

Supported by:

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

Hes·so/// Valais School of Management & Tourism

A Novel Agent Software Architecture Inspired by Psychology

Khoa Nguyen, René Schumann University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland

Introduction

- Agent based technologies have been used to simulate human society and aim to provide explanation for emerging behaviours and social phenomena. \bullet
- Current state-of-the-art agent architectures (i.e. BDI, EMIL-A, SOAR, CLARION) were inspired by technical developments of Computer Science, which can cause \bullet gap in communication with non-technical scholars since they often do not consider metaphors of the application domain.
- We propose a new agent architecture based on the Triandis' Theory of Interpersonal Behaviour (TIB). It originates from psychology and therefore we consider it \bullet to be more suitable for the usage in interdisciplinary research, as it enables domain experts to encode better human-like decision-making processes.

Objectives

- Develop a new agent architecture incrementally from individual cognitive components of TIB. \bullet
- Create a framework to implement an agent-based computational economics model (BedDeM) that focuses on heterogeneous mobility demand of individuals. \bullet

Triandis' Theory of Interpersonal Behaviour

- **Provides a large set of aspects** that contributes to decision-making in psychology and can be incorporated inside an agent design.
- Can **reflect other behaviour theories** by exchanging the psychological elements and assigning weights to them.
- **Cover perspectives** (such as cognitive, social, affective, learning) that are partly missing from previous researches.

New Agent Architecture

Current State of BedDeM

- **BedDeM Configurator** pre-processes raw input data (e.g. attributes, time series).
- **Controller** generates agents and schedules them according to their list of activities (ordered by time) and starts the simulation.
- **Reporter** collects the result at region level after the simulation finishes.

Previous Experiment*

Objective: Determine whether BedDeM is capable of mimicking neoclassical linear demand curve if agent is hyper-rational (e.g. only considers two parameters: cost and time).

- An agent first **selects** a single isolated decision-making **task** from its schedule.
- Its personal desire/goal is then combined with external means (provided by \bullet the external environment) to generate the list of possible actions.
- Actions are **ranked** (or given a normalised value) according to specific \bullet psychological aspects, which are organized into layers (or levels).
- The action's value in one level can be **combined together with an** \bullet associated weight to produce a new value in the next level.

For example: According to the price, an agent can rank walking (1), train (2), car (3) - total 6. According to time, it can rank train (1), car (2), walking (3) total 6. If weights of price and time are 7 and 3 respectively, the new value of walking in next level list (Attitude) would be 1/6*7 + 3/6*3 = 2.08 and value of car would be 3/6*7+2/6*3 = 2.75.

- **Method:** The observed values that BedDeM creates are benchmarked with the values that are gained through linear demand curve of private car usage using real data from Swiss Statistical Office's publication.
- **Result:** Correlation coefficient (ρ) ~ -0,98; Coefficient of determination (Rsquared) ~ 96%; Slopes of the linear regression line of the dots and neoclassical demand curve are close to each other (which are -0.06 and -0.05 respectively).

Comparison with neoclassical demand curve

Future directions

- **Extend the framework** to fully reflect all aspects of the TIB model.
- Apply it to other areas (i.e. mobility policies, tourism) and obtain collaborators' feedbacks.
- This process continues until the actions arrive at Behaviour Output. Each \bullet value can then be interpreted as the probability that the action will be performed.
- **Perform action research** with state-of-the-art architectures.

Acknowledgements

This research is part of the activities of SCCER CREST, which is financially ${\color{black}\bullet}$ supported by the Swiss Innovation Agency (Innosuisse).

> **Contact and more information:** khoa.nguyen@hevs.ch, http://silab.hevs.ch/

