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Abstract

Over the past decades, medical image analytics was greatly facilitated by the
explosion of digital imaging techniques, where huge amounts of medical im-
ages were produced with ever-increasing quality and diversity. However, con-
ventional methods for analyzing medical images have achieved limited suc-
cess, as they are not capable to tackle the huge amount of image data. In this
paper, we review state-of-the-art approaches for large-scale medical image
analysis, which are mainly based on recent advances in computer vision, ma-
chine learning and information retrieval. Specifically, we first present the gen-
eral pipeline of large-scale retrieval, summarize the challenges/opportunities
of medical image analytics on a large-scale. Then, we provide a comprehen-
sive review of algorithms and techniques relevant to major processes in the
pipeline, including feature representation, feature indexing, searching, etc.
On the basis of existing work, we introduce the evaluation protocols and
multiple applications of large-scale medical image retrieval, with a variety of
exploratory and diagnostic scenarios. Finally, we discuss future directions of
large-scale retrieval, which can further improve the performance of medical
image analysis.

Keywords: Medical image analysis, information retrieval, large scale,
computer aided diagnosis

∗Corresponding author, rutgers.shaoting@gmail.com

Preprint submitted to Medical Image Analysis September 21, 2018



1. Introduction1

Medical image analytics plays a central role in clinical diagnosis, image-2

guided surgery and pattern discovery. Many protocols and modalities of3

digital imaging techniques have been adopted to generate medical images,4

including magnetic resonance imaging (MRI) (Slichter, 2013), computed to-5

mography (CT) (Hsieh, 2009), photon emission tomography (PET) (Bailey6

et al., 2005), ultrasound (Szabo, 2004), fluorescence microscopy (Lichtman7

and Conchello, 2005), X-ray (Lewis, 2004) and others. Generally, these med-8

ical images reflect specific aspects (anatomy, function) of tissue types/organs9

that require an accurate interpretation and analysis from either domain ex-10

perts or computer-aided decision support. In comparison with domain ex-11

pert analysis that is labor intensive and time-consuming, computer-aided12

approaches are efficient and its accuracy has increased continuously with13

the rapid development of computer vision, machine learning and related14

fields (Doi, 2014; Katouzian et al., 2012; May, 2010). To support computer-15

aided medical image analytics, one important task is content-based image16

retrieval (CBIR) (Akgül et al., 2011; Lehmann et al., 2004; Müller et al.,17

2004), i.e., indexing and mining images that contain a similar visual con-18

tent (e.g., shape, morphology, structure, etc). For a new medical image to19

be analyzed, a CBIR system can first retrieve visually similar images in an20

existing dataset. Then, its high-level descriptions and interpretations can be21

explored based on the retrieved images.22

Over the past 25 years, CBIR has been one of the most vivid research23

topics in the field of computer vision. Many CBIR methods were developed24

for accurate and efficient image retrieval. Especially in recent years, with25

the ever-increasing number of digital images (e.g., ImageNet (Russakovsky26

et al., 2015), COCO (Lin et al., 2014), PASCAL VOC (Everingham et al.,27

2010), etc), CBIR has moved towards the era of big data. Massive amounts of28

images can provide rich information for comparison and analysis, and thus29

facilitate the generation of new algorithms and techniques that can tackle30

image retrieval in large databases. In general, large-scale image retrieval31

can be divided into two stages, i.e., feature extraction to represent images32

and feature indexing. Deep learning (LeCun et al., 2015) is one of the most33

popular methods for feature representation that is particularly suitable for34

large image databases, where massive amounts of data can boost the retrieval35

performance by training deep and complex neural networks with millions of36

parameters (Babenko and Lempitsky, 2015; Wan et al., 2014). For the feature37
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indexing at a large-scale, the key problem is computational efficiency, i.e.,38

similarity searching in millions of images with thousand dimensional features39

vectors. Methods such as vocabulary trees (Nister and Stewenius, 2006) and40

hashing (Wang et al., 2016) can efficiently tackle this problem, either through41

changing the indexing structure or compressing the original features.42

Despite the current large-scale methods having achieved many successes43

in generic image retrieval problems, how to best tackle the retrieval in large-44

scale medical image databases is still a very challenging topic (Zhang and45

Metaxas, 2016). On the one hand, the meaning of large-scale in the medical46

image field is somewhat different from large-scale in the generic image do-47

main. Generally, each patient can generate hundreds to thousands of image48

slices using different protocols, modalities (e.g., CT, MRI, X-ray) and multi-49

ple dimensions (e.g., volumetric 3D, time series). These volumes are usually50

stored in many single images (as slices) in the DICOM (Digitla Imaging and51

Communications in Medicine) format (Kahn et al., 2007). Besides this, the52

size of some medical images can be extremely large. For example, the whole-53

slide histopathological images can include more than 100, 000×100, 000 pixels54

and thus each is usually split into millions of small patches for processing.55

On the other hand, medical images are usually more difficult to analyze com-56

pared to generic images. The complex imaging parameters (contrast agents,57

machine settings), anatomic difference and interactions between different dis-58

eases result in a more complex analysis compared with natural images, where59

broad object categories are recognized and used for similarity calculations.60

The relevant changes of some medical images can be very subtle, which re-61

quire more fine-grained and detailed analysis. Therefore, directly employing62

traditional CBIR methods may not suitable for the large-scale medical image63

retrieval problem. In recent years, many efforts have been made to achieve64

large-scale medical image analytics, aiming to improve the efficiency and65

accuracy of image retrieval.66

1.1. Related Work67

There have been multiple reviews focusing on content-based medical im-68

age retrieval. The first review in the field was (Tang et al., 1999) but the69

text only contained few systems with a limited scope. Muller et al. (Müller70

et al., 2004) presented a first complete review that concentrates on image71

retrieval in the medical domain, where the techniques used in medical im-72

age retrieval, including visual feature extraction, image comparison, system73

evaluation, etc. are summarized. Subsequently, Long et al. (Long et al.,74
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2009) introduced four medical CBIR systems, i.e., CervigramFinder (Xue75

et al., 2008), SPIRS (Hsu et al., 2007), IRMA (IRMA), SPIRS-IRMA (An-76

tani et al., 2007). The authors also discussed future directions of medical77

image retrieval. Akgul et al. (Akgül et al., 2011) presented a comprehensive78

review about recent techniques of content-based image retrieval in radiol-79

ogy until 2011, including image features/descriptors, similarity measures and80

state-of-the-art systems. Additionally, they discussed challenges and future81

directions for the coming decade. Hwang et al. (Hwang et al., 2012) reviewed82

both text-based and content-based medical image retrieval systems, drawing83

a conclusion that the image retrieval service will be more effective if CBIR84

and semantic systems are combined. In 2013, Kumar et al. (Kumar et al.,85

2013) surveyed several applications and approaches to medical CBIR that86

focus on clinical imaging data that are multidimensional or acquired using87

multiple modalities such as combined PET-CT images.88

Besides the abovementioned survey articles, the image retrieval task of89

the Conference and Labs of the Evaluation Forum, named ImageCLEF (Im-90

ageCLEF; Müller et al., 2010), has held several medical image retrieval tasks91

from 2004-2014. ImageCLEF provides a platform for research groups sub-92

mitting results and competing on the performance of their medical image93

retrieval methods. After each ImageCLEF medical image retrieval task, an94

overview is provided to summarize the methods and results of each compe-95

tition groups (de Herrera et al., 2013; Kalpathy-Cramer et al., 2015, 2011;96

Müller et al., 2012), which demonstrates the state-of-the-art in the medical97

image retrieval field. A benchmark for case-based retrieval including full vol-98

umetric images of more than 300 patients was run as part of the VISCERAL99

benchmark Jimenez-del-Toro et al. (2015).100

1.2. Contributions and Organization of this Article101

This survey provides a structured and extensive overview of large-scale102

retrieval for medical image analytics. Despite existing reviews having sum-103

marized varieties of medical retrieval systems and methods, none of them104

focused on the retrieval techniques for large-scale medical data, which is cur-105

rently the main challenge in the field of medical analytics. This survey offers106

a focused overview of the retrieval approaches for the large-scale medical im-107

age data by expanding multidisciplinary components that involve a nexus108

of the idea from machine learning, computer vision, information retrieval,109

and bioinformatics. It explains the entire process from scratch and presents110

a comprehensive pipeline that discusses every processing step from feature111
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Figure 1: A general pipeline of large-scale medical image retrieval.

extraction to knowledge discovery and decision support. Fig. 1 illustrates a112

general pipeline of large-scale medical image retrieval. Given a set of medi-113

cal images (e.g., MRI, CT, microscopy, etc.), feature extraction methods are114

employed to represent each image. Unlike traditional medical retrieval meth-115

ods that directly compare the image similarity via original feature vectors,116

large-scale approaches often first train a retrieval model, e.g., organizing and117

transforming image features that can improve the performance of feature in-118

dexing. In the query phase, the query image is compared only to similar119

images based on the well-designed retrieval model rather than an exhaustive120

search of the whole database. The retrieval results can be provided to users121

for further analysis. According to Fig. 1, retrieval with large-scale medical122

image databases is different compared with classical CBIR systems. In recent123

years, many researchers in the medical domain have moved their attention to124

the analytical questions of large-scale image analysis (Zhang and Metaxas,125

2016). Therefore, in this era of big data, it is necessary to present a com-126

prehensive review of recent advances in large-scale medical image analytics.127

128

In this paper, we organize the survey into five parts: challenges/opportunities,129

methodology review, evaluation protocols, applications, and future direc-130

tions. In Section 2, challenges and opportunities related to big data in medi-131

cal image analytics are provided. Section 3 and 4 discuss the methodology de-132
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tails relevant to the large-scale medical image retrieval, which mainly includes133

two parts, i.e., feature representation, feature indexing and search. Following134

Section 5 introcudes evaluation protocols in medical image retrieval. Based135

on the existing approaches, Section 6 reviews several applications of large-136

scale medical image retrieval. Finally, Section 7 explores potential directions137

for future work on large-scale medical retrieval.138

2. Challenges and Opportunities139

The challenges of large-scale medical image retrieval can be summarized140

as a good trade-off between efficiency and accuracy. Despite traditional meth-141

ods having already achieved good performance in many very specific medical142

scenarios, keeping efficiency and accuracy in large-scale approaches still faces143

many problems. Additionally, in the era of big data, large-scale medical im-144

age analysis provides many opportunities for both academia and industry.145

2.1. Challenges146
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Figure 2: Number of medical images for
the six most common anatomical area in the
TCIA (The Cancer Imaging Archive) reposi-
tory.

One major concern in the big147

data era is system efficiency. Given148

the huge amount of medical image149

data (WPS, 2010), how to repre-150

sent and search in an efficient way151

still has many challenges. Counting152

the data from The Cancer Imaging153

Archive (TCIA), a large-scale med-154

ical image repository, Fig. 2 illus-155

trates the number of images with the156

six most common anatomical sites.157

According to Fig. 2, these data sets158

have hundreds of thousands to mil-159

lions of medical images, which are160

hard to analyze in real-time. For161

medical image retrieval, each image162

is usually represented by a feature163

vector with often thousands of di-164

mensions. An exhaustive search of millions of images with large feature165

vectors is very time-consuming (Zhang et al., 2015c). In clinical applica-166

tions, for a single patient tens to hundreds/thousands of images are collected167
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(large MRI studies can easily contains tens of thousand of single image slices168

for a single patient) and an efficient retrieval of these images is required for169

computer-assisted diagnosis. Accordingly, to achieve medical retrieval with170

massive amounts of images, two aspects need to be explored for improvement171

, i.e., 1) reducing the dimension of the feature vectors (or creating very sparse172

spaces), 2) improving the strategy of similarity search or data indexing. Both173

challenges are hard to tackle using conventional methods.174

Another concern of medical retrieval is system accuracy. In the infor-175

mation retrieval field, precision is one of the most important criteria for176

performance evaluation, which is defined as the fraction of retrieved im-177

ages that are relevant to the query image (Powers, 2011). For a query178

image, higher retrieval precision indicates more reliable analysis and explo-179

ration results, since most of the retrieved images share (hopefully) similar180

semantic content with the query image. Retrieval precision plays a critical181

role in medical analytics, where clinical diagnoses can depend on decision182

support that is based on the retrieved images. However, achieving high183

precision in medical retrieval is not an easy task, especially with the large184

amount of volumetric image data, where most parts of the images/volumes185

are not important for similarity calculations but small, local anomalies are.186

Same Category

Different Category

Visually Similar

Malignant Benign

Figure 3: Three histopathology images
of intraductal breast lesions. Classifying
the breast histopathology images into be-
nign or malignant is a challenge due to their
large intra-class variation and small inter-
class variation.

Fig. 3 illustrates a common problem187

in the classification of histopatho-188

logical images, which are obtained189

from intraductal breast lesions in190

this case. The two images to the191

left (with the blue bounding box)192

belong to the same category, i.e.,193

both are actionable (indicating the194

cells/tumors are pathogenic). How-195

ever, they have quite different ex-196

pressions. On the other side, for197

the bottom two images (with the198

red bounding box), despite the vi-199

sual similarity, they belong to dif-200

ferent categories (the right image is201

benign, indicating the cell’s/tumor’s202

lack of the ability to invade neigh-203

boring tissue and create metastasis).204

This problem can be summarized as large intra-class variation and small205
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inter-class variation (Zhang et al., 2016b). Not only in histopathological im-206

age analysis, most medical image analytics tasks encounter similar problems.207

More critically, when dealing with massive medical data, this problem be-208

comes more challenging since more noisy images are included and influence209

the retrieval performance.210

In addition to measuring efficiency and accuracy, the detailed evalua-211

tion protocol is also a challenging question in large-scale medical image re-212

trieval. Most of the traditional methods simply use class labels to evaluate213

the retrieval performance, which is not suitable for large-scale medical image214

databases, as they are most often not fully labeled and there can be different215

relevance expectations depending on the query images. Besides this, the data216

storage, access, organization, and computing techniques may also influence217

the retrieval performance of large-scale medical images. In this article, we218

review relevant methods and techniques that can tackle large-scale medical219

image retrieval.220

2.2. Opportunities221

Leaving aside the above challenges, large-scale image data brings unprece-222

dented opportunities to the medical field. In 2014, Siemens released a report223

saying that the market for medical imaging systems will grow from 32.3 bil-224

lion in 2014 to 49 billion in 2020 (Siemens). Without doubt, in the era of225

big data the development of large-scale medical analytics will accelerate this226

process. In a medical retrieval system, massive image data generally pro-227

vides more samples for similarity search, which can improve the accuracy228

and reliability of the system (Fang et al., 2016). More importantly, it also229

facilitates the research of knowledge discovery and pattern exploration in230

biomedical informatics. We illustrate two major opportunities that benefit231

from large-scale medical retrieval, i.e., computer-aided diagnosis and visual232

pattern exploration:233

1. computer-aided diagnostics (CAD): CBIR methods have been proposed234

as an effective technology for CAD systems, which have the capacity235

of relieving the workload of doctors and to offer more reliable and con-236

sist analysis of medical images (Akgül et al., 2011; Depeursinge et al.,237

2011). Despite most retrieval systems are not routinely used, CBIR238

based CAD are rather research prototypes for medical image analytics.239

Given an image database with diagnosis information, CBIR methods240

aim to retrieve and visualize images with morphological profiles most241
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relevant to and consistent with the query image. This can provide deci-242

sion support, for example for pathologists (Kumar et al., 2013; Müller243

et al., 2004). When the CBIR-based CAD systems meet large-scale244

image databases, this benefit is enlarged by searching more relevant245

images with fine-grained content and morphologies. Retrieval results246

from large-scale databases can help pathologists to have accurate and247

deep understanding of query images, when they are unsure about spe-248

cific patterns.249

2. visual pattern exploration: medical images contain a wealth of struc-250

tures and patterns that may convey information about underlying mech-251

anisms in biology (Peng et al., 2010; Schindelin et al., 2012). Generally,252

individuals with similar structures, shapes, morphologies will also ex-253

press similar functions and properties, such as neurons, tissue cells,254

etc. (Li et al., 2017a; Xing and Yang, 2016). By establishing large255

medical databases of visual data, CBIR systems can be used to iden-256

tify and explore unknown individuals based on the retrieval results.257

Massive image data are the basic requirement for such a medical ex-258

ploration. As individuals usually have complex shapes and varieties in259

the images, large-scale databases can provide more reliable results for260

pattern exploration, as it is more likely that similar patients exist of261

which images were taken with similar protocols.262

Large-scale image databases bring new opportunities to innovate the tradi-263

tional medical retrieval systems, and some of the large-scale medical systems264

have already achieved good performance in clinical practice. In Section 6,265

we review relevant applications of large-scale medical retrieval.266

3. Feature Representation267

To achieve medical analytics from large-scale image databases, the first268

step is visual feature extraction, i.e., using feature vectors to represent each269

digital image. Generally, feature vectors are representing the low-level im-270

age content and can be linked to high-level perceptions of the images. A271

good feature representation is the prerequisite to achieve good performance272

in medical image retrieval. In recent years, a variety of feature representa-273

tions have been developed based on computer vision and machine learning.274

This section reviews recent advances in feature vectors in medical images.275

Specifically, the feature representation is classified into two categories, i.e.,276
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hand-crafted and learned features. This is mainly based on whether the fea-277

tures are obtained through domain expert knowledge (model-driven) or a278

purely data-driven procedures.279

3.1. Hand-crafted Features280

Generally, hand-crafted features are sequentially extracted from each im-281

age according to algorithms based generally on expert knowledge (Antipov282

et al., 2015), where each feature models a specific information such as color,283

texture or shape. Before the strong use of deep learning, hand-crafted meth-284

ods dominated the feature extraction field for several decades. Most current285

medical retrieval systems still employ hand-crafted methods for feature rep-286

resentation. In this subsection, we review typical hand-crafted features that287

have been used in medical image retrieval.288

The most widely used hand-crafted features for image retrieval are based289

on the Scale-Invariant Feature Transform (SIFT) (Lowe, 2004). SIFT de-290

tects scale-invariant key points by finding local extrema in the difference-291

of-Gaussian (DoG) space. It describes each key point by a 128-dimensional292

gradient orientation histogram. Subsequently, all SIFT descriptors are mod-293

eled/quantized using a bag-of-words (BoW) (Sivic and Zisserman, 2003). The294

feature vector of each image is computed by counting the frequency of the295

generated visual words in the image. SIFT is a local texture feature that296

has achieved success in medical image retrieval (e.g., it was the most pop-297

ular feature in the ImageCLEF medical image retrieval task (Müller et al.,298

2012)). Besides SIFT descriptors, many local descriptors can use the BoWs299

to generate local features for medical images, such as SURF (Speeded Up Ro-300

bust Features) (Bay et al., 2008), LBP (Local Binary Patterns) (Ojala et al.,301

1996) and others. In contrast to features extracted locally, holistic features302

are also widely adopted in medical image retrieval. These kinds of features303

can directly represent the global information of the entire image. For exam-304

ple, GIST (Oliva and Torralba, 2001) is a holistic feature which is based on305

a low dimensional representation of the scene that does not require any form306

of segmentation, and it includes a set of perceptual dimensions (naturalness,307

openness, roughness, expansion, ruggedness) that represent the dominant308

spatial structure of a scene (Douze et al., 2009). GIST has been applied in309

many medical image retrieval problems (Kalpathy-Cramer and Hersh, 2008;310

Liu et al., 2014a). Other holistic features such as HOG (Histogram of Gaus-311

sians) (Dalal and Triggs, 2005), color histograms (Siggelkow, 2002) are also312

frequently used in medical image retrieval (Müller and Deserno, 2010; Yu313
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Method Category Application

SIFT (Lowe, 2004) Local, texture
Breast cancer (Zhang et al., 2015c),
Basal-cell carcinoma (Wang et al., 2011a), etc

SURF (Bay et al., 2008) Local, texture
Lung CTs (Haas et al., 2011),
Body portion (Feulner et al., 2011), etc

LBP (Ojala et al., 1996) Local, texture
2D-HeLa (Nanni et al., 2010),
Brain MR (Murala et al., 2012), etc

GIST (Oliva and Torralba, 2001) Holistic, shape
Mammogram (Liu et al., 2014a),
Breast-tissue (Jiang et al., 2016a), etc.

HOG (Dalal and Triggs, 2005) Holistic, texture
Cortical (Unay and Ekin, 2011),
Lung (Song et al., 2012), etc

Color Histogram (Siggelkow, 2002) Holistic, color
Organ (Caicedo et al., 2007),
Dermatology (Bunte et al., 2011), etc.

Moments (Stricker and Orengo, 1995) Holostic, shape
Multi-modalities (Rahman et al., 2007),
Liver CT (Gletsos et al., 2003), etc.

Gabor filters (Manjunath and Ma, 1996) Local, texture
Multi-modalities (Lim and Chevallet, 2005),
Prostate Histopathology (Doyle et al., 2007), etc.

Tamura (Tamura et al., 1978) Local, texture
Mammogram (Zhou et al., 2012),
Multi-modalities (Güld et al., 2005), etc.

3D Riesz (Chenouard and Unser, 2011) Local, texture
Epileptogenic Lesion (del Toro et al., 2013),
3D Multi-modalities (Jiménez-del Toro et al., 2015), etc

Table 1: Commonly used hand-crafted features and their applications in medical image
retrieval.

et al., 2013). Table 1 lists some of the most commonly used hand-crafted314

features and their corresponding applications in medical image retrieval.315

In addition to the common features mentioned above that can be used316

for the retrieval of both natural and medical images, there are many other317

hand-crafted features that are designed specifically for medical image data.318

In histopathology image analysis, the shape and texture information play an319

important role in the representation of cell/nuclei. Basavanhally et al. (Basa-320

vanhally et al., 2010) designed three graph-based features, i.e., Voronoi dia-321

gram, Delaunay triangulation, and minimum spanning tree, to describe the322

arrangement of the lymphocytes. Filipczuk (Filipczuk et al., 2013) employed323

25 kinds of features to represent cytological images, including the size of the324

nuclei, the texture features based on gray-level pixels, and the distribution of325

nuclei in the image. In general, these specific features are more discriminative326

than the general hand-crafted features. They achieved good performance in327

the detection, retrieval and analysis of cells and nuclei (Xing and Yang, 2016).328

Besides the histopathological images, specific features are also widely used329

for the representation of 3D medical image data, such as 3D brain tumors,330

neuronal morphology. For example, Cai et al. (Cai et al., 2010) developed331

PCM-based volumetric texture features for 3D neurological image retrieval,332

and Wan et al. (Wan et al., 2015) employed quantitative measurements and333

geometrical moments as features to represent the 3D neuron morphological334

data. Both achieved good performance in the retrieval task. A more general335
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system that creates many quantitative measurements of the brain including336

shape features is FreeSurfer (Fischl, 2012).337

In order to achieve better retrieval performance, many researchers employ338

multiple hand-crafted features and combine them to represent each image.339

For example, Song et al. (Song et al., 2012) employed HOG and LBP features340

for retrieval and to recognize lung lesions. In general, combining multiple fea-341

tures (e.g., local and holistic features, common and specific features) obtains342

better performance compared with single feature systems (Lisin et al., 2005;343

Zhang et al., 2016a). Many groups in the ImageCLEF medical retrieval tasks344

have adopted this strategy (Simpson et al., 2012). However, when dealing345

with massive amounts of medical images, the combined features are often too346

large for scalable retrieval and may adversely affect the retrieval efficiency.347

Although a variety of features has been discussed above, for the medical re-348

trieval problem, there are no universal features that are suitable for all kinds349

of medical images. This is the case, as medical images are generated by350

different imaging techniques and tissues/organs usually have specific colors,351

textures and shapes. Even for the same tissue/organ, features may visu-352

ally differ under multiple dimensions and modalities (Kumar et al., 2013).353

Therefore, employing suitable hand-crafted features for a given kind of image354

data is an important and challenging step during medical retrieval. Feature355

selection can also be a step to create a subset of the features for a specific356

task.357

Despite hand-crafted features having achieved many good results in medi-358

cal image retrieval, they have shortcomings when tackling large-scale medical359

data:360

1. hand-crafted features need expert knowledge but expert knowledge usu-361

ally does not work well when the dataset is large as there may be out-362

liers and cases not covered by standardized rules;363

2. feature extraction using hand-crafted methods is time-consuming and364

computationally expensive, especially when dealing with massive amounts365

of images;366

3. many hand-crafted methods are only designed for specific medical data367

and can not be extended to other domains.368

Accordingly, more automatic, efficient and extensible feature representation369

methods are required for the large-scale medical retrieval.370
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Figure 4: A general framework of convolutional neural networks.

3.2. Learned Features371

In recent years, deep learning has become a hot topic and has achieved372

very good results in feature representation, image classification, retrieval,373

detection and other related fields. Compared with hand-crafted methods374

using domain expert knowledge, deep learning requires only a set of train-375

ing data that allows to discover the feature representations in a self-taught376

manner (Bengio, 2009; LeCun et al., 2015). For the learned feature rep-377

resentation, a variety of deep neural networks are designed nonlinearly and378

hierarchically, i.e., mapping features from fine to abstract with multiple layers379

of neural networks (e.g., tens to hundreds) and a large number of parameters380

(e.g., thousands to millions) (Shen et al., 2016). In general, the prevalence381

of deep learning mainly benefits from the availability of large training data382

sets that make it possible to optimize the parameters. Accordingly, due to383

the availability of current large-scale medical image databases, deep learning384

can also be adopted to solve analytics tasks of medical images. Specifically,385

both supervised and unsupervised deep neural networks have been explored386

for creating feature representations of medical images.387

Fig. 4 illustrates a general framework of a supervised deep neural net-388

work, i.e., a Convolutional Neural Network (CNN) (LeCun et al., 1998).389

The input images with fixed size are convolved with multiple learned ker-390

nels using shared weights. Then, the pooling layers down-sample the input391

representation nonlinearly and preserve the feature information in each sub-392

region. Afterwards, the extracted features are weighted and combined in the393

fully-connected layer, and these features are sent to a pre-defined classifier394

for prediction. Finally, by comparing the output class with the image label,395

the CNN parameters (e.g., kernels, weights, bias) are updated in each iter-396
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ation. Recent results, as on the ImageNet Large Scale Visual Recognition397

Challenge (ILSVRC) (Russakovsky et al., 2015) have shown the excellent398

performance of very deep neural networks, where more convolution, pooling399

and fully connected layers are employed than before, and more complicated400

network structures are developed, e.g., AlexNet (Krizhevsky et al., 2012),401

GoogLeNet (Szegedy et al., 2015), VGG Net (Simonyan and Zisserman, 2014)402

and ResNets (He et al., 2015).403

Supervised deep neural networks require a large amount of labeled im-404

ages to train the parameters in each layer. However, in the medical field,405

the amount of labeled images is typically limited. Simply training deep406

neural networks from scratch using small-sized labeled data can easily re-407

sult in overfitting (Srivastava et al., 2014). Thus, researchers have proposed408

several methods to accommodate medical image analysis with deep neural409

networks. For example, Bar et al. (Bar et al., 2015) learned features for chest410

pathology detection using a Decaf pre-trained CNN model (Donahue et al.,411

2014), and the parameters are trained from non-medical datasets such as Im-412

ageNet (Deng et al., 2009). In ImageCLEFmed 2016, NovaSearch adopted413

CNN models that are trained from scratch using only the provided medi-414

cal data (Semedo and Magalhães). They employed several techniques (e.g.,415

Dropout (Srivastava et al., 2014), data augmentation) to deal with the un-416

balanced and small data sets. According to (Shin et al., 2016), there are417

three major techniques that can successfully learn feature representation of418

medical images through CNNs:419

1. pre-training the CNN model on natural images and fine-tuning on med-420

ical target images; this technique has been used for lung images (Hof-421

manninger and Langs, 2015; Li et al., 2014a; Schlegl et al., 2014), brain422

MRI (Li et al., 2014b), etc.;423

2. training the CNN model from scratch using only medical images, and424

employing several measures to avoid overfitting; this technique has been425

used in cardiac CT (Wolterink et al., 2015), on lung nodules (Shen426

et al., 2015d), etc.;427

3. using a pre-trained CNN model to extract features, employing these428

features as complementary information and combining them with hand-429

crafted features; these combined features have been used on chest X-430

rays (Bar et al., 2015), pulmonary peri-fissural nodules (Ciompi et al.,431

2015), etc.432

Although supervised deep neural networks have demonstrated excellent per-433
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formance in feature representation, they require a large amount of manually434

labeled training data. However, unlike the annotation of natural images that435

is easy to achieve, the labels of many medical images can only be annotated436

by physicians or domain experts, which is expensive. In many cases, the437

ground truth labels are simply unavailable, as the exact patterns of some438

abnormalities are still unidentified or very subjective in nature (e.g., neuron439

images, precise tumor regions). To overcome the limitations of supervised440

feature learning, multiple unsupervised deep neural networks have been pro-441

posed for feature representation (Bengio et al., 2012). Fig. 5 illustrates a442

typical unsupervised neural network, i.e. an Auto-Encoder (Bourlard and443

Kamp, 1988). Given the input images Xm, it learns the feature represen-444

tations h(2) by minimizing the reconstruction error between the input and445

the output, i.e., Ym ≈ Xm, which indicates the decoder results should ap-446

proximate the input. Despite the single layer auto-encoder being too shallow447

to learn features, the representation power improves significantly when sev-448

eral auto-encoders are stacked to form deep stacked auto-encoders (SAEs).449

For example, Wu et al. (Wu et al., 2013, 2016) developed an unsupervised450

feature selection method using a convolutional stacked auto-encoder to iden-451

tify intrinsic deep feature representations in image patches. The method452

is demonstrated on 7.0-tesla brain MR images, validating that unsupervised453

feature learning is effective for brain MR registration. Besides this, Shin (Shin454

et al., 2013) employed stacked auto-encoders for unsupervised feature learn-455

ing and organ identification in magnetic resonance images, where visual and456

temporal hierarchical features are learned to categorize object classes from457

an unlabeled multimodal DCE-MRI data set (Collins and Padhani, 2004).458
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Figure 5: The hierarchical structure of an
auto-encoder.

In addition to auto-encoders,459

restricted Boltzmann machines (RBM) (Smolen-460

sky, 1986) can also construct un-461

supervised deep neural networks,462

e.g. deep belief networks (Hinton463

and Salakhutdinov, 2006) and deep464

Boltzmann machines (Salakhutdi-465

nov, 2015). These deep neural net-466

works are also the common choice467

to tackle medical feature represen-468

tations and other medical analyt-469

ics tasks. For example, Brosch and470

Tam (Brosch et al., 2013) performed471
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manifold learning by reducing the472

dimensionality of brain images using473

a deep belief network that can dis-474

cover patterns of similarity in groups of images. Cao et al. (Cao et al., 2014)475

developed a multimodal approach for medical image retrieval that is based on476

deep Boltzmann machines. Experimental results demonstrate that the new477

deep Boltzmann machine-based multimodal learning model is a promising478

solution for next-generation medical image indexing and retrieval systems.479

For large-scale medical image analytics, learned feature representations480

are a clear trend, since more and more images are available to train the481

deep neural networks. However, the usage of deep learning for medical im-482

age retrieval is not frequent. One reason is that previously most medical483

image retrieval tasks only had to tackle small-sized data sets (e.g., hundreds484

to thousands of images at the most), which does not allow the training of485

deep neural networks. The other reason is that for some specific medical im-486

ages the hand-crafted features designed by domain experts can achieve very487

good performance when the data sets are not too large (e.g., the holistic488

features of histopathological images (Basavanhally et al., 2010)). Due to the489

multi-modality, complexity (e.g., diverse medical imaging techniques, com-490

plex structures and morphology of tissues/organs) and also quickly changing491

image acquisition devices, the specified hand-crafted features are still useful492

in many medical image retrieval scenarios. Additionally, the deep-learning493

based methods are capable to learn different types of features compared with494

hand-crafted methods. Thus the learned features also play a critical role495

in the feature representation of medical images, particularly when the data496

sets are large. In the ImageCLEF Challenges (Garćıa Seco de Herrera et al.,497

2016), many groups employed both learned features and hand-crafted fea-498

tures to represent medical images. Then, these features are fused for more499

accurate retrieval and classification results.500

4. Feature Indexing and Search501

After feature extraction, each image is represented by a feature vec-502

tor. The medical image retrieval problem can now be treated as a nearest-503

neighbor search among these feature vectors, i.e., computing and ranking504

the distance between the query image(s) or volume(s) and all images in the505

databases. However, when handling large-scale databases, exhaustive search506

among long feature vectors is time-consuming. Sequentially computing the507
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Figure 6: A framework for vocabulary tree based image retrieval.

distance of millions of high-dimensional feature vectors is unfeasible. In this508

section, we review recent advances that can efficiently and accurately tackle509

feature indexing in large-scale medical retrieval.510

4.1. Vocabulary Tree511

The vocabulary tree was first proposed by Nistér and Stewénius (Nister512

and Stewenius, 2006). It is widely used for scalable image retrieval (Wang513

et al., 2011b; Zhang et al., 2015b). It builds a tree-structure to accelerate514

similarity indexing. Compared with traditional methods based on exhaus-515

tive search of image features, vocabulary tree based methods employ a hi-516

erarchical tree and inverted files that can significantly improve the retrieval517

efficiency. Fig. 6 presents the framework of vocabulary tree based image518

retrieval. The framework can be divided into two phases, i.e., the training519

phase (offline) and the query phase (online). The training phase builds the520

indexing model (hierarchical tree-structure) from given image sets and the521

query phase returns images that are similar to the query image.522

Training Phase: For a set of training data, vocabulary tree methods523

first detect key points in each image (denoted as the cyan circles in Fig. 6).524

The key points can be defined as corners with scale and rotation invariance,525

as well as interest points specified by domain experts. Subsequently, these526

key points are represented by local feature vectors (e.g., SIFT (Lowe, 2004)),527

and the descriptors from all training images are collected for hierarchical k-528

means clustering. Specifically, instead of defining k as the final number of529

clusters, k is defined as the number of children centers in each cluster. After530

L recursive clustering, a tree-structure of depth L and branch factor k is531

built, where each tree node (also referred to as the visual word) corresponds532

to a cluster center. Each leaf node includes several key points that are close533
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to each other visually. Accordingly, all images in the database are added to534

inverted files attached to the leaf nodes with respect to their corresponding535

key points. Afterwards, the vocabulary tree-structure and the inverted file536

are used for the indexing of the images.537

Query Phase: Given a query image q, its key points are extracted and538

set as the input in the vocabulary tree. By comparing with nodes in each hi-539

erarchy, each key point can reach a leaf node attached to an inverted file. As540

each inverted file records images relevant to the leaf node, the similarity scores541

can be computed between q and the images in corresponding inverted files.542

Normally, the term frequency-inverse document frequency (TF-IDF) (Salton543

and Buckley, 1988) is adopted as the similarity score to balance the im-544

portance of a visual word to an image in a collection. By ranking all the545

similarity scores in descending order, the top ranked images can be consid-546

ered as the retrieval results. Unlike previous methods simply comparing the547

similarity of all the key points between two images, vocabulary tree methods548

construct the hierarchical tree-structure and index similar images using the549

inverted files. For each key point vector, only a total of kL dot products550

are needed, which is very efficient if k is not large. More importantly, the551

inverted file strategy can significantly improve the indexing process since it552

does not need to traverse the whole image database.553

Vocabulary trees and its variants have been applied for large-scale med-554

ical image retrieval. They do not only improve the computational efficiency555

but are also often more accurate compared with traditional retrieval methods.556

For example, Jiang et al. (Jiang et al., 2015a,c) proposed an adaptive weight-557

ing strategy in the vocabulary tree based framework to tackle mammogram558

image retrieval. As the features with high frequencies in a mammogram are559

less informative than those with low frequencies, to avoid overcounting, they560

incorporate mammogram-specific node frequencies into the IDF scheme to561

down-weight the high-frequency features. The adaptive weighting technique562

is very effective to retrieve these specific images, i.e., mammographic masses.563

Wang et al. (Wang et al., 2015) designed a discriminative and generative564

vocabulary tree for the authentication and recognition of finger vein images.565

This method considers both the discriminative appearance of local image566

patches and their generative spatial layout. The training process remains the567

same as building a conventional vocabulary tree, while the prediction process568

uses a proposed point set matching method to support non-parametric patch569

layout matching. This joint discriminative and generative model can achieve570

good performance in finger vein images, since the employed vocabulary tree571
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model can retain the efficiency for the whole system. More importantly, the572

point set matching strategy considers the geometrical layout of local image573

patches, which is more accurate compared with previous vocabulary tree574

based methods that only consider the description of local key points.575

By changing the similarity indexing strategy, vocabulary tree based meth-576

ods have achieved efficient retrieval in large-scale databases. As these kinds577

of methods directly employ local feature descriptors instead of the global578

features, it can be applied to most medical images, including both 2D and579

3D images where local key points can be detected and described. However,580

vocabulary tree based methods also have several limitations. For example,581

simply using local features is not enough to represent and discriminate some582

specific medical types of images, e.g., for some lung images, the global shape583

should be considered during retrieval. In addition, the training phase in584

building the hierarchical vocabulary tree is usually time-consuming, espe-585

cially when tackling very large image databases (search on a database with586

millions of images). In practical applications, to achieve good results, vo-587

cabulary tree based methods also rely heavily on parameter tuning, i.e., the588

number of each cluster center k, total levels of the hierarchical tree L. Thus,589

more efficient and accurate methods need to be developed for large-scale590

medical image retrieval.591

4.2. Hashing592

In recent years, hashing methods have been intensively investigated in593

the machine learning and computer vision fields for indexing big data (Wang594

et al., 2016). Instead of directly searching nearest neighbors from an original595

data set, hashing methods first compress the original data into short binary596

codes (e.g., tens to hundreds of bits) based on the defined hashing functions.597

Then, the nearest-neighbor search is more efficient by computing the similar-598

ity distances in binary Hamming space rather than in the high-dimensional599

feature space.600

4.2.1. Hashing Frameworks601

Fig. 7 presents the framework of hashing-based image retrieval. Assum-
ing we have n medical images in the database, after feature representa-
tion these n images are represented by d dimensional feature vectors, i.e.,
X = {x1,x2, . . . ,xn} ⊂ Rd×n (denoted as the blue points in Fig. 7). For the
image xi ⊂ Rd×1, its feature space can be split by a set of hashing functions
H = {h1, h2, . . . hK} ⊂ Rd×K , and each hashing function encodes xi into one
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Figure 7: The framework of hashing-based image retrieval.

bit of binary code hk(xi). Therefore, the corresponding K bits of binary code
of xi can be denoted as:

yi = H(xi) = {h1(xi), h2(xi), . . . , hK(xi)} (1)

In practice, for computational convenience, the above hashing functions are
usually substituted by the projected matrix w ⊂ Rd×K and the intercept
vector b ⊂ RK×1:

yi = sgn
(
f(wTxi + b)

)
(2)

where f(·) is a pre-specified function that can be linear or nonlinear. Then,602

all images in the database are represented by the mapped binary codes. The603

query image xq (denoted as the red point in Fig. 7) can also be mapped into604

binary codes through Eq. 2. Subsequently, the similarity search between605

the query and each image in the database is transformed as the Hamming606

distance ranking of their corresponding binary codes, which is very fast. The607

key question of hashing methods is how to obtain good hashing functions608

that can not only split the feature space via binary encoding but also keep609

similarities and diversity among the original data.610

4.2.2. Categories of Hashing Methods611

The methods to compute hashing functions can be roughly divided into612

two categories, i.e., data-independent and data-dependent. Data-independent613

methods usually design generalized hashing functions that can compact any614

given data set into binary codes. Locality-Sensitive Hashing (LSH) and its615

variants are the most popular data-independent methods (Gionis et al., 1999;616

Kulis et al., 2009; Raginsky and Lazebnik, 2009). LSH-based methods com-617

pute hashing functions via maximizing the probability of collision for similar618
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items, which can keep the originally nearby data points mapping into the619

same bit with high probability. However, this type of method often needs620

long binary codes and many hashing functions to ensure the desired retrieval621

precision, which dramatically increases the storage costs and the query time.622

More importantly, as these hashing functions are designed independently623

from the training data sets, it is hard to ensure the retrieval performance for624

any given data set.625

Another category are the data-dependent methods (also called learning to626

hash methods) that learn the hashing functions from a given training data set.627

In general, compared with data-independent methods, data-dependent meth-628

ods can achieve comparable or even better retrieval accuracy with shorter629

binary codes. Currently, many learning-based hashing methods have been630

applied for large-scale medical image retrieval, including but not limited to,631

Iterative Quantization (ITQ) (Gong et al., 2013), Kernel-Based Supervised632

Hashing (KSH) (Liu et al., 2012), Anchor Graph Hashing (AGH) (Liu et al.,633

2011), Asymmetric Inner-product Binary Coding (AIBC) (Shen et al., 2015a)634

and others. Accordingly, the taxonomy of data-dependent hashing methods635

can be defined in multiple viewpoints. For example, based on whether the636

training data sets have labels or not, hashing methods can be divided into637

supervised, unsupervised and semi-supervised methods. Supervised methods638

employ advanced machine learning techniques such as kernel learning, metric639

learning, and deep learning to compute the hashing functions from labeled640

training data. Many supervised hashing methods have achieved good per-641

formance since they can shorten the semantic gap between the compacted642

binary codes and the image labels (Fan, 2013; Gordo et al., 2014; Norouzi643

et al., 2012; Shen et al., 2015b). Without label information, unsupervised644

methods explore the properties of training data sets such as distributions645

and manifold structures to design effective hashing functions. Representa-646

tive methods include spectral hashing (Weiss et al., 2009), graph hashing (Liu647

et al., 2014b), manifold hashing (Shen et al., 2013), etc. Additionally, semi-648

supervised methods design hashing functions using both labeled and unla-649

beled data. These kinds of methods can improve the binary encoding per-650

formance by leveraging semantic similarity with limited image labels while651

remaining robust to overfitting (Jain et al., 2009, 2008; Wang et al., 2012).652

Another taxonomy of data-dependent methods is based on the form of the653

hashing functions, i.e., linear and nonlinear. Linear hashing functions sep-654

arate and map the original feature space with simple projections (as shown655

in Fig. 7, {h1, h2, . . . hK}). They are computationally efficient and easy to656
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Method Taxonomy Application
PCA Hashing
(Gong and Lazebnik, 2011; Yu et al., 2013)

Unsupervised
Linear

Multi-modality images (Yu et al., 2013)

Kernelized Hashing
(Liu et al., 2012)

Supervised
Nonlinear

Brest histopathology (Zhang et al., 2015c)
Cell-level histopathology (Zhang et al., 2015d)

Composite Hashing
(Gong et al., 2013; Liu et al., 2011)

Unsupervised
Nonlinear

Digital mammogram (Liu et al., 2016b)

Hashing Forest
(Conjeti et al., 2016a)

Unsupervised
Linear

Neuron morphology
(Mesbah et al., 2015; Yu and Yuan, 2014)

MIPS Binary Coding
(Shen et al., 2015a)

Unsupervised
Nonlinear

Neuron morphology (Li et al., 2017a)

Deep Autoencoder
(Sze-To et al., 2016; Vincent et al., 2010)

Unsupervised
Nonlinear

X-ray images (Sze-To et al., 2016)

Table 2: Existing hashing based large-scale medical image retrieval methods with their
taxonomies and applications

optimize (Gong et al., 2012; He et al., 2012; Trzcinski and Lepetit, 2012).657

However, linear hashing functions can not handle the situation when the658

difference among image data are subtle and linearly inseparable. Thus, non-659

linear hashing was developed to override such limitations. Such methods660

learn hashing functions based on kernel matrixes or manifold structures and661

can embed the intrinsic structure in a high-dimensional space and nonlin-662

early map feature vectors into binary codes (Kulis and Grauman, 2012; Liu663

et al., 2012; Shen et al., 2015c).664

4.2.3. Methodology Review665

Table. 2 summarizes the existing hashing-based medical retrieval meth-666

ods, as well as their corresponding taxonomies and applications. According667

to Table. 2, both supervised and unsupervised, linear and nonlinear hashing668

methods have been developed for medical retrieval. In this subsection, we669

briefly review the above hashing methods and also discuss their advantages670

and drawbacks.671

PCA Hashing (Yu et al., 2013): it first linearly projects raw image fea-672

tures into uncorrelated dimensions via Principal Component Analysis (PCA),673

where each new feature dimension is orthogonal to each other. Then, it learns674

the hashing function (i.e. a rotation matrix) by minimizing the binarization675

error between the new feature matrix and the corresponding binarized fea-676

ture matrix (Gong and Lazebnik, 2011). PCA Hashing demonstrates high677

computational efficiency and comparable retrieval precision compared with678

traditional feature-based nearest-neighbor search. However, since both PCA679

projection and hashing function optimization are linear, PCA hashing can-680
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not achieve good performance when tackling medical images that are complex681

(e.g., image differences are subtle, the feature space is not linearly separable).682

Kernelized Hashing (Zhang et al., 2015c): for most medical images,683

linear inseparability is a critical constraint that needs to be taken into account684

during large-scale retrieval. To tackle this challenge, Kernelized Hashing con-685

siders the hashing function with kernels, since kernel methods can map the686

feature vectors into a high-dimensional space and make the linearly insepara-687

ble images easy to differentiate. Accordingly, the learned binary codes from688

kernelized hashing are also able to differentiate complex medical images. In689

addition, Kernelized Hashing designs a supervised framework by collaborat-690

ing kernel functions with medical labels (e.g., labeling the histopathological691

image with benign or malignant). The supervised information significantly692

boosts the retrieval performance since it can bridge the semantic gap between693

low-level features and high-level clinical analytics.694

Composite Hashing (Liu et al., 2016b): this algorithm can generate695

more effective hash codes by integrating global features (e.g. GIST (Oliva and696

Torralba, 2001)) and local features (e.g. SIFT (Lowe, 2004)) with different697

distance metrics. In general, single types of features can not comprehensively698

represent a medical image. On the other side, simply combining multiple699

features may also fail to achieve accurate image retrieval, since each type700

of feature has its specific meaning and representation. Thus, Composite701

Hashing improves the Anchor Graph with multiple features and fuses them702

by distance metric and local manifold. Then, it learns the hashing function703

using iterative quantization.704

Hashing Forests (Conjeti et al., 2016a): this approach learns binary705

codes by training independent hashing trees. For the internal node in each706

tree, locality preserving projections are employed to project data into a la-707

tent subspace, where separability between dissimilar points is enhanced. For708

each input image, each trained tree generates several bits of binary codes,709

and the combination of these binary codes in the forest is used to represent710

the input image. Additionally, it employs an inverse-lookup search scheme711

to improve the efficiency of similarity comparisons. Hashing Forests can712

generate any given length of binary codes, which is particularly suitable for713

low-dimensional image features.714

MIPS Binary Coding (Li et al., 2017a): as demonstrated in (Liu et al.,715

2012; Shen et al., 2015a), the Hamming distance and the inner code product716

have a one-to-one correspondence. Thus, unlike the above methods based717

on the Hamming distance metric, MIPS (Maximum Inner Product Search)718
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Binary Coding introduces a new objective based on the inner code product,719

which is more likely to learn non-linear hashing functions. Specifically, by720

adopting an alternative iteration strategy, it learns two asymmetric hashing721

functions for the image database and the query image respectively. This722

strategy can make the inner product based objective easy to optimize. It also723

promotes the hashing functions to map binary codes into a high-dimensional724

non-linear space.725

Deep Autoencoders (Sze-To et al., 2016): this algorithm employs deep726

architectures to hash medical images into binary codes without class labels.727

Specifically, it uses a specific unsupervised deep architecture, namely deep de-728

noising autoencoders (DDA) (Vincent et al., 2010) to enhance feature learn-729

ing and binary coding with four steps: image pre-processing, unsupervised730

layer-by-layer training, unsupervised fine-tuning with dropout, and decoder731

removal. Finally, a threshold (> 0.5) is applied on the real-valued feature732

vectors to obtain binary codes. Deep Autoencoders learn binary codes with-733

out using any supervised information, which is suitable for medical images734

where labels are hard to obtain.735

When using hashing methods to tackle large-scale medical image retrieval736

problems, we should not only focus on the hashing methods itself but also737

need to consider their possible adaptations for different medical image data738

sets. When the annotation of all medical images in data sets are available, su-739

pervised hashing methods are more suitable and are generally more accurate740

than unsupervised and semi-supervised hashing. For example, Kernel-Based741

Supervised Hashing (KSH) (Liu et al., 2012), Supervised Discrete Hashing742

(SDH) (Shen et al., 2015b), Deep Supervised Hashing (DSH) (Liu et al.,743

2016a) can achieve excellent performance in many public data sets. However,744

in many cases when the medical image annatations are not easy to acquire,745

semi-supervised/unsupervised hashing is a more reasonable choice (e.g., Dis-746

crete Graph Hashing (DGH) (Liu et al., 2014b), MIPS (Shen et al., 2015a),747

Semi-Supervised Hashing (SSH) (Wang et al., 2012)). In addition, for some748

medical images that are not easy to differentiate, non-linear hashing meth-749

ods can usually achieve much better retrieval performance, such as Inductive750

Manifold-Hashing (IMH) (Shen et al., 2013), AGH (Liu et al., 2011), de-751

spite training non-linear hashing functions being more time-consuming than752

training linear hashing functions.753
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4.3. Other Methods754

Besides the vocabulary tree and hashing, there are many other methods755

that have been designed to tackle the feature indexing of large-scale medical756

image databases. These methods can be either accelerating the similarity757

search or improving the retrieval accuracy. We briefly introduce and discuss758

these methods.759

4.3.1. Feature Compression760

Indexing in large medical databases is usually very time-consuming, es-761

pecially when the images are represented by high dimensional features. To762

accelerate the indexing process, one kind of methods is feature compression,763

which can compress long image features into a smaller size. Hashing belongs764

to the category of feature compression that is discussed above. In addition to765

hashing, many other compression methods have been employed for efficient766

medical image retrieval.767

Principal components analysis (PCA) is one of the most popular method768

for feature compression. After feature extraction, medical images can be769

represented by single or multiple feature vectors that have high dimension.770

Many medical image retrieval methods have employed PCA to reduce the771

feature dimensionality. For example, Tian et al. (Tian et al., 2008) first pre-772

sented a global and local texture feature combination for the description of773

medical images. Then, they adopted PCA to reduce the dimension of the774

combined features. In the analytics of histopathological images, Sertel et775

al. (Sertel et al., 2009) introduced a novel color-texture analysis approach776

that combines a model-based intermediate representation with low level tex-777

ture features. Then, PCA and LDA (linear discriminant analysis (Fukunaga,778

2013)) are employed for feature dimensionality reduction. PCA-based med-779

ical image retrieval can significantly reduce the feature dimensionality and780

usually demonstrates comparable performance with the methods using the781

original features.782

In addition to PCA, multiple methods have been proposed for medical783

feature compression in recent years. In (Foncubierta-Rodŕıguez et al., 2013),784

Foncubierta-Rodriguez et al. presented a medical image retrieval method us-785

ing a bag of meaningful visual words. As visual vocabularies are often redun-786

dant, over-complete and noisy, they presented a pruning technique based on787

probabilistic latent semantic analysis (PLSA) (Hofmann, 2001). The PLAS788

pruning can enormously reduce the feature dimension when describing a med-789

ical image data set with no significant effect on accuracy. More recently, Lan790
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and Zhou (Lan and Zhou, 2016) proposed a simple yet discriminant feature,791

called histogram of compressed scattering coefficients (HCSCs) for medical792

image retrieval. They first performed a particular variation of deep convo-793

lutional networks, i.e., the scattering transform, to yield high dimensional794

features. Then a compression operation is carried out on the obtained coef-795

ficients for a dimensionality reduction.796

4.3.2. Re-ranking797

After the similarity indexing through feature compression and other large-798

scale methods, a set of top ranked medical images can be efficiently computed799

based on a distance measure. However, these retrieved images may not always800

correspond to what a human would want and the retrieval precision can vary801

strongly using different features. Therefore, re-ranking of the coarse results802

is expected to further improve the retrieval performance for more accurate803

retrieval. Particularly, re-ranking methods can reorder the initially retrieved804

images to move the most relevant images to the top or optimise diversiy in805

the top results.806

In recent years, multiple methods have been proposed for re-ranking in807

different image retrieval applications. In the medical domain, based on the808

information employed for re-ranking, the re-ranking methods can be roughly809

divided into three categories, i.e., textual-visual based, multi-feature based810

and user-feedback based. In the following, we briefly review relevant articles811

about the three categories respectively:812

1. Textual-visual based: these kinds of methods first retrieve relevant813

medical images through textual indexing, then the initial results are814

re-ranked by considering the visual similarity. Textual-visual based re-815

ranking was adopted by many groups in the ImageCLEF medical image816

retrieval tasks. For example, Radhouani et al. (Radhouani et al., 2009)817

introduced their work at ImageCLEF 2009. They first leveraged textual818

data to search relevant images in three domain dimensions, anatomy,819

pathology and modality. Then, they employ the visual data to re-820

rank the document lists based on the extracted features, including a821

color and intensity histogram, gray-level co-occurrence matrices and822

other features. Besides this, Depeursinge and Müller (Depeursinge and823

Müller, 2010) described several fusion techniques for combining textual824

and visual information that were used in ImageCLEF.825

2. Multi-feature based: this kind of method first computes the retrieval826

results from multiple kinds of features, then the final results are ob-827
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tained by fusing and re-ranking the above retrieved images. Recently,828

Zhang et al. (Zhang et al., 2016a) presented a method for histopathol-829

ogy image analysis by re-ranking the results from multiple features.830

Specifically, after obtaining several top ranked relevant images from831

multiple kinds of features, they employed a graph-based query-specific832

fusion approach where multiple retrieval results are integrated and re-833

ordered based on a fused graph (Zhang et al., 2015b). In general, such834

re-ranking methods can significantly improve the retrieval performance835

since they consider the image similarity and discrimination from several836

viewpoints using multiple features, e.g., local and holistic features.837

3. User-feedback based: after receiving the initial results, this kind of838

method re-ranks the retrieved images based on relevance feedback from839

users. The relevance feedback can specify which image is relevant/irrelevant.840

Agarwal and Mostafa (Agarwal and Mostafa, 2011) employed the user-841

feedback based re-ranking for the Alzheimer’s disease detection. They842

first described a content-based image retrieval system, i.e., ViewFinder843

Medicine (vfM), to combine visual and textual features for initial in-844

dexing. Then the retrieval system employed the user-provided feed-845

back to perform re-ranking, including inter-session and intra-session re-846

ranking. This re-ranking process improved the system precision from847

0.8 to 0.89. The importance of negative feedback in this process is848

highlighted in (Muller et al., 2000).849

In most cases, re-ranking methods are only required to consider the top850

ranked initial retrieval results, e.g., most truly relevant images are included851

in the top-K results, and K is much smaller than the number of images in the852

whole database. Therefore, re-ranking can be very efficient as it only needs853

to process a few images. More importantly, by considering and comparing854

the similarity using multiple information sources, the retrieval precision can855

be improved for further exploration and analysis.856

4.3.3. High-performance Computing857

In addition to the above large-scale methods which belong to the fields of858

image processing, computer vision and machine learning, High-performance859

Computing (HPC) also plays an important role in medical image analytics.860

HPC is the use of parallel processing techniques to execute programs effi-861

ciently, reliably and quickly. The HPC techniques include parallel comput-862

ing, distributed computing, cloud computing, etc. that are useful for tackling863
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large databases. Particularly in the medical field, some large databases are864

usually stored in different locations and they are essential to be processed865

based on parallel systems.866

Recently, HPC techniques have been widely employed for the large-scale867

medical retrieval. Foran et al. (Foran et al., 2011) proposed a software sys-868

tem based on parallel and distributed computing, namely ImageMiner, to869

efficiently retrieve and analyze the expression patterns of tissue microarrays870

(TMAs). The ImageMiner system embedded a data analysis component for871

efficient retrieval, i.e., DataCutter (Kumar et al., 2006), which the data pro-872

cessing pipeline can be composed as a network of interacting components.873

Images received by ImageMiner were distributed and processed by the com-874

putation cluster using a master-slave parallelization scheme. Subsequently,875

Qi et al. (Qi et al., 2014) investigated large-scale histopathological image re-876

trieval using the CometCloud (Kim et al., 2011), an automatic cloud frame-877

work that allows dynamic, on-demand federation of distributed infrastruc-878

tures. They first formulated the histopathological image retrieval problem as879

a set of heterogeneous and independent tasks. Then these tasks can be par-880

allelized and solved using the aggregated computational power of distributed881

resources. More recently, Markonis et al. (Markonis et al., 2015b) proposed882

solutions for the large-scale medical image analysis based on parallel com-883

puting and algorithm optimization. Specifically, a MapReduce framework is884

employed to speed up the medical image analysis in three tasks, i.e., lung885

texture segmentation using support vector machines, content-based medical886

image indexing and 3D directional wavelet analysis for solid texture classifi-887

cation.888

High-performance computing can well be used to handle large-scale re-889

trieval tasks, especially for clinical systems, where the parallelized processing890

can achieve similarity retrieval in real-time. More importantly, as presented891

in Fig. 1, high-performance computing can be adopted in both the feature ex-892

traction/indexing and retrieval, which can dramatically improve the retrieval893

efficiency in these time-consuming steps.894

895

5. Evaluation896

After receiving similar samples from medical image retrieval systems,897

evaluating the retrieval performance and the whole retrieval system are also898

critical tasks. Especially for large-scale medical image sets, simply using class899
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labels is usually not adequate to evaluate the retrieval performance in fine-900

grained levels. In the past decades, challenges and tasks such as ImageCLEF,901

VISCERAL, etc. have made great efforts for the evaluation of medical im-902

age retrieval (Kalpathy-Cramer et al., 2015; Langs et al., 2012). This section903

reviews related work of evaluation protocols which are relevant to medical904

image retrieval, including evaluation measures, criteria, and public medical905

image data sets.906

5.1. Evaluation Measures907

We first introduce the evaluation measures for medical image retrieval908

that can provide a quantitative analysis, comparison, and validation of dif-909

ferent retrieval methods. In general, the evaluation measures in large-scale910

medical image retrieval are similar with the measures in generic information911

retrieval, i.e., evaluating the precision, recall, efficiency and several other912

measures.913

Precision: retrieval precision is the main indicator for performance eval-
uation, which can be denoted as the fraction of the images retrieved that are
relevant to the query image:

precision =
|{relevant images} ∩ {retrieved images}|

|{retrieved images}|
(3)

In information retrieval, precision can evaluate the capability of a method914

for searching similar or relevant samples. It has also been widely used for the915

evaluation of medical image retrieval methods, especially for some medical916

analytical tasks where the image used as query can be better interpreted917

with similar/relevant images (Li et al., 2017b; Zhang et al., 2015c,d). This918

is similar to asking a colleague for help or searching similar images/patterns919

in books.920

Besides precision, mean average precision (MAP) is most commonly used
for the evaluation of retrieval methods and for the comparison of search in
large-scale medical image sets. MAP is relatively stable and include aspects
of precision and recall, as it averages over positions of all relevant items. It
is defined as the mean of the average precision scores of all relavnt items of
a query averaged over all queries. The MAP can be formulated as:

MAP =
1

|M |

M∑
m=1

1

|K|

K∑
k=1

precision(Qm,k) (4)
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where M is the number of query images (i.e., testing data), K indicates921

the top-K ranked relevant images for each query image, and Qm,k denotes922

the top-k retrieval precision of the mth query image. For large-scale retrieval923

methods, the MAP can evaluate their performance with massive testing data924

(e.g., hundreds to thousands of query images), and thus alleviate the bias925

during precision evaluation.926

Recall: in image retrieval, recall is the fraction of relevant retrieved
images with all relevant images in databases, i.e.:

recall =
|{relevant images} ∩ {retrieved images}|

|{all relevant images}|
(5)

Recall reflects the sensitivity of a retrieval system, i.e., whether it can com-927

pletely find all relevant samples in top-K ranked results, keeping K as small928

as possible. Thus, for medical retrieval tasks that need to find all relevant929

samples for analysis (such as a systematic review), recall is a critical evalu-930

ation criterion. Normally, recall is associated with precision, i.e., precision-931

recall curve, for the evaluation and comparison of different retrieval methods932

with a global view on the performance (Davis and Goadrich, 2006; Müller933

et al., 2001).934

Efficiency: as directly indexing massive images with high dimensional
features are usually very time-consuming, one important evaluation indicator
for large-scale retrieval is efficiency. Currently, in most large-scale retrieval
cases, efficiency is denoted as the time for the feature indexing phase, i.e.,
given a query image (or its features), the time for returning a set of relevant
images after searching in large-scale databases. For medical image retrieval
with many testing images, their accumulated and average run time are the
commonly used efficiency measures, where the average run time can be for-
mulated as:

AvgT ime =
1

M

M∑
m=1

tm,K (6)

tm,K indicates the time cost of retrieving K relevant images for the mth935

query image. The average/accumulated run time has been widely adopted936

for the evaluation, comparison and validation of large-scale medical image937

retrieval (Jiang et al., 2016a, 2015c; Zhang et al., 2015c,d). Still, run times938

need to be put in relationship to hardware resources available and are thus939

not always easy to interpret. Sometimes the run time for the offline parts940
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(data indexation) and the online parts (interactive search) are separately941

compared.942

Additionally, there are several other commonly employed measures for943

medical image retrieval evaluation. For example, the precision after the first944

NR images are retrieved (i.e., P (NR)), recall at 0.5 precision, rank first rele-945

vant, etc.). These measures were discussed in previous articles (Müller et al.,946

2001; Muller et al., 2004).947

5.2. Evaluation Criteria948

In addition to evaluation measures, the criteria of deciding similarity/relevance949

are also important and challenging tasks in large-scale medical image re-950

trieval. Here, we introduce two kinds of evaluation criteria: annotation-based951

and user-based, which are the commonly employed criteria in medical image952

retrieval.953

Annotation-based Criteria: when class labels of medical images are954

available, their annotations are a commonly used evaluation criterion. As the955

class labels of all medical images in the database are provided, the similar or956

relevant images can be determined quickly by comparing their class labels.957

Thus, given testing images, the retrieval precision and recall can be mea-958

sured by sequentially comparing the labels between each test image and the959

retrieved images. Currently, several large-scale medical image retrieval cases960

adopted annotation-based criteria for performance evaluation. For example,961

Zhang et al. (Zhang et al., 2015d) evaluated the large-scale histopatholog-962

ical image retrieval through the class label of two type lung cancers (i.e.,963

adenocarcinoma and squamous carcinoma) for each image. The annotation-964

based evaluation criteria are only suitable for the cases that image classes are965

identified and the similarity of images are simply determined by class labels.966

967

User-based Criteria: despite the annotation-based criteria being a sim-968

ple way for retrieval evaluation, it may not suitable in many practical cases of969

large-scale medical image retrieval. One reason is that the annotation of med-970

ical images is usually hard to obtain. Some medical images are still classified971

and do not have unified classification rules. Moreover, annotating every med-972

ical image in large databases is extremely labor expensive,time-consuming,973

and sometimes impossible. Another reason is the similarity/relevance mea-974

sure. In large-scale medical image retrieval, one query image may have thou-975

sands of images with the same label. For some analytical tasks, simply using976

class labels is not adequate to identify relevant images.977
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Compared with annotation-based criteria, users or domain experts can978

provide more fine-grained retrieval evaluations in the form of relevance judge-979

ments for specific tasks. Many medical image retrieval systems have em-980

ployed users for the performance evaluation. In general, users can observe981

the retrieved images and assign them with different relevance levels during982

evaluation. For example, the medical ImageCLEF challenges used three lev-983

els of relevance, i.e., relevant, partly-relevant, and non-relevant (Kalpathy-984

Cramer et al., 2011; Müller et al., 2012, 2009). These relevance judgments985

were employed for the retrieval performance evaluation of the database with986

300, 000 medical images. Besides ImageCLEF challenges, considering neu-987

rons is usually hard to classify and identify, Wan et al. (Wan et al., 2015)988

asked two users for the visual comparison of morphological neuron retrieval989

results. In medical image retrieval, user-based criteria rely on user’s domain990

knowledge and may be partly subjective based on the user’s background.991

Thus, the retrieval results are usually judged by two or more users for more992

reliable evaluation.993

The evaluation of system design also plays an important role in medi-994

cal image retrieval, especially for the retrieval systems where users are in-995

teractively involved. Markonis et al. (Markonis et al., 2015a) reported the996

user-orientied evaluation of a text- and content-based medical image retrieval997

system. In total, 16 radiologists participated in the user tests with a work-998

ing image retrieval system in an iterative manner. Such analyses in clinical999

practice are really needed to advance the practical use of image retrieval in1000

hospitals1001

5.3. Public Datasets1002

With the increasing availability of digital imaging techniques, a large1003

number of medical images are generated and well organized in many repos-1004

itories. Some of the repositories are publicly available for users and re-1005

searchers. The medical image repositories usually include thousands to mil-1006

lions of images. Images are collected for different purposes, such as cancer1007

grading/staging and treatment planning. We briefly introduce some of the1008

public data sets that are widely used for medical image retrieval:1009

• ImageCLEF (ImageCLEF): ImageCLEF provides an evaluation forum1010

for the cross-language annotation and retrieval of images. ImageCLEF1011

has held 14 years of medical image retrieval challenges, with the number1012
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of images in the dataset having increased from 6, 000 to 300, 000 (Kalpathy-1013

Cramer et al., 2015). The datasets in ImageCLEF include multiple1014

modalities of medical images, e.g., radiology, microscopy and also gen-1015

eral photography.1016

• DDSM (of South Florida): The digital database for screening mammog-1017

raphy (DDSM) is a public mammogram database. It includes 2, 6041018

breast cases and every case consists of four views, with two cranio-1019

caudal views and two mediolateral oblique views. The mammographic1020

masses have different shapes, sizes, margins and breast densities as1021

well as the patient race and age, which provide rich information for1022

diagnosis.1023

• MedPix (of Medicine): MedPix is a fully web-enabled cross-platform1024

database, integrating images and text information. This medical image1025

database includes over 53, 000 indexed and curated images, from more1026

than 13, 000 patients. The merit of this database is that it records1027

detailed descriptions of patients and their corresponding diagnosis.1028

• TCGA (Institute, a): The Cancer Genome Atlas (TCGA) collects a1029

huge amount of cancer images (currently around 10, 000, 000 images1030

and increasing quickly) from multiple projects funded by National Can-1031

cer Institute. It records many types of cancer images, including but not1032

limited to, brain, esophageal, lung, thyroid and rectum. All TCGA1033

data reside in the Genomic Data Commons (Institute, b).1034

• TCIA (TCIA): The Cancer Imaging Archive (TCIA) is organized into1035

collections with a variety of cancer types and/or anatomical areas. Sim-1036

ilar to TCGA, it collects cancer images from many projects and insti-1037

tutes. The cancer types include breast, prostate, liver, lung, brain, etc.1038

and the image modalities include CT, MR, PET and others.1039

• VISCERAL (VISCERAL): VISCERAL is the abbreviation for Visual1040

Concept Extraction Challenge in Radiology, which provides a bench-1041

mark for the retrieval in the medical domain. This dataset consists1042

2, 311 medical 3D volumes originating from various modalities (CT,1043

MRT1, MRT2 with and without contrast agent) and each volume con-1044

sists 200−2000 images (slices). The VISCERAL project has organized1045
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Public data sets Number of images or or size Image category
ImageCLEF (ImageCLEF) 300,000 Multi-modalities
DDSM (of South Florida) 10,480, 231GB Mammogram
MedPix (of Medicine) 53,000 Multi-modalities
TCGA (Institute, a) 470TB Cancer Images, Multi-modalities
TCIA (TCIA) 10,000,000, 3TB Cancer Images, Multi-modalities
Retinopathy (EyePACS) 35,000, 82GB Retinal Photographs
DREAM (Bionetworks) 640,000 Screening Mammograms
VISCERAL (VISCERAL) 2,300 3D CT, MRI volume
LIDC-IDRI (Armato III et al., 2011) 240,000, 124GB Lung CT, DX, and CR
ADNI (of Southern California) Unknown Alzheimer’s MR, PET, etc
NBIA (NBIA) 76,000 Cancer Images, Multi-modalities
CAMELYON 17 (, DIAG) 1,000, 2TB Whole-slide Histopathological Images
PubMed Center (NCBI) 4,000,000 Multi-modalities
NLST (Institute, c) 76,000 Lung CT, Pathology Images

Table 3: Current publicly available medical image data sets.

several challenges, workshops and provided multiple benchmarks re-1046

lated to large-scale data in medical image analysis and retrieval (Langs1047

et al., 2012; Müller et al., 2014; Zhang et al., 2015a).1048

In addition to the above data sets, Table. 3 presents a summary of publicly1049

available data sets with many medical images, including number of images,1050

size and categories if available. Due to the fast growth of medical images, we1051

only provide a small subset of commonly used data sets in Table. 3.1052

6. Applications1053

After reviewing the above large-scale techniques, we introduce their ap-1054

plications for medical image analytics in this section. Large-scale retrieval1055

methods have demonstrated impressive improvement on many medical image1056

types, including CT, MRI, X-ray, microscopy and others. In the following, we1057

illustrate their applications in clinical diagnosis, cancer grading, and neuron1058

exploration.1059

6.1. Mammographic Retrieval and Segmentation1060

Breast cancer remains the second leading cause of cancer-related death1061

among women (Society, 2013). Early diagnosis based on mammography is a1062

widely adopted approach to improving the chances of recovery, which is recog-1063

nized as a gold standard for breast cancer detection by the American Cancer1064

Society (Society, 2013). However, the detection of masses in a mammogram1065

is a challenging task, as masses have a large variation in shape, margin, and1066
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size. They are often indistinguishable from surrounding tissue (Cheng et al.,1067

2006; Oliver et al., 2010). For an undetected mammogram, computer-aided1068

diagnosis (CAD) with content-based image retrieval (CBIR) is an effective1069

solution by returning a limited number of the most similar mammograms in1070

the pre-built image database, where the retrieved mammograms were already1071

annotated with the class labels of mass and normal. Nevertheless, with the1072

ever increasing number of mammograms generated and added to the pre-1073

built database, scalable CBIR techniques have become one of the important1074

problems for mammogram based breast cancer diagnosis (Langs et al., 2012).1075

Jiang et al. (Jiang et al., 2015c) successfully solved the scalable mammo-1076

gram retrieval problem based on a vocabulary tree with adaptive weighting.1077

For a query with a mammographic region of interest (ROI), it can achieve1078

efficient retrieval in a dataset with 11, 553 ROIs. Specifically, in the experi-1079

ment, this method reported an 88.4% retrieval precision with 500 mass ROIs1080

and 500 normal ROIs as queries. This demonstrates good accuracy com-1081

pared with other methods including NMI (Tourassi et al., 2007), BoW (André1082

et al., 2012), and VocTree (Nister and Stewenius, 2006). The method also1083

achieved highest classification accuracy (90.8%) for whether the query ROIs1084

are masses or normal. Additionally, this method is 3 to 10 times faster than1085

other methods and the advantage is larger when the size of image database1086

increases.1087

(Jiang et al., 2016b) propose to learn online shape and appearance priors1088

via image retrieval, i.e., setting an input mass as the query, its visually1089

similar training masses can be obtained by image retrieval. Then, the query1090

mass can be segmented using the retrieval priors and graph cuts. Extensive1091

experiments on a mammography database demonstrate that the method can1092

improve the segmentation accuracy and outperform several widely used mass1093

segmentation methods.1094

6.2. Cell-Level Histopathological Image Analysis1095

Histopathological image analysis is widely used for cancer grading. Com-1096

pared to mammography, CT and others, histopathology slides provide more1097

comprehensive information for diagnosis and the diseases are analyzed by1098

detecting tissue and cells in lesions (Gurcan et al., 2009). On the other hand1099

an invasive biopsy is necessary, which is often tried to be avoided. CBIR sys-1100

tems are commonly employed to analyze histopathological images (Caicedo1101

et al., 2009, 2011; Doyle et al., 2007). In CBIR systems, the returned visually1102

similar images can be used to identify and classify the query images (e.g.,1103
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Figure 8: Examples of hashing-based histopathological image retrieval illustrated
in (Zhang et al., 2015c) (query marked in red and retrieved images marked in blue).
The first two rows are benign tissue; the last two rows are malignant tissue.

classifying them as benign or malignant), and further assist pathologists to1104

describe the tissue samples.1105

Hashing methods were first employed by Zhang et al. (Zhang et al., 2015c,1106

2014) to tackle large histopathological image databases for CBIR. They de-1107

signed a comprehensive CBIR framework to analyze histopathological images1108

by leveraging high-dimensional texture features and kernelized hashing with1109

supervised information. In the experiment, this hashing method demon-1110

strated significant improvement in histopathological image classification and1111

retrieval tasks. Compared to methods such as SVM (Caicedo et al., 2009),1112

Adaboost (Doyle et al., 2012), KNN (Tabesh et al., 2007), and Graph Em-1113

bedding (Basavanhally et al., 2010), its accuracy was 5 to 10 percent higher.1114

The method achieved histopathological retrieval for 700-900 images within1115

0.01 seconds (3121 images in the database), which is 1000 times faster than1116

the given baseline. Fig. 8 illustrates four queries (two benign images, two1117

malignant images) and their corresponding top five retrieval results based1118

on this hashing-based CBIR framework. Despite the difference between be-1119

nign and malignant images being subtle, the proposed method is effective1120

to retrieve images in the same category. The authors extended the CBIR1121
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system for more accurate diagnosis by examining the cells in histopathology1122

images (Zhang et al., 2015d). As each histopathology image usually includes1123

thousands of cells, examining every cell by traditional retrieval methods is al-1124

most impossible when the image databases are large. Thus, a hashing-based1125

framework is proposed that enables cell-level analysis in real-time with high1126

accuracy, i.e., indexing 96, 000 cells within 1.68 seconds (the whole database1127

includes 484, 136 cells), and achieving 87.3% accuracy for the classification of1128

histopathology lung images (i.e., two types of lung cancers, adenocarcinoma1129

or squamous carcinoma).1130

In histopathological image analysis, it is a common practice to employ1131

multiple features to improve performance. To embed multiple features in1132

a hashing framework, Jiang et al. (Jiang et al., 2015b, 2016a) employed1133

joint kernel-based supervised hashing (JKSH) for scalable histopathological1134

image analysis, where multiple features are linearly combined by individual1135

kernels (Liu et al., 2014c). Experiments on breast cancer histopathology1136

images demonstrate the effectiveness in both retrieval and classification.1137

6.3. Exploration of a Neuron Databases1138

Analyzing single neuron properties, such as cell types, brain regions, func-1139

tions and development stages is usually a fundamental task to understand1140

the nervous system and brain mechanisms. In general, neuron morphology1141

plays a major role in determining the neuron’s functional and physiologi-1142

cal properties. Recent approaches in neuroscience (e.g., BigNeuron (big, a))1143

have facilitated the research in neuron morphology. An increasing number of1144

neurons are reconstructed and added to the public repositories (big, b; Neu-1145

roMorpho). Therefore, given an unknown neuron, it is reasonable to explore1146

its properties through the morphological retrieval in neuron databases.1147

Conjeti et al. (Conjeti et al., 2016b; Mesbah et al., 2015) developed an1148

advanced tool for morphological search and retrieval in large-scale neurosci-1149

entific image databases, namely Neuron-Miner. Neuron-Miner first employs1150

quantitative measurements as neuron features, such as soma surface, the1151

number of branches and the neuron’s total length. Then, it adopts a novel1152

hashing method, i.e., hashing forests, to compact the features into binary1153

codes. In the experiment, Neuron-Miner demonstrates the effectiveness in1154

morphological retrieval with a database including 31, 266 neurons. Given a1155

query, this tool is able to return several visually similar neurons from the1156

database. The ground truth (using normalized Euclidean distance) shows1157

that returned neurons are relevant to the query.1158
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Figure 9: Results of morphological neuron retrieval shown in (Li et al., 2017a). For each
neuron on the left (red), the top-5 retrieved neurons on the right (blue) are shown. This
illustrates the morphological similarity between query neurons and retrieved neurons.

More recently, Li et al. (Li et al., 2017a, 2016) explored large-scale mor-1159

phological neuron databases based on a novel search strategy, the maxi-1160

mum inner product search (MIPS). Based on MIPS, nonlinear hashing func-1161

tions are learned by embedding the inner code product rather than the con-1162

ventional Hamming distance. The nonlinear hashing functions are partic-1163

ularly suitable for the morphological neuron retrieval problem, since the1164

neurons’ tree-topological structure makes them hard to be discriminative1165

in low-dimensional linear space. Fig. 9 demonstrates that the MIPS-based1166

method is able to retrieve morphologically similar neurons in the large-scale1167

database. To evaluate the retrieval precision, it employed projection neurons1168

in the olfactory bulb as queries. The retrieval results validated that most1169

returned neurons have the same properties as the queries (with a reported1170

90.48% average precision in the top-5 relevant neurons). Additionally, the1171

authors demonstrated the application of morphological retrieval in neuron1172

exploration. By collecting properties of the top-K relevant neurons (e.g.,1173

a neurons’ brain regions, cell types, transmitters). Properties of the query1174

neuron can be inferred in real-time based on this MIPS hashing framework.1175
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7. Future Directions1176

After reviewing the above methods and applications of large-scale med-1177

ical image analytics, we discuss possible future directions in this section.1178

Despite varieties of advanced large-scale techniques being employed for re-1179

trieval, there are still many directions to explore and improve the retrieval1180

performance.1181

Multi-features: in general, only employing a single kind of feature is1182

not enough to represent and discriminate medical images. Especially when1183

a database is large, the difference with some irrelevant images can be sub-1184

tle. One intuitive solution is using multiple features to represent each image,1185

e.g., local, holistic, and texture features. These features can be fused and1186

embedded in a large-scale retrieval framework. According to existing work,1187

multi-feature fusion can be conducted on three levels during retrieval, i.e.,1188

feature level (Atrey et al., 2010), training level (Liu et al., 2014c), and deci-1189

sion level (Zhang et al., 2012). Jiang et al. (Jiang et al., 2016a) fuse three1190

types of features (SIFT (Lowe, 2004), HOG (Dalal and Triggs, 2005), and1191

GIST (Oliva and Torralba, 2001)) in the training level when learning hashing1192

functions; Zhang et al. (Zhang et al., 2016a) employ a graph-based query-1193

specific fusion approach to integrating local and holistic features at the deci-1194

sion level. Despite the two methods having achieved good performance, these1195

are far from enough for large-scale medical image retrieval. With the ever-1196

increasing techniques in feature representation, employing more features to1197

retrieve complex medical images is a clear trend (e.g. the ImageCLEF med-1198

ical image retrieval tasks in recent years). However, as diverse features have1199

different meanings and representations, deciding on the importance of each1200

feature is a challenging task. User specified feature importance is usually1201

not reliable, and automatically computing each feature’s importance is time-1202

consuming, especially when dealing with many features in a large database.1203

Thus, successfully handling multi-feature fusion in a large-scale database fur-1204

ther improves the accuracy and efficiency of medical image retrieval.1205

Online updating: as more medical images are being generated, the size1206

of the corresponding databases are continuously increasing. For example, the1207

aforementioned ImageCLEF database increased the number of images from1208

600 to 300, 000, and the NeuroMorpho database usually releases 1, 000 to1209

2, 000 reconstructed neuron cells in each update. The newly added images1210

should be considered to train new models for retrieval, since employing more1211

training data can accordingly improve the retrieval accuracy. However, if we1212
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re-train a large-scale model every time from scratch, using both the original1213

and the newly added images, it is time-consuming and adversely affects the1214

efficiency of medical retrieval. On the other side, when the medical image1215

databases are extremely large (e.g., including millions of images), current1216

storage techniques are not able to arrange and process all the images within1217

one batch. More importantly, both the vocabulary tree and hashing based1218

methods cannot efficiently train models for the huge amount of images at a1219

given time, e.g., building a hierarchical tree or learning hashing functions with1220

millions of feature vectors. To tackle these problems, one possible solution1221

is to divide huge databases into several batches, and then develop an online1222

updating strategy to train the retrieval model with one-by-one image batches1223

in a streaming manner. The newly added images can also be treated as1224

a batch to update the retrieval model. Currently, several online hashing1225

methods have been developed for computer vision tasks (Cakir and Sclaroff,1226

2015; Huang et al., 2013; Leng et al., 2015). In medical image analytics,1227

the merit of the online updating strategy is beneficial in the future with a1228

continuously increasing number of images and extremely large databases.1229

Bringing humans in the loop: for the retrieval of large-scale medical1230

image databases, lacking label information is the main limitation to achieve1231

good retrieval results. As medical images usually have different modalities1232

and appearances, their intra-class variations can be large, and their inter-1233

class variations can be small. The image labels are useful to handle this1234

problem, since it can embed supervised information in retrieval models and1235

bridge the low-level features with high-level image semantics. However, label-1236

ing images is not an easy task. Especially for some medical images, assigning1237

their labels requires domain experts with proper training. Crowdsoucing can1238

be used when very precisely defined tasks allow for quick training times (Fon-1239

cubierta Rodŕıguez and Müller, 2012). Deciding whether a histopathology1240

image contains benign or malignant lesions is complex and time-consuming,1241

for example. Moreover, large-scale databases make this task even harder.1242

To tackle these problems, one feasible solution is to bring humans in the1243

retrieval loop. They can interactively give feedback to improve the retrieval1244

performance (Feng et al., 2013; Rui et al., 1998). After acquiring a set of1245

similar images from unsupervised retrieval, users/domain experts can specify1246

images relevant to the query and those that are not. Such feedback can be1247

returned to the retrieval system to improve the final results (Bulo et al., 2011;1248

Sahbi et al., 2007). The feedback can be treated as supervised information1249

but it is more efficient than labeling all medical images. Theoretically, such1250
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an interactive strategy can achieve two goals: 1) it presents retrieval results1251

to users/domain experts to help them analyze medical images; 2) it receives1252

and uses the interactive feedback to improve the retrieval system.1253

8. Conclusions1254

In this review, we summarize recent advances of large-scale retrieval for1255

medical image analytics. By introducing the pipeline of large-scale retrieval,1256

we presented a comprehensive review of relevant techniques that can improve1257

the efficiency and accuracy of medical image analysis, including feature rep-1258

resentation, feature indexing and searching. We also reviewed clinical appli-1259

cations and discussed the future directions of large-scale medical analytics.1260

With the ever-increasing amount of newly generated medical images, we be-1261

lieve that the algorithms and methods of large-scale medical image analytics1262

will lead to new ideas for knowledge discovery and decision support.1263

Currently, only few systems have been exposed to detailed user test-1264

ing (Markonis et al., 2015a) and such user tests are clearly needed for very1265

large scale systems. Many currently CBIR systems only use small databases1266

and not update mechanisms and this is required for real application including1267

an integration of the systems into the standard clinical workflow, which is1268

often neglected. Many technical approaches are now available for large-scale1269

applications but more work is needed to actually integrate the tools for clin-1270

ical impact, an this includes the use of deep learning and explaining these1271

results to physicians.1272
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CEUR-WS. org (September 5-8 2016).1717

Sertel, O., Kong, J., Catalyurek, U.V., Lozanski, G., Saltz, J.H., Gurcan, M.N., 2009.1718

Histopathological image analysis using model-based intermediate representations and1719

color texture: Follicular lymphoma grading. Journal of Signal Processing Systems 55,1720

169–183.1721

Shen, D., Wu, G., Suk, H.I., 2016. Deep learning in medical image analysis. Annual1722

Review of Biomedical Engineering 19.1723

Shen, F., Liu, W., Zhang, S., Yang, Y., Shen, H.T., 2015a. Learning binary codes for1724

maximum inner product search, in: 2015 IEEE International Conference on Computer1725

Vision (ICCV), IEEE. pp. 4148–4156.1726

Shen, F., Shen, C., Liu, W., Tao Shen, H., 2015b. Supervised discrete hashing, in: Pro-1727

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1728

37–45.1729

Shen, F., Shen, C., Shi, Q., van den Hengel, A., Tang, Z., Shen, H.T., 2015c. Hashing on1730

nonlinear manifolds. IEEE Transactions on Image Processing 24, 1839–1851.1731

Shen, F., Shen, C., Shi, Q., Van Den Hengel, A., Tang, Z., 2013. Inductive hashing on1732

manifolds, in: Proceedings of the IEEE Conference on Computer Vision and Pattern1733

Recognition, pp. 1562–1569.1734

Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J., 2015d. Multi-scale convolutional neural1735

networks for lung nodule classification, in: International Conference on Information1736

Processing in Medical Imaging, Springer. pp. 588–599.1737

Shin, H.C., Orton, M.R., Collins, D.J., Doran, S.J., Leach, M.O., 2013. Stacked autoen-1738

coders for unsupervised feature learning and multiple organ detection in a pilot study1739

using 4d patient data. IEEE Transactions on Pattern Analysis and Machine Intelligence1740

35, 1930–1943.1741

54



Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Sum-1742

mers, R.M., 2016. Deep convolutional neural networks for computer-aided detection:1743

Cnn architectures, dataset characteristics and transfer learning. IEEE Transactions on1744

Medical Imaging 35, 1285–1298.1745

Siemens, . Great growth potential for medical imaging systems. http://www.siemens.1746

com/innovation/en/home/pictures-of-the-future/health-and-well-being/1747

medical-imaging-facts-and-forecasts.html. Accessed October 23, 2016.1748

Siggelkow, S., 2002. Feature histograms for content-based image retrieval. Ph.D. thesis.1749

Universität Freiburg.1750

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image1751

recognition. arXiv preprint arXiv:1409.1556 .1752

Simpson, M.S., You, D., Rahman, M.M., Demner-Fushman, D., Antani, S., Thoma, G.R.,1753

2012. Iti’s participation in the imageclef 2012 medical retrieval and classification tasks.,1754

in: CLEF (Online Working Notes/Labs/Workshop).1755

Sivic, J., Zisserman, A., 2003. Video google: A text retrieval approach to object matching1756

in videos, in: Computer Vision, 2003. Proceedings. Ninth IEEE International Confer-1757

ence on, IEEE. pp. 1470–1477.1758

Slichter, C.P., 2013. Principles of magnetic resonance. volume 1. Springer Science &1759

Business Media.1760

Smolensky, P., 1986. Information processing in dynamical systems: foundations of har-1761

mony theory, in: Parallel Distributed Processing: Explorations in the Microstructure1762

of Cognition, vol. 1, MIT Press. pp. 194–281.1763

Society, A.C., 2013. Breast Cancer Facts & Figures 2013-2014. volume 1. American Cancer1764

Society.1765

Song, L., Liu, X., Ma, L., Zhou, C., Zhao, X., Zhao, Y., 2012. Using hog-lbp features and1766

mmp learning to recognize imaging signs of lung lesions, in: Computer-Based Medical1767

Systems (CBMS), 2012 25th International Symposium on, IEEE. pp. 1–4.1768

of South Florida, U., . Usf digital mammography homepage. http://marathon.csee.1769

usf.edu/Mammography/. Accessed October 23, 2016.1770

of Southern California, U., . Alzheimer’s disease neuroimaging initiative. http://adni.1771

loni.usc.edu/. Accessed October 23, 2016.1772

Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014.1773

Dropout: a simple way to prevent neural networks from overfitting. Journal of Ma-1774

chine Learning Research 15, 1929–1958.1775

55

http://www.siemens.com/innovation/en/home/pictures-of-the-future/health-and-well-being/medical-imaging-facts-and-forecasts.html
http://www.siemens.com/innovation/en/home/pictures-of-the-future/health-and-well-being/medical-imaging-facts-and-forecasts.html
http://www.siemens.com/innovation/en/home/pictures-of-the-future/health-and-well-being/medical-imaging-facts-and-forecasts.html
http://www.siemens.com/innovation/en/home/pictures-of-the-future/health-and-well-being/medical-imaging-facts-and-forecasts.html
http://www.siemens.com/innovation/en/home/pictures-of-the-future/health-and-well-being/medical-imaging-facts-and-forecasts.html
http://marathon.csee.usf.edu/Mammography/
http://marathon.csee.usf.edu/Mammography/
http://marathon.csee.usf.edu/Mammography/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/


Stricker, M.A., Orengo, M., 1995. Similarity of color images, in: IS&T/SPIE’s Symposium1776

on Electronic Imaging: Science & Technology, International Society for Optics and1777

Photonics. pp. 381–392.1778

Szabo, T.L., 2004. Diagnostic ultrasound imaging: inside out. Academic Press.1779

Sze-To, A., Tizhoosh, H.R., Wong, A.K., 2016. Binary codes for tagging x-ray images via1780

deep de-noising autoencoders, in: Neural Networks (IJCNN), 2016 International Joint1781

Conference on, IEEE. pp. 2864–2871.1782

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,1783

V., Rabinovich, A., 2015. Going deeper with convolutions, in: Proceedings of the IEEE1784

Conference on Computer Vision and Pattern Recognition, pp. 1–9.1785

Tabesh, A., Teverovskiy, M., Pang, H.Y., Kumar, V.P., Verbel, D., Kotsianti, A., Saidi,1786

O., 2007. Multifeature prostate cancer diagnosis and gleason grading of histological1787

images. IEEE Transactions on Medical Imaging 26, 1366–1378.1788

Tamura, H., Mori, S., Yamawaki, T., 1978. Textural features corresponding to visual1789

perception. IEEE Transactions on Systems, Man, and Cybernetics 8, 460–473.1790

Tang, L.H.Y., Hanka, R., Ip, H.H.S., 1999. A review of intelligent content–based indexing1791

and browsing of medical images. HIJ 5, 40–49.1792

TCIA, . The cancer imaging archive. http://www.cancerimagingarchive.net/. Ac-1793

cessed October 23, 2016.1794

Tian, G., Fu, H., Feng, D.D., 2008. Automatic medical image categorization and anno-1795

tation using lbp and mpeg-7 edge histograms, in: 2008 International Conference on1796

Information Technology and Applications in Biomedicine, IEEE. pp. 51–53.1797
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