
Distributed container-based evaluation
platform for private/large datasets

Ivan Eggel
HES-SO

Institute of Information Systems
TechnoArk 3, 3960 Sierre, Switzerland

Email: ivan.eggel@hevs.ch

Roger Schaer
HES-SO

Institute of Information Systems
TechnoArk 3, 3960 Sierre, Switzerland

Email: roger.schaer@hevs.ch

Henning Müller
HES-SO

Institute of Information Systems
TechnoArk 3, 3960 Sierre, Switzerland

Email: henning.mueller@hevs.ch

Abstract—The rise of big data and artificial intelligence tech-
niques such as deep learning has lead to an exponential increase
in stored data in various fields, including medical imaging,
genetics and financial trading. Sharing these increasing amounts
of data for research is challenging, as privacy risks increase with
the increased size of data. Physically moving very large datasets
to researchers is inconvenient, as download or sending physical
hard disks are not optimal. Research on sensitive data is often
not possible, as sharing is not legal. The popularity of container-
based technologies such as Docker has revolutionized the way
applications are deployed, due to their self-sufficient, light-weight
and portable nature. In this paper, we propose a novel distributed
platform using containers for simple execution and evaluation of
research applications on the data owner’s infrastructure, bringing
the algorithms to the data. This approach avoids the cumbersome
transfer of large datasets and can help circumventing problems
linked to non-shareable data by providing a sandboxed execution
environment with read-only access to the data. At no point
the data leave the data owner’s site, giving researchers access
to their evaluation results, only, and not the data themselves.
The presented proof-of-concept confirms the feasibility of a
distributed container-based evaluation platform for large and/or
sensitive data. This has several advantages, including execution
of code instead of submission of result files and availability of
otherwise inaccessible data. The container architecture allows
for minimal computational overhead, no software dependency
management on the infrastructure, distributed runtime envi-
ronment and isolation of processes from the underlying host
system. A version addressing various identified architectural and
security-related challenges has the potential to be deployed in
a production setting and therefore allows researchers to gain
insights from previously inaccessible data. One goal is to target
hospitals with increasingly strong local infrastructure for storage
and computation, needed for artificial intelligence based decision
support (genetics and imaging).

I. INTRODUCTION

Over the past few years, the cheap data storage and strong
computation power in connection with artificial intelligence
techniques such as deep learning have lead to an exponential
increase in produced data in various fields such as health or
the finance industry [1]. For instance, whole slide histopathol-
ogy imaging allows to digitize biopsies with a resolution in
the gigapixel range (dimensions of approximately 100’000 x
100’000 pixels) and a required disk space of several GigaBytes
(GBs) per image. Whole Slide Imaging (WSI) is increasingly
used also for clinical routine and many computerised WSI
analysis methods are currently being developed to reduce the

workload of pathologists. Thus, in the coming years hospitals
are expected to produce an increasing number of WSIs with
work flows becoming entirely digital and leading to important
storage requirements [2], [3], [4]. Making such big data
available for research has gained momentum in the medical
data decision support field, as large-scale analysis has led to
major research contributions and understanding of complex
physical or biomedical phenomena and structures [5].

Big data analysis will likely play an even more important
role as a driving force in medicine than in other industries.
Digital medicine is now a reality, as the complexity of data,
for example genomics, proteomics, metabolomics etc. can not
be mastered manually anymore. Thus, a principal challenge for
preclinical and clinical research is to get access to sufficiently
high quality, informative data of large size [6], so modern
artificial intelligence techniques such as deep learning can be
trained and subsequently used to show performance [7].

Sharing large datasets of several TeraBytes (TBs) is a
challenge on its own. Usually, it requires hard disks to be
sent around through the postal service or providing the data
on the Internet via a download mechanism, which can poten-
tially take several weeks or even months, strongly depending
on the available bandwidth. On the client side, researchers
require high storage capacity, as well as a strong computing
infrastructure [8], which is not always the case for Universities
in lower resource countries, creating a strong digital divide.
Beyond this, more dynamic datasets (quickly changing data
items) can currently not be used efficiently, as the time to
prepare a test collection is too long and when distributed the
data are already outdated in some cases [9].

Another aspect that can make it extremely difficult to
distribute datasets is the involvement of confidential data, for
example of medical nature, which often can not leave the data
owner’s closed environment (e.g. a hospital). There is no con-
ventional way of sharing such data with external researchers,
except via an ethics approval and usually informed consent by
the patient, followed by anonymization/pseudonimization [9],
which is not trivial in case of very large data sets. As a
consequence, researchers can be slowed by administrative
procedures or a lack of data, meaning that the scientific
discoveries are sometimes equally slowed.



Kaggle1, who claims to be the world’s largest community of
data scientists, statisticians, and machine learning engineers,
provides researchers with a platform for the evaluation of
their machine-learning related algorithms on specific datasets
provided by challenge organizers. It follows the traditional
approach where participants download the dataset and then
submit the results obtained by running their algorithms, usu-
ally in the form of a Comma-Separated Values (CSV) file.
With this approach, the necessity of moving data around
remains and this may become insurmountable when very
large datasets are involved. DrivenData2 is another platform
following a similar strategy, where participants of competitions
submit results files directly. Anjos et al. propose BEAT3, a
web-based platform for Open Science that allows not only
submitting and evaluating results, but also defining modular
toolchains and executing code directly on the platform [10].
The main limitation of the platform is that only a Python
processing backend is currently available, therefore restricting
the usage to researchers familiar with this language and its
libraries. Moreover, the platform is oriented towards code
and data sharing, limiting its applicability for usage with
confidential data.

Multiple initiatives have tackled the problem of running
evaluations on undistributable data. The main outcome, sum-
marized under the Evaluation-as-a-Service (EaaS) paradigm,
has the idea of keeping the data in a central place and allowing
access to researchers in the form of an Application Program-
ming Interface (API), Virtual Machine (VM) or other possibil-
ities to ship executables [11], [12], [13]. As an example, the
FP7 EU Project Visual Concept Extraction Challenge in Radi-
ology (VISCERAL)4 developed a cloud-based framework for
experimentation on large medical datasets where participants
would implement solutions to a specific task on VMs located
in a cloud environment, effectively bringing the algorithms
to the data. The organizers then ran the evaluation on the
results produced by the participants [14], [15], [16]. Similarly
to VISCERAL, Testbed for Information Retrieval Algorithms
(TIRA)5 is also a platform that allows participants to run their
algorithms in VMs and submit their results for subsequent
evaluation [17]. However, VMs are considered heavyweight
as they include a full copy of an Operating System (OS)
and other necessary binaries and libraries in order to run the
code used for the analysis, along with emulating all hardware
components of a computer and introducing overheads in
accessing computational, network or storage resources.

Recently, container-based technologies such as Docker6

have become increasingly popular, mainly in the software
developer community and the Development and Operations
(DevOps) software engineering culture. A Docker container
is an instance of a container image that can be described as

1http://kaggle.com/, as of 22.02.2018
2http://drivendata.org/, as of 22.02.2018
3http://beat-eu.org/platform/, as of 22.02.2018
4http://visceral.eu/, as of 22.02.2018
5http://tira.io/, as of 23.02.2018
6http://docker.com/, as of 22.02.2018

a lightweight, self-sufficient executable package of a piece of
software that contains everything needed to run an application,
including code, runtime and dependencies. This ensures that
a container always runs the exact same way regardless of the
execution environment. Compared to VMs, containers do not
emulate the underlying hardware with a hypervisor but run
directly as an isolated process on the same OS kernel as the
host OS. This greatly reduces overhead, such as system set-
up, disk space and boot up time, which makes them highly
portable [18], [19]. In terms of performance, a container only
adds negligible overhead compared to native execution [20],
[21], [22], [23]. Originally, containers were mainly used for
software development and deployment, however there is also a
trend that tends to shift thinking away from traditional patterns
towards more creative ways of how to further exploit the
container technology in various domains, such as facilitating
reproducibility in research [24], [25].

Efforts towards container-based evaluation have recently
been made by CodaLab7. CodaLab Competitions is an open
source framework for running competitions that also involves
code submission. As soon as a participant submits code, it is
run in a Docker container and a scoring program provided by
the organizers evaluates the results produced by the executed
code. A disadvantage of this approach, making CodaLab not
a highly flexible solution, is the predefined container image in
which the participant’s code is run, not allowing for an entirely
free choice of programming languages and technologies by the
participant (rather the organizer’s choice). Another downside
of CodaLab is that datasets need to be uploaded to a cloud,
making this solution possibly incompatible with confidential
data.

In order to foster maximum usage of large and/or confi-
dential data, two main aspects need to be addressed. First,
the data must remain inside the data owner’s site. Second, a
portable and lightweight solution allowing external researchers
to have their models evaluated on these data needs to be
provided. To achieve this, the researchers’ algorithms are
executed directly on the data owner’s internal infrastructure,
bringing the algorithm to the data, therefore making them only
visible to the algorithm itself and not any human.

In this paper we present a proof-of-concept of a distributed
container-based evaluation platform for private/large datasets
based on Docker with swarm mode (cluster). The prototype
enables linking a Docker image (containing their analysis
code) to an internal dataset and specifying constraints on the
type of worker node in the cluster the users’ code should be
run on. After the execution of the container, the users have
the possibility to have their results evaluated.

II. METHODS

A. Platform architecture

The architecture of the proposed prototype consists of the
following main components:

7http://codalab.org/, as of 06.02.2018

http://kaggle.com/
http://drivendata.org/
http://beat-eu.org/platform/
http://visceral.eu/
http://tira.io/
http://docker.com/
http://codalab.org/


• A frontend user interface based on the open source
Angular8 web application platform that allows building
scalable applications for desktops and mobile devices.

• A MySQL9 database for storing all data related to partic-
ipants, datasets, evaluation instances and other metadata
linked to the platform.

• A Java-based RESTful backend linking the frontend to
the database, developed using the Spring10 application
framework and its Spring Boot11 solution for rapid ap-
plication development and deployment.

• A Docker Swarm12 cluster allowing execution of compu-
tation instances in a distributed and configurable manner.
The native ”Swarm mode” feature introduced in Docker
v1.12.0 was used to create a cluster of Docker computa-
tion nodes.

• A Spring-based REpresentational State Transfer (REST)
service allowing interaction with the Docker Swarm
cluster. This service is tasked with calling the Docker
Engine API13 to enable starting, stopping and monitoring
Docker instances within the Docker swarm. An existing
library14 was used to simplify communication with the
Docker Engine API.

The choice of technologies was based on the need to quickly
develop a robust and flexible platform. See Figure 1 for an
overview of the platform architecture.

The Docker swarm is composed of 5 nodes, including the
swarm leader (that also acts as a worker) and 4 additional
worker nodes. The nodes are all servers located within the
infrastructure of our research institute and possess different
characteristics:

• the number of Central Processing Unit (CPU) cores varies
between 12 and 48

• the amount of Random-Access Memory (RAM) varies
between 128GB and 1024GB

• ne of the worker nodes is equipped with 2 NVIDIA Tesla
K80 Graphical Processing Unit (GPU) Accelerators, and
another has an NVIDIA GRID K1 graphics board

Since the nodes are heterogeneous, descriptive labels are added
to them in order to allow users of the platform to define
constraints to choose a specific type of node (”high memory”,
”high CPU”, ”GPU-enabled”, etc.) for the execution of their
computation instances.

Leveraging the NVIDIA GPUs installed in two of the
used servers is achieved through the use of the ”nvidia-
docker” utility15 that allows accessing the NVIDIA hardware
and Compute Unified Device Architecture (CUDA) drivers
installed on the host OS from within Docker containers.

8http://angular.io/, as of 02.02.2018
9http://mysql.com/, as of 02.02.2018
10http://spring.io/, as of 02.02.2018
11http://projects.spring.io/spring-boot/, as of 05.02.2018
12http://docs.docker.com/engine/swarm/, as of 05.02.2018
13http://docs.docker.com/develop/sdk/, as of 05.02.2018
14http://github.com/spotify/docker-client/, as of 06.02.2018
15http://github.com/NVIDIA/nvidia-docker/, as of 13.02.2018

Fig. 1. Overview of the architecture of the developed platform.

Finally, to allow streaming of log messages from Docker
containers to the frontend interface, the HyperText Markup
Language 5 (HTML5) WebSocket API16 was used in con-
junction with a JavaScript library using the Simple Text-
Oriented Messaging Protocol (STOMP)17 protocol on the
client side, while the server side was developed using the
Spring framework’s integrated WebSocket support. The server
polls the Docker Swarm leader for new log messages every
second and pushes the responses to an in-memory message
broker which the client can subscribe to.

B. Computational task

A sample computational task was prepared in order to test
and evaluate the platform. The task consists of a Python script

16http://websocket.org/aboutwebsocket.html/, as of 14.02.2018
17http://stomp.github.io/, as of 14.02.2018

http://angular.io/
http://mysql.com/
http://spring.io/
http://projects.spring.io/spring-boot/
http://docs.docker.com/engine/swarm/
http://docs.docker.com/develop/sdk/
http://github.com/spotify/docker-client/
http://github.com/NVIDIA/nvidia-docker/
http://websocket.org/aboutwebsocket.html/
http://stomp.github.io/


Image Patch Prediction Heat Map

20X

40X

Fig. 2. Illustration of the computational task used for testing the platform.
In the left column are two patches from a histopathology image at different
magnification levels (20X and 40X). In the right column are the corresponding
heat maps generated by the model trained in the computational task, which
predict the average area of nuclei within the patch.

using the Keras18 Deep Learning library with the TensorFlow19

backend in order to train a model for automatically detecting
the scale of histopathology image patches from the biomedical
literature. It is inspired by [26] and works by predicting the
average area occupied by cell nuclei within the patch to deter-
mine its magnification level. The code runs both on CPU-only
systems, as well as hosts configured for GPU computation.
Examples of input patches at two different magnification levels
(20X and 40X) and the corresponding heat maps generated by
the trained model are shown in Figure 2. The training process
is performed on ∼23′000 sample patches and a validation of
the model is performed on ∼6′500 samples. The training code
was simplified to allow reasonable run times when using CPU
computation: All parameters are fixed (no hyperparameter
optimization is performed) and the number of epochs was
limited to 5.

III. RESULTS

The developed prototype is a basic proof-of-concept of
a distributed container-based evaluation platform for pri-
vate/large datasets. This section gives a detailed view on the
proposed system and presents the results obtained from the
comparison of execution times of a sample algorithm executed
in a container and in a native environment on different
architectures.

A. Platform description

In order to make the entire application as portable and
extensible as possible, all platform components were deployed

18http://keras.io/, as of 14.02.2018
19http://tensorflow.org/, as of 14.02.2018

as micro services in separate Docker containers. The Angu-
lar web client is the only point of interaction between the
researcher and the internal backend components such as the
database and the REST APIs.

1) Instance creation: On the home page of the web inter-
face, the user is presented with a list of available datasets,
including brief descriptions. As soon as a dataset is selected,
the user gets redirected to a detailed view containing all
necessary information on how to conduct the analysis, e.g.
a list of contained files and their respective location. The next
step for the researcher is to create a Docker image containing
the analysis code, as well as all dependencies needed to run
the executable. In order to minimize the entry barriers for
researches unfamiliar with Docker, we provide a basic image
they can extend, however it is possible (and often needed)
to create a Docker image from scratch. Currently, a user has
to upload their image to the public Docker Hub20, a cloud-
based registry service that is able to host Docker images and
that supports discovery and automatic download of images
from within a local Docker client. As soon as the image is
pushed to the registry, the user can create a new so-called
instance. In the context of our prototype, an instance represents
an entity linked to a dataset, a Docker image and an execution
environment. Creating an instance consists of the provision of
a name, the Docker image that should be run in a container,
the dataset to use, and finally the execution node type, with the
latter specifying the type of machine within the Docker cluster
environment. For instance, thanks to the distributed Docker
environment, users have the choice to run their code on a high-
CPU node for computation intensive or high-RAM for memory
demanding tasks. In addition, we also provide a GPU option,
ideal for deep learning scenarios, which greatly benefit from
the massively parallel architecture. Docker in swarm mode also
acts as a load balancer, trying to equally distribute the load
among the different worker nodes and to reschedule a node’s
task on another node as soon as it becomes unavailable.

2) Instance execution: The creation of an instance does not
imply direct execution of the code, it rather creates the nec-
essary entries in the backend database in order for the system
to know how to run the container. Within the instance-detail
view (see Figure 3), the researcher is able to run the instance,
factually meaning the execution of the Docker container within
the Docker cluster via the call of the REST Docker backend,
which in turn communicates with the Docker Engine API. As
soon as the container is launched, the user is provided with the
current state of the container, e.g. ”RUNNING” if the code is
being executed, ”FAILED” when the container exited with an
error code or ”COMPLETE” in case the code has completed
successfully. This helps the user to get minimal feedback and
therefore take necessary measures if something went wrong.
The interface also supports the display of a running container’s
”stdout” and ”stderr” streams by printing them to the log
console (implemented via an HTML5 WebSocket). However,
this feature must not be enabled for highly confidential data

20http://hub.docker.com/, as of 22.02.2018

http://keras.io/
http://tensorflow.org/
http://hub.docker.com/


Fig. 3. Instance-detail view of the platform user interface.

Fig. 4. Interaction of platform-, analysis- and evaluation containers.

as the user’s code could transfer sensitive information to the
output streams.

3) Dataset access: In order to correctly deploy an analysis
container, it is essential to link it to the respective dataset,
since by default Docker containers are not allowed to access

the host file system. To achieve such an access, the container
is assigned a read-only bind-mount from the corresponding
dataset directory on the host to the ”/data” directory inside the
container. With this approach, users have access to the dataset
by referring to the ”/data” base path in their code. Internally,
all datasets are located on Network-Attached Storage (NAS)
drives with Network File System (NFS) access from all worker
nodes in our code but architectures can slightly vary.

4) Node execution type: The user’s choice of the node
execution type is implemented via the placement con-
straints provided by Docker’s swarm mode. Worker nodes
in the cluster are labelled with specific metadata, such as
”node.type=highcpu”, designating the type of machine. Upon
deployment of the container, the placement constraint is passed
as an argument, making Docker take care of which node
the container is placed on. In case no appropriate nodes
exist, the deployment fails, which is necessary as often the
analysis code is optimized for a certain architecture. In order
to make placement constraints work for containers requiring
GPUs, a workaround had to be supplied by adding the the
GPU device IDs to the default Docker runtime in the Docker
engine configuration file on the GPU nodes. Additionally,
activating the NVIDIA wrapper for Docker swarm mode via
a configuration file was necessary to allow running GPU-
enabled code in our Docker cluster. Thanks to these changes,
containers demanding GPUs can be deployed by providing



a specific ”generic resource” argument to the Docker Engine
API.

5) Evaluation: The main concept for the automatic eval-
uation part is shown in Figure 4. One requirement is that
the code running in the container must write the analysis
results into a specific format to a predefined file path (e.g.
”/results.csv”). The second precondition is that each dataset
must be linked to an existing Docker image containing the
code for the evaluation of the analysis results produced for
that dataset. This concept empowers the result evaluation
to run in a container in the swarm and thus ensures high
encapsulation and portability of the evaluation component.
This also makes it possible to easily add or replace an
evaluation method. Furthermore, evaluation worker nodes can
be appointed by labelling them accordingly. Upon deployment
of the evaluation container a designated evaluation node is
then assigned as execution environment by passing a special
placement constraint as an argument. Consequently, as soon
as the container has finished running the analysis code on
the dataset, the user can launch the evaluation, which in
turn triggers the deployment of a new container derived from
the predefined evaluation image. However, in order to get
the results into the evaluating container, they first need to
be copied from the user’s completed container. This is a
cleaner and more secure solution than the direct writing of
the results into a host mapped directory by the code. After
the provision of the result file, the evaluation container is
able to run its code against those results and finally produce
the evaluation scores. Those in turn will be written into a
JavaScript Object Notation (JSON) file inside a host mapped
directory linked to a NAS drive. Going from there, the system
transfers the file contents to a document-oriented database
(such as MongoDB21) and finally incorporates the evaluation
scores into the user’s instance-detail view.

B. Containers vs. standard execution

In order to analyze the potential overhead of using the
Docker Swarm platform instead of directly executing a com-
putational task (CPU or GPU-based) on a host, an experiment
was run to compare the runtime of a given task on the 5 cluster
nodes, once using direct execution and a second time using the
developed platform, through the Docker Swarm cluster. The
results are shown in Figure 5. Experiments on CPU nodes were
run using the default multi-threading configuration of Keras
and TensorFlow. For the GPU runs, a single GPU was used in
both cases (Tesla K80 and GRID K1 nodes) for computation.

IV. CONCLUSIONS

This paper presents a proof-of-concept for a distributed
container-based evaluation platform for private/large datasets,
as they occur in medical data analysis. We describe the
problems solved, analyze container execution times, discuss
the limitations of the current solution and give an outlook to
future developments.

21http://mongodb.com/, as of 22.02.2018

Fig. 5. Comparison of run times between direct execution of a Deep Learning
computation task and execution through the platform using Docker Swarm.

A. Problems solved

Users are able to create their own Docker images that are
then run as containers analysing confidential data directly on
the data owner’s infrastructure. On the one hand this avoids
the distribution of large data and all the inconveniences this
causes. On the other hand, only the executed code inside the
container comes into contact with the dataset. The researchers
are granted access to evaluation results alone, implying that
at no point in time they see the data themselves first-hand.
The distributed architecture of the system based on Docker’s
swarm mode allows the application of advanced concepts such
as load balancing amongst worker nodes, as well as container
placement constraints in order to define on what kind of node
the code should be run. This opens up the opportunity to
deploy containers that rely on specific hardware and thus also
allows the execution of GPU-oriented code, which is often
becoming a requirement due to the rising popularity of deep
learning techniques. Another benefit of providing an evaluation
platform that supports the submission of containers is the
free choice of programming languages and frameworks by
researchers, effectively avoiding tight coupling of a specific
technology with the ability to perform analysis, as it would be
the case with direct code submission. The ”algorithm-to-the-
data” paradigm shift, in combination with the use of software
containers represents a novelty that has the potential to make
large/confidential data more easily accessible for research,
particularly in the medical domain.

http://mongodb.com/


B. Analysis of containers vs. standard execution

The comparison of execution times between a standard
direct execution and an execution using Docker showed no
significant difference between both options in terms of run-
time. The minor differences in runtime between the standard
and Docker executions can be attributed to the varying global
system load on the computation nodes. Docker therefore does
not introduce any overhead for a typical CPU- or GPU-
intensive task. It is interesting to note that a CPU-based
execution on a host with 2 Xeon® E5-2670 v2 processors was
faster than an execution on a system using an NVIDIA GRID
K1 graphics board for computation, most probably due to the
limited number of CUDA computation cores available in one
GRID K1 GPU.

C. Limitations and proposed improvements

Despite many benefits of the proposed approach, we would
also like to address a few shortcomings and introduce possible
solutions.

1) Image repository: A current weakness of the system
is to rely on Docker Hub as an image hosting platform.
Docker images of non-paying customers are implicitly made
publicly available. However, researchers might not be willing
to publicly share their code and do not necessarily want to
pay a fee in order to keep their images private. On the other
hand, the implementation for the system to access these private
images on Docker Hub risks not to be trivial and might even
need to internally store the users’ credentials for Docker Hub.
A better solution would be the introduction of an internal
private registry server, including user authentication allowing
users to push their images. This keeps the images (and thus
the contained code) hidden from the outside world but enables
usage by the internal platform.

2) Quotas / Scheduling: Considering the possibility of a
large number of participants using the system and depending
on the available worker nodes, the Docker swarm cluster
can become overloaded by running analysis containers. To
counteract this, the platform can establish quotas on memory
and CPU usage. This is already natively supported in Docker
and also at the same time allows the use of a scheduler that
leaves a container in a ’PENDING’ state as long as insufficient
resources are available in the cluster.

3) Security implications: Letting researchers run their code
in a sandboxed environment on confidential data may be seen
as a safe approach compared to execution in a traditional set-
ting. However, in order to guarantee the privacy and safety of
private datasets, several potential security risks and loopholes
bust be carefully studied and addressed accordingly.
• In order to prohibit the users’ code to send out sensitive

information about the dataset, all incoming and outgoing
network traffic not concerning internal Docker swarm
communication must be blocked. This can be achieved by
using separate networks for swarm management related
traffic and application related traffic, where the latter
would then be completely disabled for the containers
running the analysis code.

• Since multiple Docker containers may share the same
Linux kernel on a given worker node in the swarm, it is
crucial that kernel security patches are applied as soon
as they become available. This reduces the likelihood of
a compromised system due to arbitrary container code
execution.

• The security guidelines and best practises published by
Docker must be followed accurately and the version of
Docker should be kept to the latest stable version, in order
to minimize Docker-internal security risks.

• There needs to be a procedure to make participants sign
a legally binding End User Agreement in which they
recognize the confidentiality of the data and agree not
to misuse the data.

4) Usage of Docker images: Requiring users of the system
to develop their own Docker images might lower the usage
potential of the proposed platform, as learning the concepts of
container technology translates to an important learning curve.
Despite this fact, we believe that using containers is a highly
portable way of code deployment and in this case it might
justify the means. The large number of free Docker images
available on Docker Hub can be reused and built upon, greatly
reducing the effort needed to create a custom image containing
the analysis code.

D. Future developments
The proof-of-concept presented in this paper has built a

solid foundation for further improvements towards a more
mature solution regarding distributed container-based evalu-
ation systems for confidential data. In case all aforementioned
improvements, notably the ones concerning security, can be
reliably improved, a prototype could be deployed and tested
in a staging setting and then moved to a real-life test-bed.
After that, a deployment in production environments such as
a hospital is considered, possibly also on distributed data that
are stored in several institutions. This however needs solid en-
gineering effort on a high expertise level and requires external
security audits. Additionally, legal and political barriers are
possible. An open source release of the project can help build
a stable/mature version and at the same time reveal if there is
enough general interest in the topic.

ACKNOWLEDGMENT

This work was partly supported by the RCSO project
CaDEnCe 80566 of the HES-SO.

REFERENCES

[1] J. Wood, T. Andersson, A. Bachem, C. Best, F. Genova, D. R. Lopez,
W. Los, M. Marinucci, L. Romary, H. Van de Sompel et al., “Riding
the wave: How Europe can gain from the rising tide of scientific data,”
European Union, 2010.

[2] M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M.
Rajpoot, and B. Yener, “Histopathological image analysis: A review,”
IEEE Reviews in Biomedical Engineering, vol. 2, pp. 147–171, 2009.

[3] O. Jimenez-del-Toro, S. Otálora, M. Andersson, K. Eurén, M. Hedlund,
M. Rousson, H. Müller, and M. Atzori, “Analysis of histopathology im-
ages: From traditional machine learning to deep learning,” in Biomedical
Texture Analysis: Fundamentals, Applications, Tools, and Challenges
Ahead, A. Depeursinge, O. S. Al-Kadi, and J. R. Mitchell, Eds. Elsevier,
2017.



[4] L. Pantanowitz, P. N. Valenstein, A. J. Evans, K. J. Kaplan, J. D. Pfeifer,
D. C. Wilbur, L. C. Collins, and T. J. Colgan, “Review of the current state
of whole slide imaging in pathology,” Journal of Pathology Informatics,
vol. 2, 2011.

[5] M. P. Washburn, D. Wolters, and J. R. Yates, “Large–scale analysis of the
yeast proteome by multidimensional protein identification technology,”
Nature Biotechnology, vol. 19, no. 3, pp. 242–247, 2001.

[6] C. Auffray, R. Balling, I. Barroso, L. Bencze, M. Benson, J. Bergeron,
E. Bernal-Delgado, N. Blomberg, C. Bock, A. Conesa, S. Del Signore,
C. Delogne, P. Devilee, A. Di Meglio, M. Eijkemans, P. Flicek, N. Graf,
V. Grimm, H.-J. Guchelaar, Y.-K. Guo, I. G. Gut, A. Hanbury, S. Hanif,
R.-D. Hilgers, A. Honrado, D. R. Hose, J. Houwing-Duistermaat,
T. Hubbard, S. H. Janacek, H. Karanikas, T. Kievits, M. Kohler,
A. Kremer, J. Lanfear, T. Lengauer, E. Maes, T. Meert, W. Müller,
D. Nickel, P. Oledzki, B. Pedersen, M. Petkovic, K. Pliakos, M. Rattray,
J. R. I Màs, R. Schneider, T. Sengstag, X. Serra-Picamal, W. Spek,
L. A. I. Vaas, O. van Batenburg, M. Vandelaer, P. Varnai, P. Villoslada,
J. A. Vizcaı́no, J. P. M. Wubbe, and G. Zanetti, “Making sense of big
data in health research: Towards an EU action plan,” Genome Medicine,
vol. 8, no. 1, p. 71, 2016.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[8] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M.
Patel, R. Ramakrishnan, and C. Shahabi, “Big Data and Its Technical
Challenges,” Communications of the ACM, vol. 57, pp. 86–94, 2014.

[9] A. Hanbury, H. Müller, and G. Langs, Eds., Cloud–Based Benchmarking
of Medical Image Analysis. Springer International Publishing, 2017,
vol. 6.

[10] A. Anjos, L. El-Shafey, and S. Marcel, “BEAT: An Open-Source Web-
Based Open-Science Platform,” arXiv:1704.02319 [cs], 2017.

[11] F. Hopfgartner, A. Hanbury, H. Müller, N. Kando, S. Mercer,
J. Kalpathy-Cramer, M. Potthast, T. Gollub, A. Krithara, J. Lin, K. Ba-
log, and I. Eggel, “Report on the evaluation–as–a–service (eaas) expert
workshop,” ACM SIGIR Forum, vol. 49, no. 1, pp. 57–65, 2015.

[12] A. Hanbury, H. Müller, K. Balog, T. Brodt, G. V. Cormack, I. Eggel,
T. Gollub, F. Hopfgartner, J. Kalpathy-Cramer, N. Kando, A. Krithara,
J. Lin, S. Mercer, and M. Potthast, “Evaluation–as–a–service: Overview
and outlook,” ArXiv, vol. 1512.07454, 2015.

[13] J. Lin and M. Efron, “Evaluation As a Service for Information Retrieval,”
SIGIR Forum, vol. 47, no. 2, pp. 8–14, 2013.

[14] A. Hanbury, H. Müller, G. Langs, and B. H. Menze, “Cloud–based
evaluation framework for big data,” in Future Internet Assembly (FIA)
book 2013, ser. Springer LNCS, A. Galis and A. Gavras, Eds. Springer
Berlin Heidelberg, 2014, pp. 104–114.

[15] A. Hanbury, H. Müller, G. Langs, M. A. Weber, B. H. Menze, and
T. S. Fernandez, “Bringing the algorithms to the data: cloud–based
benchmarking for medical image analysis,” in CLEF conference, ser.
Springer Lecture Notes in Computer Science, 2012.

[16] O. Jimenez-del-Toro, H. Müller, M. Krenn, K. Gruenberg, A. A.
Taha, M. Winterstein, I. Eggel, A. Foncubierta-Rodrı́guez, O. Goksel,
A. Jakab, G. Kontokotsios, G. Langs, B. Menze, T. Salas Fernandez,
R. Schaer, A. Walleyo, M.-A. Weber, Y. Dicente Cid, T. Gass, M. Hein-
rich, F. Jia, F. Kahl, R. Kechichian, D. Mai, A. B. Spanier, G. Vincent,
C. Wang, D. Wyeth, and A. Hanbury, “Cloud–based evaluation of
anatomical structure segmentation and landmark detection algorithms:
VISCERAL Anatomy Benchmarks,” IEEE Transactions on Medical
Imaging, vol. 35, no. 11, pp. 2459–2475, 2016.

[17] T. Gollub, B. Stein, S. Burrows, and D. Hoppe, “TIRA: Configuring,
Executing, and Disseminating Information Retrieval Experiments,” in
2012 23rd International Workshop on Database and Expert Systems
Applications, 2012, pp. 151–155.

[18] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance Overhead
Comparison between Hypervisor and Container Based Virtualization,”
2017, pp. 955–962.

[19] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and Linux containers,” in 2015
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2015, pp. 171–172.

[20] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. F. D. Rose, “Performance Evaluation of Container-Based
Virtualization for High Performance Computing Environments,” in 2013
21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, Feb. 2013, pp. 233–240.

[21] P. D. Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer, and
C. Notredame, “The impact of Docker containers on the performance
of genomic pipelines,” PeerJ, vol. 3, 2015.

[22] J.-W. Park and J. Hahm, “Container-based cluster management plat-
form for distributed computing,” in Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), 2015, p. 34.

[23] C. Arango, R. Dernat, and J. Sanabria, “Performance evaluation of
container-based virtualization for high performance computing environ-
ments,” arXiv preprint arXiv:1709.10140, 2017.

[24] J. Cito and H. C. Gall, “Using docker containers to improve repro-
ducibility in software engineering research,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-
C), 2016, pp. 906–907.

[25] C. Stelly and V. Roussev, “SCARF: A container-based approach to
cloud-scale digital forensic processing,” Digital Investigation, vol. 22,
pp. S39 – S47, 2017.

[26] S. Otálora, O. Perdomo, M. Atzori, M. Andresson, M. Hedlund, and
H. Müller, “Determining the scale of image patches using a deep learn-
ing approach,” in IEEE 15th International Symposium on Biomedical
Imaging, ser. ISBI 2018. IEEE, Apr. 2018.


	Introduction
	Methods
	Platform architecture
	Computational task

	Results
	Platform description
	Instance creation
	Instance execution
	Dataset access
	Node execution type
	Evaluation

	Containers vs. standard execution

	Conclusions
	Problems solved
	Analysis of containers vs. standard execution
	Limitations and proposed improvements
	Image repository
	Quotas / Scheduling
	Security implications
	Usage of Docker images

	Future developments

	References

