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Abstract

Medical decision support has traditionally been using model-based (or handcraft-
ed) approaches and small data sets for evaluation. As medical data are sometimes
hard to obtain and annotations by clinicians required for learning-based approaches
are very expensive they are often acquired in small amounts. Applications for such
decision support include detection, classification and retrieval in several clinical sce-
narios. Each of these applications provides or modifies information that is essential
in decision making.
This chapter analyses recent trends and techniques that make use of increasingly

large data sets and thus more data driven approaches to medical decision support
that have in some areas replaced the more traditional rule-based (or model-based)
approaches. Besides techniques and available data sets, the text describes scientific
challenges that have helped to make data and annotations available that really are
the basis for advances in the field. Challenge infrastructures and approaches are
explained as they are often essential to access data, and application scenarios give
examples of existing applications and objectives. An outlook into ideas on how to
overcome current limitations and how to tackle the upcoming challenges of image-
based decision support for digital medicine ends the chapter.

1.1
Introduction

Digital medicine has become a reality over the past few years and hospitals in ba-
sically all Western countries have been using electronic medical records for several
years now, making all the clinical data available in digital form [1]. This has created
a major revolution in medicine that is under way, where experience is increasingly
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complemented by evidence based on data that are often complex to integrate manual-
ly [2, 3]. Other authors highlight the cost savings that are possible when using big da-
ta in medicine [4]. In addition to reducing costs, big data initiatives in health care can
save lives and improve patient outcomes [5]. Particularly personalized or precision
medicine really requires much data on individuals for optimizing treatment outcomes
based on past results [6]. It is specifically stated in [7] that the prospect of applying
precision medicine is dramatically improved by the recent development of large–
scale biomedical databases (such as the human genome data), powerful methods for
characterizing patients (such as proteomics, metabolomics, genomics and cellular
assays), and computational tools for analyzing large sets of data. In order to fulfill
this great potential big data analytics has to overcome some challenges like variations
in the data, privacy constraints, security, and accessibility [8]. An overview of big
data for health is given in [9].
Much has been written on big data analysis in the medical field and particularly

medical imaging is estimated to occupy up to 30% of world storage [10]. Genom-
ic data stored has in recent years also increased exponentially and in cancer care
many hospitals now have a full genome sequencing for all patients, leading to mas-
sive amounts of data that become available for data analysis. The amount of data
produced in modern imaging protocols (that can contain tens of thousands of im-
ages per patient or extremely large images such as in histopathology) and of genomic
data mean that a fully manual analysis has sometimes simply become impossible.
Hence, these huge heterogeneous data need to be efficiently processed (stored, dis-
tributed, indexed, and analyzed) by big data analytics to improve medical decision
support [11]. [12] states that there is much potential in delivering more targeted,
wide-reaching and cost-efficient health care by exploiting current big data trends and
technologies.
In general, the electronic health record has as an objective to bring the right in-

formation to the right people in the right moment and the right format [1]. With
massive amounts of data to be interpreted it also means that the right tools are re-
quired in this context to make a meaningful use of the supplied data and integrated
interactions between the data. Historically, medical decision support has been rule-
driven and decision trees have been developed based on medical knowledge for many
years, where rules are derived from the data manually. In recent years data-driven ap-
proaches have aimed at complementing this in areas such as Radiomics [14], where
connections in the data are learned and then often used for prediction. For visu-
al medical decision support three large types of approaches have been used besides
simple quantitative measures: detection, classification and retrieval. In detection the
objective is to find specific regions in volumes for example nodules in the lung [15]
or specific lesions [16]. Classification has looked more into determining the specific
type of an entire image or image region (region of interest). Figure 1.1 gives an ex-
ample for the classification of the lung tissue into a limited number of classes and its
visualization. Many similar tools have been proposed and developed.
Medical image retrieval has been another active area of research with review ar-

ticles describing the main approaches [17, 18]. The idea is that physicians can take
images of a current case and clinical data and use these to formulate queries to find
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Figure 1.1 Screen shot of a tool for 3D lung tissue categorization (details in [13]).

similar cases or lesions [19, 20]. An example for a retrieval application can be seen
in Figure 1.2, where queries can be formulated using text and images combined.
Whereas many early approaches relied on single sources of data, so either images,

or text or structured data, it has become clear that multimodal data and fusion ap-
proaches can lead to much better results [22, 23]. An exemplary architecture of such
a retrieval system can be seen in Figure 1.3. Still, most systems using visual data do
not take into account any other data types. This is also shown by the relatively small
number of papers found in this survey. This survey concentrates fully on multimodal
approaches, thus only papers are included in the detailed analysis that include more
than a single modality. mainly text and visual information. It also concentrates on
data-driven approaches and thus does not include rule-based approaches.

1.2
Methodology for Reviewing the Literature of this Survey Paper

This chapter aims at reviewing the literature of mainly the past five years (2011-2016)
in the field of medical visual decision support and highlights the use of multimodal
data and data-driven approaches, even though not all applications really use multiple
modalities at the moment. Several older papers are cited as well, mainly when we
considered them important or landmark papers in the domain. We aimed to cite
journal articles over conference papers when similar topics were available and we
aim at having a variety of authors for the various topics, even though it is possible
that papers have been missed, as the field is extremely large and consists of many
communities. A concentration is on multimodal (visual + non-visual) data usage,
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Figure 1.2 Screen shot of an image retrieval application that allows for text search and
also image similarity search in medical data, taken from [21].

Figure 1.3 Architecture of an image retrieval system that exploits multimodal information
for improved similarity search in medical data, taken from [24].
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which is surprisingly small with most researchers focusing on single media, in our
case only visual data without taking any other information on the patients. Many non-
visual and visual-only areas are left out, as this was not considered a main objective
of the text.
For the papers included in this survey we systematically searched through the

Pubmed, IEEE, and Google Scholar databases and conferences such as MICCAI
(Medical Image Computing and Computer Assisted Interventions), ISBI (IEEE Inter-
national Symposium on Biomedical Imaging), EMBC (International Conference of
the IEEE Engineering in Medicine and Biology Society), and CVPR (IEEE Confer-
ence on Computer Vision and Pattern Recognition) by using the search terms “mul-
timodal medical decision support", “large scale medical diagnosis", “medical deep
learning", “big data analytics in healthcare", “medical multimodal diagnosis", “large
scale multimodal medical retrieval", and the like. The set of resulting references was
then manually controlled and analyzed to keep only the articles corresponding to our
criteria.

1.3
Data, Ground Truth and Scientific Challenges

This section describes the main challenges in medical data access. Medical data have
specific requirements, as they can not simply be shared for research use but underly
control of ethics committees and strong rules regarding the data sharing [25]. This
often results in relatively small data sets and data that can rarely be shared for re-
search use, even though data sharing is regarded as a main driver for innovation [26].
Scientific challenges have managed to make large data sets available and this is de-
scribed here in more detail as well. To ease the analysis, the papers included are
grouped by the size of the data sets they use as small (<1K images/patients), medium
(1K–100K), or large (>100K).

1.3.1
Data Annotation and Ground Truthing

Usually, imaging data without annotations is difficult to be used for evaluating im-
age analysis algorithms. Thus, annotation of images is an important aspect of many
image-related research projects [27] to create a (sometimes subjective) ground truth.
Machine learning algorithms most often require global image annotations or even
better labeling of precise image regions. This is expensive and hard to obtain at a
large scale, particularly in medicine where domain experts (physicians) are required,
as the labeling is highly specific. Some efforts exist to make large annotated data
sets available [28] and also to generate annotations at a large scale based on small
manually annotated data [29]. Sometimes when enough globally annotated data are
available then local regions with abnormalities can be derived as described in [30].
The type of annotations available also has a strong influence on the metrics that can
be used for the evaluation and for comparing different approaches [31]. For evalu-
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ating detection detailed regions are required and for segmentation evaluation, fully
annotated structures. For global classification, simple global labels are sufficient.

1.3.2
Scientific Challenges and Evaluation-as-a-Service

Historically, medical image analysis has been done on very small collections of pri-
vate data, and it was thus impossible to compare any two algorithms, as baselines
can be chosen fairly arbitrarily [32]. Over the years, data sharing was often promot-
ed but only rarely put in practice on a larger scale. One of the first medical evaluation
campaigns with a publicly shared image data set was the ImageCLEF medical task
in 2004 [33], where several groups compared their algorithms on image retrieval. A
medical task has been held almost every year since 2004 on retrieval or classification.
At the MICCAI conference the first challenge was on liver segmentation using a

fairly modest data set [34] in 2007, with an on site challenge and a limited time of a
few hours for computation. This has now led to many more challenges that have had
an increasingly important impact also at other conferences [35, 36]. The web page
on the Grand Challenges in Medical Image Analysis1) aims at collecting all active
and past challenges in medical image analysis and these have increased strongly over
the years.
Scientific challenges have improved comparability of algorithms andmademedical

data accessible formany researchers, which is already an important impact. Scholarly
and financial impact are also high [37, 38]. But there are difficulties to distribute
data when the data sets become extremely large (download impossible, sending hard
disks not practical), when they are confidential (can not be shared) and when they
change quickly over time (requirement to always work on the latest data), as is the
case with medical routine data [39]. Approaches that bring the algorithms to the data
have thus been developed to solve most of these challenges. In a larger context this
is also called Evaluation-as-a-Service (EaaS) [40]. Different approaches have been
implemented for this, ranging from submissions of source code, virtual machines
and Docker containers.

1.3.3
Other Medical Data Resources Available

Funding organizations have realized over the past 20 years that a really large part
of the research budget and time in projects is often used for acquiring and cleaning
the required data but many of the data sets are only exploited in a short project life-
time and by a very small number of people. This has led to data sharing policies of
funding organizations. For example, the NIH (National Institutes of Health) require
funded projects to make the data available after the project end. This has led to sev-
eral large archives of data that remain available for research use and are frequently

1) https://grand-challenge.org
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employed for research, such as the TCIA2) (The Cancer Imaging Archive) and the
TCGA3) (The Cancer Genome Atlas) that include many images and other clinical
data or documents. The data can then be used for several years even though some-
times imaging protocols change and clinical impact on current care may be limited
with very old data. This allows many research groups now to access image data sets
and work on the data for research without the requirement to go through ethics ap-
proval and tedious data collection in collaboration with a clinical institution. Sharing
the data acquisition can also lead to bigger and better annotated data sets if costs can
be shared.
In the European Union similar ideas are underway to make sure that data created

with publicmoney can also be used by other researchers and have amaximum impact.
Guidelines are made available to push for more open access publishing and data
sharing, not limited to medical data4).

1.4
Techniques Used for Multimodal Medical Decision Support

This section summarizes the techniques employed in the papers we found through a
detailed literature search, with most being published from 2011-2016.
Table 1.1 presents an overview of the papers included in this survey, while Fig-

ure 1.4 provides the breakdown of these papers into year and data set size, anatomy,
application, and imaging modality. This gives a good global overview of topics that
were covered in the past five years and the tendencies on multimodal data usage.

1.4.1
Visual and Non-visual Features Describing the Image Content

The literature on multimodal medical decision support consists of work exploiting
various types of image features, such as intensity [43, 46, 49, 50, 56, 60, 64, 65, 69,
70], color/grey level histogram analysis [50, 52, 56, 60], texture [43, 51, 65, 69, 70],
shape [24, 41, 50, 59, 60, 65, 69, 70], and volumetric information of objects of interest
[42, 44, 45, 46, 47, 48, 49, 64, 65, 70]. Local binary patterns [52], and the popular
scale invariant feature transform (SIFT) [55, 57] have also been used.
With the recent popularity of deep learning, several articles made use of features

based on the output of deep neural networks for multimodal medical decision support
[53, 54, 61, 62, 63, 66, 67, 68].
Augmenting information mined from images with that gained from non-imaging

data has been a popular track to improve medical decision support. To this end, re-
searchers benefit from demographic indicators such as age and gender [24, 49, 58, 63,

2) http://www.cancerimagingarchive.net
3) https://cancergenome.nih.gov
4) http://ec.europa.eu/research/participants/docs/h2020-funding-

guide/cross-cutting-issues/open-access-data-management/open-
access_en.htm
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Figure 1.4 Breakdown of papers included in this survey by year and data set size,
anatomy, application and imaging modality.

64, 70, 66, 68, 69, 65], medical history of subjects [24], clinical findings like biopsy
results, CSF (CerebroSpinal Fluid) biomarkers, physical/bloodmeasurements, tumor
descriptors [24, 44, 45, 46, 47, 48, 49, 50, 51, 58, 59, 63, 64, 65, 68], natural lan-
guage processing based analysis of clinical/radiology reports [53, 54, 56, 61, 62, 67]
and biomedical journal articles [52, 55], analysis of biosignals such as EEG (Electro-
EncephaloGram), ECG (Electro-CardioGram) and audio recordings [41, 42, 60], and
genetic test results [43, 48, 59].

1.4.2
General Machine Learning and Deep Learning

Machine learning is an indispensable part of medical decision support, especially
in diagnostic and categorization applications. In order to mine multimodal informa-
tion, the literature made use of variousmachine learning techniques such as ensemble
learners [42, 50], support vector machines [44, 45, 46, 48, 51, 55, 63], naive Bayes
classifiers [48, 51], nearest neighbor classifiers [51, 56], decision trees [49], and ran-
dom forests [65, 70]. Depending on the applications all these classifiers have their
advantages and inconveniences. To combine the results of the different modalities,
early fusion employs all features in a single space whereas late future combines clas-
sifier outcomes. More on fusion techquies between visual features and text can be
found in [71].
Deep learning has had an important influence in computer vision over the past ten

years [72]. The medical field has also had a strong increase in using neural networks
for decision support. Several review articles have now been published such as [73]
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for health informatics in a more general sense and [74] really focusing on medical
image analysis. Studies employing multimodal analysis of medical data covered in
this survey generally employ convolutional neural networks for analysis of images
and non-image data at the same time [53, 54, 62, 63, 66, 67, 68, 69]. One exception
is [61] where a dual-network architecture is used with convolutional neural networks
for image analysis and recurrent neural networks for extraction of text features from
radiology reports.
In a guest editorial on deep learning in medical image analysis [75] the authors

also highlight all the opportunities that these techniques have for the future of digital
medicine. Still, in terms of the exact network architectures for combining several
complementary sources of information there is still much work that is required.

1.5
Application Types of Image-Based Decision-Support

This section categorizes the papers included in this survey by their applications sce-
narios. We separate these into several types of applications: (1) localization, has as
objective to find a region of interest in images with specific patterns; (2) segmentation
aims at finding exact borders of an organ, lesion or other structure; (3) classification
aims at attaching a finite number of class labels to images or regions of interest;
(4) prediction aims at predicting a future event, for example treatment response or
survival time; (5) retrieval aims at responding to information needs of users or find-
ing similar images or regions; (6) automatic image annotation aims at attaching key
words or semantic concepts to images or image regions. The underlying techniques
(visual characteristics, machine learning, fusion) for all these application areas are
similar and related but they also have differences in the exact objectives.

1.5.1
Localization

Many medical imaging tasks require the detection and localization of anatomi-
cal/pathological regions as a first step, so finding a small region that bears the
important information of an image. In an exemplary multimodal work, computer-
aided detection/localization of mammographic lesions from a large X-ray data set
is accomplished by training a convolutional neural network with image features and
demographic information [69]. The difficulty of localization is that there is much
anatomic variation in medical images and anomalies are often focused on very small
parts in the multidimensional data.

1.5.2
Segmentation

Exact delineation of regions-of-interests (lesions, organs) from medical images is
a crucial step for building accurate decision support. To this end, researchers ex-
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ploit non-image information for improved image segmentation. For example, in [53]
semantic concepts mined from clinical reports are used to improve segmentation of
optical coherence tomography images of the retina into intraretinal cystoid fluid, sub-
retinal fluid and normal retinal tissue by convolutional neural networks. Several seg-
mentation challenges of data from single modalities was provided by the VISCERAL
project [28].

1.5.3
Classification

Classification of multimodal medical data into “healthy vs. disease”, “normal vs.
pathology”, or “different disease stages” is an important task to improve medical
decision support. Classification means to add each image, volume or region in-
to one or several of a set of classes. Accordingly, most of the papers included in
this survey focus on the classification task. Among these, many target diagnosis of
Alzheimer’s from small data sets (the ADNI data sets are publicly available, eas-
ing this application domain) by augmenting image features extracted fromMRI-only
[44, 47, 48, 58] or MRI+PET (Positron Emission Tomography) [42, 45, 46] with
non-image features such as demographic indicators [58], clinical findings like CSF
biomarkers [44, 45, 46, 47, 48, 58], biosignals [42], and genetic test results [48].
They then feed these multimodal features into machine learning algorithms such as
naive Bayes [48], support vector machines [44, 45, 46, 48] or ensemble learners [42].
Cancer diagnosis is another focus of interest, where examples include glioblas-

toma diagnosis using microscopy images and genetic test results [43], thyroid cancer
diagnosis from ultrasound images and biopsy findings [59], and cervical dysplasia
diagnosis from cervicograms, demographic indicators and clinical findings [68]. All
realized using small data sets.
Besides the aforementioned articles, [50] performed osteoporosis diagnosis over

a small data set by combining information extracted from CT and X-ray images
with physical and blood measurement results in an ensemble learner framework,
while [51] realized staging of chronic liver disease over a small database by exploit-
ing ultrasound images and laboratory/clinical findings via machine learning.
Other articles include a large-scale modality classification application where im-

ages and texts from journal articles are employed [55], and a deep learning appli-
cation of image categorization into clinically/semantically relevant clusters by using
CT and MRI images together with radiology reports [62].

1.5.4
Prediction

Prediction aims at predicting a future temporal event based on past data, for exam-
ple predicting treatment outcome or estimating survival time. The added-value of
using multimodal information in medical decision support is shown in the applica-
tion of cancer survival prediction. Several small-scale studies merge information
extracted from structural and functional images like diffusion/perfusion MRI with
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demographic indicators of subjects and clinical manifestations of tumors. Existing
papers typically realize survival prediction by using machine learning or deep learn-
ing [49, 63, 64, 65, 70].

1.5.5
Retrieval

Retrieval aims at supplying information to fulfill an information need. With images
this often means to find similar images or similar cases to an example. Case-based
retrieval of similar patients is playing an increasingly important role for improving
decision support, diagnosis, treatment planning, and physician’s training. In this
context, [41] presented a small-scale cardiac decision support system using ultra-
sound images with electroencephalography data and audio recordings. [24] proposed
a small-scale retrieval based dementia diagnosis system where MRI data are used
together with demographic indicators, medical history of patients and clinical find-
ings. Recently, [56] realized case-based retrieval over a small interstitial lung disease
database where CT images are employed with radiology reports. [57] implemented a
small-scale case-based retrieval system by employing latent semantic topics together
with MRI and PET images for Alzheimer’s and CT images for lung nodules. [66]
proposed and evaluated a pathology retrieval system on a small data set of chest X-
rays where image information is augmented by demographic indicators.
Besides these, [52] realized medical information discovery from literature by min-

ing Jpeg images and texts of a large number of PubMed articles. [55] adapted case-
based retrieval andmodality classification ofmultiple diseases using images and texts
of a large data set of journal articles.

1.5.6
Automatic Image Annotation

Automatic image annotation aims at attaching keywords or semantic labels to visu-
al data, so they can be searched or classified in an easier way. Semantic annotation
of medical images is a prerequisite for building comprehensive archives that can be
used for not only evidence-based diagnosis but also biomedical research and educa-
tion of physicians. As such, recent efforts focus on exploiting multimodal data and
deep learning for this problem. [54] used MRI and CT images together with clinical
reports, while [61] employed X-ray images with radiology reports to annotate large
databases of multiple diseases. On the other hand, [67] combined information from
Doppler ultrasound images and radiology reports to annotate a small cardiac image
database.

1.5.7
Other Application Types

Besides the aforementioned articles, [76] presented a clinical use-case evaluation
study for effectiveness of web-based decision support tools for coronary artery dis-
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ease, where perfusion scintigraphy images, electrocardiography data, the patient’s
medical history and clinical findings of a small data set are used. [60], on the oth-
er hand, proposed a cardiac monitoring system employing ultrasound images with
electrocardiography data. These application types are different from the categories
described above.

1.6
Discussion on Multimodal Medical Decision Support

The larger number of more recent papers using multimodal (visual, plus structured
data or free text) medical data for decision support shows the increasing activity in
this research domain. However most of these use small data sets. Many techniques
have been employed and in recent years an increasing number of approaches used
convolutional neural networks and similar techniques. Many variations also try to
combine traditional approaches with deep learning, which often leads to good results.
A big challenge remains the accessibility of large annotated data sets. Some large da-
ta sets have become available, so data itself is slowly becoming less of a problem but
annotating data is critical and leveraging small amounts of manual annotations is
essential. For this reason, active learning techniques and silver corpus approaches
are often required to make the data really usable and useful. Learning from weakly
annotated data is another direction that has started in very focused domains. Hav-
ing many research data sets that are small and private also creates problems with
reproducibility of the research results.
Evaluation campaigns have shown a tremendous impact inmany areas [38, 77], and

the medical data analysis domain is no exception. Such benchmarking campaigns are
now part of all major conferences. This has made data and annotations available with
a clear evaluation scenario, so it really becomes possible to compare results obtained
with these techniques. Still, the size of data sets is nothing compared to what is being
made available in terms of web images and maybe relatively new initiatives such as
Medical ImageNET5) can help in the future when they are fully employed.

1.7
Outlook into the Next Steps of Multimodal Medical Decision Support

Deep learning has had an enormous impact on computer vision over the past five
years and in medical image analysis or multimodal data processing the current tools
such as Tensorflow6) or Caffe7) are very frequently used. With larger data sets be-
coming available the full potential of these techniques can likely be seen in a few
years. It seems important to adapt the tools to the scenario of medical data where

5) http://langlotzlab.stanford.edu/projects/medical-image-net/
6) https://www.tensorflow.org/
7) http://caffe.berkeleyvision.org/
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very small parts of an image are usually relevant for the decision making and not
the entire image or volume as is often the case in stock photography. There are of-
ten 2000-4000 gray levels in the image and high resolutions, which is not foreseen
in many neural network architectures and has to be added to really leverage on the
full image information; or at least the right level/window levels need to be chosen
depending on the organ to be analysed. New networks for visual and multimodal
data that include the specific aspects of medical data are expected to be developed
and also a systematic approach towards choosing the optimal networks for a specific
scenario and type of data.
Fully training networks on medical data is often not possible as the amounts of

data available are often too small and the variety in the data is enormous. Thus,
transfer learning is used and for images often the ImageNET pre-trained networks
are employed. This can be expected to change. Larger data sets have now become
available and it is a question of how to best obtain annotations and limit the amount
of manual work. This requires to learn from larger but weakly annotated data sets.
It also pushes for active learning approaches to focus annotation efforts to the most
informative examples.
Another activity that will likely gain traction is the evaluation of tools in clinical

practice, so the evaluation of impact on clinical care. Most current tools cited in this
paper are research prototypes and few have been evaluated in clinical scenarios even
on a modest scale. To show performance in real situations clinical impact needs to be
shown and tested in large-scale studies. With an increasing amount of data available
on individuals the need to use tools will increase and likely also the difference in
quality that can be reached. Even though some people predict that radiologists may
not be necessary in the future for evaluating images we rather think that tools will
improve efficiency of the clinical workflow by automating simple cases, and concen-
trate the clinician’s work on the difficult cases and on interpreting the data and thus
also the effectiveness.
It was shown that it is impossible to read all the literature in even a small focused

medical domain [78], so the access to recent medical knowledge will remain an im-
portant aspect of making decision evidence-based and personalized. The half-time
of medical knowledge is estimated to be between 5 and 10 years and this also high-
lights why decision support is needed: it is important to always include the latest
knowledge into precision medicine.
With the ever–increasing amount of medical multimodal data available, big data

analytics is becoming more important every day. If the associated challenges - het-
erogeneity, fragmentation, availability, privacy and security of data - are properly ad-
dressed [79], big data analytics has the potential to improve medical decision support
by exploiting large multimodal data sets in the near future and eventually transform
healthcare. This is only achievable with good data management and computerized
decision support.
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Table 1.1 Overview of papers using multimodal data sets for medical decision support.
Data sets grouped as small (<1K patients/images), medium (1K–100K), or large (>100K).
MRI=magnetic resonance imaging; PET=positron emission tomography; US=ultrasound;
CT=computed tomography; OCT=optical coherence tomography. Bs=biosignals;
Ge=genetics; CF=clinical findings; De=demographics; MH=medical history; Re=reports.
SVM=support vector machines; NB=naive bayes; LR=logistic regression; DT=decision
tree; NN=nearest neighbor; RF=random forests; CNN=convolutional neural networks;
RNN=recurrent neural networks; n.a.=not available.
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