 – 5
MedGIFT TBT Top1 0.1623 0.3600 0.5276 10
MedGIFT TBT TopBest3 0.1548 0.3500 – 12
MedGIFT TBT TopBest5 0.1410 0.3367 – 15
MedGIFT TBT Top4 0.1352 0.3300 0.5112 16
MedGIFT TBT Top2 0.1235 0.3200 0.5174 17

the new representation of the lungs as a graph entity showed to be promising,
reaching better results than for example deep learning approaches. Our method
was robust enough to provide a better characterization of the several classes in
both subtasks only with the available number of patients in the task. If added
to the clinical workflow, physicians can benefit of a new way of visualizing and
interpreting the lung parenchyma, in a systematic and schematic fashion.

For the MDR subtask, the graph model participated with five runs and ob-
tained the 1st, 2nd and 3rd place in the challenge. The results obtained by the
participants confirmed the difficulty of this subtask. Independently of the tech-
nique applied, all runs remained close to the performance of a random classifier,
meaning that there is likely a high potential for improvements.

On the other hand, the results support the suitability of the imaging tech-
niques for the TBT task. Five runs were also submitted to the TBT subtask
but the best rank obtained by the texture–based graph model was 10. For this
particular task, deep learning methods worked better than other approaches,
obtaining the 6 best results. The results underline the difficulty of both tasks
and the suitability of the graph model for describing TB patients. However, the
strong differences in the accuracies obtained for the training and test sets (see
Tables 5 and 6) suggest some overfitting in the training phase. The graph model
describes each patient with a single vector in a relativity large feature space.
Therefore, more training data may be needed to build a stable model of each
class.
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overview of ImageCLEF at the CLEF 2015 labs. In: Working Notes of CLEF 2015.
Lecture Notes in Computer Science. Springer International Publishing (2015)

10. Ionescu, B., Müller, H., Villegas, M., Arenas, H., Boato, G., Dang-Nguyen, D.T.,
Dicente Cid, Y., Eickhoff, C., Garcia Seco de Herrera, A., Gurrin, C., Islam, B.,
Kovalev, V., Liauchuk, V., Mothe, J., Piras, L., Riegler, M., Schwall, I.: Overview
of ImageCLEF 2017: Information extraction from images. In: Experimental IR
Meets Multilinguality, Multimodality, and Interaction 8th International Conference
of the CLEF Association, CLEF 2017. Volume 10456 of Lecture Notes in Computer
Science., Dublin, Ireland, Springer (September 11-14 2017)

11. Dicente Cid, Y., Jimenez-del-Toro, O., Depeursinge, A., Müller, H.: Efficient and
fully automatic segmentation of the lungs in CT volumes. In Orcun Goksel,
Jimenez-del-Toro, O., Foncubierta-Rodriguez, A., Müller, H., eds.: Proceedings of
the VISCERAL Challenge at ISBI. Number 1390 in CEUR Workshop Proceedings
(Apr 2015) 31–35

12. Depeursinge, A., Zrimec, T., Busayarat, S., Müller, H.: 3D lung image retrieval
using localized features. In: Medical Imaging 2011: Computer–Aided Diagnosis.
Volume 7963., SPIE (2011) 79632E

13. Zrimec, T., Busayarat, S., Wilson, P.: A 3D model of the human lung. In LNCS,
S., ed.: Proceedings of MICCAI 2004. Volume 3217. (October 2004) 1074–1075

14. Liu, K., Skibbe, H., Schmidt, T., Blein, T., Palme, K., Brox, T., Ronneberger,
O.: Rotation-invariant hog descriptors using fourier analysis in polar and spherical
coordinates. International Journal of Computer Vision 106(3) (2014) 342–364

15. Dicente Cid, Y., Müller, H., Platon, A., Poletti, P.A., Depeursinge, A.: 3–D solid
texture classification using locally–oriented wavelet transforms. IEEE Transactions
on Image Processing 26(4) (April 2017) 1899–1910


