
Trusted Registration, Negotiation, and Service
Evaluation in Multi-Agent Systems throughout the

Blockchain Technology
Davide Calvaresi∗†, Alevtina Dubovitskaya†§, Diego Retaggi‡, Aldo F. Dragoni‡ and Michael Schumacher§

∗Scuola Superiore Sant’Anna, Pisa, Italy
†University of Applied Sciences and arts Western Switzerland, Sierre, Switzerland

‡Università Politecnica delle Marche, Ancona, Italy
§EPFL, Lausanne, Switzerland

Abstract—Some recent trends in distributed intelligent systems
rely extensively on agent-based approaches. The so-called Multi-
Agent Systems (MAS) are taking over the management of
sensitive data on behalf of their producers and users (e.g., medical
records, financial investment, energy market). Therefore, trusted
interactions are needed more than ever, while accountability and
transparency among the agents seem crucial characteristics to be
achieved. To do so, recent trends advocate the use of blockchain
technologies (BCT) in MAS. The blockchain is a distributed
ledger technology that can execute programmable transaction
logic, and provides a shared, immutable, and transparent append-
only register of all the actions happening in the network.

Although a few theoretical approaches have already been
proposed, the quest for such a system consolidating BCT and
MAS to guarantee privacy, scalability, transparency, and ef-
ficiency continues. This paper presents a reconciling system
including BCT within the dynamics of a MAS. Such a system
aims at (i) building a solid ground for trusted interactions and
(ii) enabling more characterizing feature-based and trustworthy
ways of computing agent reputation. The system has been tested
in four scenarios with different configurations (regular executions
and involving down-agents or malicious behaviors).

Finally, the paper summarizes and discusses the experience
gained, argues about the strategic choice of binding MAS and
BCT, and presents some future challenges.

I. INTRODUCTION

Nowadays many large and distributed information systems
deal with sensitive data so that skepticism about data pri-
vacy, security, and integrity rised from both scientific and
political circles. Recently some of these distributed systems
have been implemented adopting agent-based approaches,
namely ”Multi-Agent Systems” (MAS), in different sensitive
domains (e.g., e-health [1], [2], assisted living [3], tele-
rehabilitation [4], manufacturing [5], and e-Commerce).

MAS dynamics and models emulate human social systems’
behaviour, hence, when such systems are enabled to manage
autonomously sensitive data the accountability and trust of the
interactions and the agents themselves are mandatory factors.
Over the years, a considerable number of technical and scien-
tific challenges have been faced. Although many remarkable
efforts to develop models and mechanisms guaranteeing secure
communications and trust in MAS have been provided [6],
[7], [8], a viable and sustainable solution meeting all the
requirements has not been identified yet.

Blockchain is a peer-to-peer distributed ledger technology
that provides a shared, immutable and transparent history of

all the transactions in a network. This technology allows to ex-
ecute arbitrary, programmable transaction logic in the form of
smart contracts1 to build applications with trust, accountability
and transparency. It is secured using cryptographic primitives
such as hash function, digital signature, and encryption [9].

This creates a unique opportunity to enhance transparency
and trust for the reputation management within MAS (in
particular if handled by a centralized entity). In open MAS,
where the intentions of the agents can be unknown and driven
by different interests, agents may exhibit malicious behavior.

The promising idea to address the aforementioned
challenges, by integrating MAS with blockchain technologies
(BCT) [10], [11], is gathering theoretical contributions from
many fields. Yet a practical, efficient, scalable, and secure
implementation evaluated in a real-world settings is still in
demand [12].

Contributions:
This paper presents a first MAS tightly coupled with BCT,
implemented and tested. Therefore, the contribution is three-
fold:
(i) a study about how and why integrating BCT and MAS.

(ii) an implementation of a reconciling solution merging a
Jade-based [13] MAS with Hyperledger Fabric v1.0 [14].

(iii) a study and a development of dynamics enabling the
computation of the agent reputation throughout smart
contracts.

The paper is organized as follows: Section II present the
current state of the art, Section III presents the objectives, de-
sign, and implementation of the developed system, Section IV
presents evaluation scenarios, Section V discusses the obtained
results. Finally, Section VI concludes the paper and presents
ongoing and future works.

II. STATE OF THE ART

In MAS, decision-making, trading, and general interactions
are often delegated to a broad set of cost-functions and a
feature usually regarded as a discriminant is the ”reliance”.
It can be computed directly or delegated to a specialized
entity. Such an attribute can characterize a given entity and
its behaviors [15].

1”smart contract” and chaincode logic concepts are quite similar. Therefore,
we use the former when talking about chaincode, ”programmable contrac” or
”a set of rules” when discussing blockchain technology in general.



Reputation can be defined as the collection of opinions
received from other agents [15]. Generally, it is used to frame
the perception and expectation about someone’s behavior
based on previous interactions (presumably similar to future
ones). On average, reputation can be considered as quite a
reliable indicator, a trust building-block. Such a mechanism
is an incentive for good behaviors. Hence, instilling positive
effects on market quality is a constructive side-effect emerging
in reputation-based systems.

Since the beginnings, reputation and trust mechanisms have
been considered key elements in the design of MAS, in
order to revise conflicting beliefs and choose among opinions
received from different information sources [16], [17]. Re-
cently a line that focuses on building the models to compute
reputation appeared [18]. While in some models, the question
about how reputation information is aggregated is not taken
into account [19], other models can be classified depending on
the information sources they use to infer trust or reputation,
such as direct experience and witnesses information, to name a
few [18]. Authenticity and integrity of this information, as well
as transparency and correctness of the reputation calculation,
are crucial requirements for building a reliable reputation
mechanism.

Three approaches to manage reputation are security-based,
institutional, and social. Security-based approaches focuses
only on insuring integrity an authenticity of the data by means
of cryptography. Institutional approaches assume a central
authority that observes, controls, and enforces agents’ actions,
but they are vulnerable and prone to create single points of
failure; if compromised, it can tamper the data and manipulate
the computation of the reputation. Social approaches require
an agent to be capable of modelling other agent behaviors,
and to follow the similitude within human societies, which is
not always applicable. Even combined, they cannot guarantee
the requirements listed above.

”Blockchain” is a distributed technology that employs cryp-
tographic primitives, and relies on a specific membership
mechanism and consensus protocol [20] to maintain a shared,
immutable, and transparent append-only register [9], [21].
Data, in the form of digitally signed transactions broadcasted
by the participants, are grouped into blocks chronologically
timestamped. A hash function is applied to the content of
the block and forms a unique block identifier, which is
stored in the subsequent block. A possible modification of the
block content can be easily verified by hashing it again, and
comparing it with the identifier from the subsequent block. The
blockchain is replicated and maintained by every participant.
A malicious attempt to tamper the information stored in the
registry will be noticed by the participants, thus guaranteeing
immutability of the ledger [12]. Many blockchains can execute
arbitrary tasks, typically called smart contracts, thus allowing
to implement desired functionality on top of this technology.

We can distinguish between permissionless and permis-
sioned (public and private) blockchain systems. A system is
permissionless when the identities of participants are either
pseudonymous or anonymous [22], so that every user may
participate in the consensus protocol, and, therefore, append
a new block to the ledger. In contrast, in a permissioned
blockchain identities of the users and rights to participate
in the consensus (writing to the ledger and/or validating

the transactions) are controlled by a membership service. A
permissioned blockchain is public when anyone can read the
ledger but only predefined set of users can participate in the
consensus, and private when even the right to read ledger is
controlled by the membership/identity service.

We aim at studying and experimenting all the advantages
in the synergy of MAS and BCT. The need for enhancing the
security in MAS (features such as integrity, identity manage-
ment, provenance, transaction guarantees, and data security)
affects applications in various domains. BCT can be the key
to enhance MAS security and some attempts of merging these
two technologies have already been done [12]. For example,
Ferrer [23] discusses how a group of agents can reach an
agreement on a particular state of affairs, and record that
agreement without a controlling authority by combining peer-
to-peer networks (e.g., communities of agents) with crypto-
graphic algorithms. The author discusses potential advantages
and limitations of the combination of blockchain technology
and MAS, taking an example of swarm robotic systems.

Bottone et al. [24] presented a mathematical structure for a
block-less, fee-less, distributed ledger technology employable
in wireless-sensors networks, Internet of Things, and Cyber-
Physical Systems that aims at overcoming the limitations
implicated by the use of conventional blockchains. The confir-
mation time is reduced, avoiding the need for special compu-
tation. They mapped the nodes of the system (also associated
with agents) on elements of a directed acyclic graph.

However, if the underlying infrastructure is blockchain-
enabled, the auditability of information increases noticeably
[25]. This is guaranteed by the BCT, which secures its repos-
itories (ledgers) and the data posted on them [26]. In agent-
based audit systems, an agent auditing specific transaction-
related documentation interacts with the agents simultaneously
auditing related documentation, and thus ensures the accuracy
and comparability of the entire documentation under audit.
Automatic verification, processing, storing, and reporting of
the information in the blockchain-based triple-entry account-
ing information system could together form a self-sufficient
accounting ecosystem [27]. MAS in an audit ecosystem can
simultaneously confirm the accuracy of the blockchain-based
verification, processing, storing, and reporting functions [25].

Both in research and commercial applications, reputation
systems are gaining a stable share [28]. However, such a
rapid growth resulted in generating diverging approaches im-
plementing a broad set of solutions.

Following the recent trends mentioned above, a few so-
lutions associated the reputation and trust in the framework
of MAS and BCT. For example, Khaqqi et al. [29] pro-
posed an Emission Trading Scheme with a double aim: to
reduce emission production and stimulate adoption of long-
term abatement technology. Such objectives have been pursued
by uses of BCT and smart devices so as to improve the
functionality, consistency, and credibility of the scheme. Their
implementation gives more leverage to the participants adopt-
ing long-term solutions to determine the market price of the
permits. Since these participants have more incentives to set
a higher permit price to compensate their emission reduction
strategy, the global price of a permit may increase even without
a supply shortage or a price floor. A consequence of the
reputation system is the financial incentive. Participants with



a better reputation are given the opportunity to choose a better
trade offer and to conclude the trade faster. Two reputation-
based mechanisms were added, facilitating these incentives:
the market segmentation mechanism and the priority-value-
order mechanism. The former is a filter based on reputation.
In the case study, we observed two types of participation in
the trading process: active and passive. Active buyers and
sellers are benefited by the market segmentation mechanism
while passive sellers benefit from the priority value order.
Passive buyers, however, receive no benefit or restriction as a
consequence of their reputation. Thus, it can be implemented
more easily and quickly than other proposals that ask for
complete alteration of the scheme. The evaluation using multi-
criteria analysis shows that this scheme is feasible with its
benefits outweighing its drawbacks.

Qayumi et al. [30] proposed the introduction of BCT in
agentified computing systems dealing with potentially “very-
large datasets”. The multi-level principles of typical of crypto-
currencies have also been employed in distributed master-less
systems operating with reputation-based dynamics [31].

Although the solutions mentioned above positively testify
the synergy of MAS and BCT, the lack of reliable, effective,
and scalable practical implementations leave the following
question still open: At which level and how can the blockchain
technology be adequately integrated within a MAS?

III. BCT FOR MAS
This section presents the objectives specifically set to shape

the design and implementation of the presented system.
The atomic cells composing a MAS can be rationalized

as an autonomous entity characterized by an expendable
knowledge, driven by self-developed or induced objectives
able to interact with each other [32]. Such loosely coupled
entities (agents) are interconnected and organized in networks.
Regardless distribution, dimensions, and nature (cooperative
or competitive) of the agent community allows the possible
generation and evolution of undesired behaviors, a matter
of concern in the scientific community. Trust and reliability
heavily affect the MAS pillars2 [34].

A. Objectives
Merging BCT and MAS requires structural and functional

studies. Therefore, concerning the design and implementation
of the presented system, we set the following objectives:
(i) to identify which functionality in MAS need to be re-

placed, improved, or extended;
(ii) to establish where in the existing agent-framework, the

BCT should be integrated;
(iii) to test and evaluate the effects of such interventions,

discussing pros and cons.

B. Design
As we require authenticity of the data and assume that an

agent may need to manage some sensitive information, in the
model of our system, the agents can be conceptually associated
to the peers of the permissioned private blockchain.

Designing this solution, we used Jade as the multi-agent
framework; such a choice is due to its compliance with

2agent local scheduler, communication, and negotiation protocols [33]

the FIPA3 standard, and to its implementation of crucial
elements such as the Directory Facilitator (DF) and the Agent
Management System (AMS) [13]. Furthermore, we chose
Fabric Hyperledger [14] as a permissioned BCT component
due to its maturity (development and documentation) and its
open-source nature.

Certificates and Identity Management
In the dynamics of the agent community, the two above-
mentioned technologies get firstly connected in the manage-
ment of the identities of the agents. In Jade, the AMS is respon-
sible for the registration of the agents identity management.
Traditionally, after a free or feed registration, an agent can
request and/or provide the services, unless he demonstrates
malicious behavior. This can affect his reputation, that in turn
can become a reason of expelling the agent from the MAS. To
ensure trust and authenticity in MAS, public key infrastructure
(PKI) can be employed [18]. In this setting, it is assumed
that every agent generates private and public keys, and that
there exists a certification authority (CA) that can verify the
identity of an entity and create a certificate of the entity’s
public key. Using the key pair and the certificate, the agent
can be authenticated, and all the actions of the agent can be
tracked.

An important component of the permissioned BCT is a
membership service, (MS). MS is an entity that hosts a
certification authority and manages the network identities of all
the peers, maintains an access control list (ACL) based control
over network activity, and guarantees that every transaction is
ultimately traceable to a registered user. In the current design,
we use a single certification authority. However, alternative
implementations are envisaged for the next releases of Hy-
perledger Fabric, such as support of anonymous credentials
with multiple certification authorities and the use of threshold
signatures.

As we assume that an agent can “run” as BCT peer, for
simplicity, we rely on one common certification authority
that is hosted by the MS. A CA-Agent is an agent that
encompasses the functionality of a standard AMS and
connects BCT and MAS, by providing an interface for the
other agents to interact with CA for enrollment and identity
management.

The service ledger: an enhanced and distributed DF
Jade adopts the concept of DF from the FIPA standard3 for
agent management. DF is usually represented by one agent
per community, but can also be represented by more than one
agent. It is in charge of keeping track of which agent offers
which service(s) and providing such an information to who
may ask for it.

Although in our proposed design the agent DF is replaced
by the BCT, the concept has been kept and enhanced. Indeed,
the DF takes the form of a distributed ledger, so-called Service
Ledger (SL). This design choice allows to:

• remove the possibility of a single point of failure (if
unique in the community),

• provide a solution for the harmonization of the current
state of DF (if DF consists of multiple agents)

3 http://www.fipa.org/specs/fipa00023/



• reduce the response time when inquired by regular agents,
• ensure immutability and traceability of the information.

Therefore, features such as tracking the evolution of the
services offered by given agent(s) over the time can be easily
introduced.

Storing the Interactions and Computing the Reputation
As mentioned in Section II, the concept of reputation can
be associated to an agent. Moreover, in our solution we can
assume:

• an overall value - rating the general (average) reputation
of an agent

• a specific value - associated to given services, both as
provider or demander.

Recalling that the reputation is computed on previous be-
haviors, we assume that within an interaction both the agents
(demander and executor) must be able to evaluate the output of
the interaction. Then, based on the evaluation values provided
by both demander and executor for this interaction, and their
current reputation values, smart contract (incorporating the
mechanism for computing the reputation), is executed by all
the blockchain peers to update reputation values. In this way,
the reputation of the agent is based on the immutable history
of all the other previously provided evaluation values for
this agent as a provider of the service, and as a requester
and, therefore, an evaluator of the results of the previous
interactions, the agent was involved in.

Differently from traditional MAS, where assumed trust-
worthy agents compute the reputation with assumed uniform
and unbiased techniques, in the presented solution, reputation
management is done using smart contracts. In such a way,
the properties of BCT (i.e., data transparency, immutability,
integrity) can be transparently transferred to the MAS dynam-
ics.

SERVICES TRANSACTIONS
MIND

BC-A1

SERVICES TRANSACTIONS
MIND

BC-An

BCT
MIND

CA-A1

1

1

*

Agent Mind

Services Ledger

Transactions Ledger

Fabric Hyperledger

Fig. 1. Conceptual design of the system components.

Figure 1 outlines the system design and its main compo-
nents. In particular, it is possible to distinguish two main types
of agents characterized by both MAS and BCT components.

A regular agent is characterized by a mind, performing
the classic agent reasoning, an agent can be coupled with a
peer of a Hyperledger Fabric network. Every peer (BC −Ai)
maintains two independent ledgers:
(i) a Service Ledger (SL), storing the information about the

service(s) that an agent provides in a form of a tuple:
{agent; service(s); additional info};

(ii) a Transactions Ledger (TL), storing the information about
the interactions that took place in the community and the
related evaluation from both the service provider (execu-
tor) and the agent that requested a service (demander).

CA-A1

MIND

eCert Handler CRL

SLTL

(a)

(b)

(c)

Fig. 2. Agent registration and certificate request.

The Certification Authority agent (CA-A1) is characterized
by
(i) a mind, performing the classic agent reasoning;

(ii) an interface to interact with the BCT component.

C. Implementation
The CA-Agent
Th CA-Agent (CA-A), Figure 2, is in charge of interacting
with the Fabric-MS server. Its behaviors are:

• forwarding messages from the agents to MS and distribut-
ing the certificates to interact with the BC (over a valid
request) Figure 2(a);

• connecting to the Fabric network, Figure 2(b);
• triggering the revocation of a certificate (e.g., if a BC-

Agent demonstrates malicious behavior and his reputation
goes below the certain threshold), Figure 2(c).

As already mentioned in Section III-B, the CA-Agent
is composed of a mind handling its agent dynamics and a
node-js-based connector to interact with the BC network.

BC-Agents
The BC-Agents (BC-Ai) are regular agents populating the
community and interacting with each other. Their behaviors
are to:

• require a certificate to the CA-Agent;
• require the execution of a given service;
• read and write on the ledgers: SL and TL;



• load scenario (from an XML setting file4);
• write/receive messages.
As shown in Figure 1, two ledgers, SL and TL were used.

To implement such ledgers (key-value-based structure), it has
been chosen to employ the LevelDB5. The alternative would
have been CouchDB, which unfortunately in the current
version (v1.1.0-preview) presents consistent bugs.

Service Ledger
The SL contains the list of the agent associations - services
offered by the agent. To represent such an association, the
agent is represented as shown in Listing 1. Every service that

1 type Agent struct {
2 IDA string 'json:"ida"'
3 Address string 'json:"address"'
4 Services []MyService 'json:"services"'
5 }

Listing 1: Agent representation in LS.

is offered by the agent has the structure shown in Listing 2,
where weight is a generic parameter, that, depending on the
scenario, can represent a cost or a time required for the
service execution. The operations allowed on the SL are: (i)

1 type MyService struct {
2 Name string 'json:"name"'
3 Description string 'json:"descr"'
4 Weight string 'json:"weight"'
5 }

Listing 2: Service(s) representation in LS.

add a new service, (ii) edit a service, (iii) remove a service,
and (iv) search for a service.

Transactions Ledger
To keep track of the transactions that took place over the
time and enabling the computation of the agent reputation,
the transaction ledger has the following format as shown on
the Figure 3:

1 type Transaction struct {
2 Incr_id int 'json:"incremental_id"'
3 AgentID string 'json:"writingAgId"'
4 Tr_id string 'json:"transact_id"'
5 Demander string 'json:"whodemands"'
6 Executer string 'json:"whoexecutes"'
7 Service string 'json:"?service(s)"'
8 Outcome string 'json:"outcome"'
9 Rating string 'json:"rating"'

10 Timestamp string 'json:"timestamp"'
11 }

Listing 3: Transaction Ledger Structure.

According to the proposed design, both executor and de-
mander have to write on the TL at the completion of a trans-
action. This is necessary to identify a possible misalignment
among the evaluations and the perception of the outcomes.

4The file settings contains: services, needs, and heuristics distribution.
5a simple key-value store, http://leveldb.org

The operations allowed on the TL are: (i) add a new trans-
action, (ii) search for a transaction (using different parameters
as filters), (iii) search for an agent (using different parameters
as filters), and (iv) computing the reputation.

The Fabric-Network has been configured using configura-
tion file docker-compose.yml stored at the MS. It contains the
settings of:

• orderer.example.com (orderer);
• ca.example.com (certificate authority);
• peer0.org1.example.com;
• peer1.org1.example.com;
• peer2.org1.example.com:
• cli6.
In this implementation, to simplify design and development,

the orderer is configured in a stable SOLO mode offered by
the currently available version of Hyperledger Fabric (v1.0),
keeping the default values for Batch Timeout (2 seconds) and
MaxMessageCount (10 messages). However, distributing the
ordering service and employing a consensuses mechanism to
order the transactions are envisaged in the upcoming versions
of the Hyperledger.

Framework Dynamics

The architecture we have implemented respect the design
presented in Figure 1. The system’s components (see Figure 3)
are the following components:

• n regular agents (BC-A);
• a single CA-Agent (CA-A1), whose functionality can be

distributed among multiple agents to eliminate the risk of
a single point of failure;

• membership service (ms.example.org);
• three BCT peers (peeri.org1.example.com);
• ordering service (orderer.example.com).

Figure 3 also shows the dynamics and possible interactions
between the agents and the elements of the blockchain com-
posing the system.

When the agent container (hosting the agents’ community)
and the ledgers are running, the system is ready to work.

CA-A1

BC-A*

ms.example.org

orderer.example.org

invoke
request

invoke
commit

peer0.org1.example.org
SL TL

peer1.org1.example.org
SL TL

peer2.org1.example.org
SL TL

transaction
proposal

endorsement response

7

5

8

6

re
qu

es
t e

C
er

t
1

get eC
ert

4

register &
enroll BC-Agent2
release eCert3

Fig. 3. Architecture of the implemented system.

6special node enabling the management of the peer and the installation of
the chaincode.



Referring to Figure 3, to be part of such a community, a
regular agent (BC-A) has to be enrolled to it. Thus, it sends
a message to the CA-Agent to require the registration in the
community in order to obtain credentials and the certificates
to operate on the SL and TL (1). The AC-Agent controls the
credentials of the demander and, if it is satisfied, it requires a
certificate to the BCT-CA (2). Once the certificate is released
(3) the CA-Agent sends a message containing the related eCert
to the BC-A (4).

At this point, concerning LS, the BC-A is able to (i) publish
a service(s) it is willing to offer and (ii) search for a service(s)
it is willing to demand.

BC-A can also host the peer. Alternatively, the peers can
be deployed only on the selected agent, or on the independent
entities. In the current implementation, we decouple an agent
and the peer to clarify all the communication dynamics.

In order publish the service, the BC-A has to issue an
invoke transaction that updates the Service Ledger, in order
to search for the available services, the agent sends a query
transaction. To execute a transaction, first, a transaction pro-
posal is broadcasted to the peers (5). The peers verify (i) that
the transaction proposal is well formed, (ii) it has not been
submitted already in the past (replay-attack protection), (iii)
the signature is valid (using MS), and (iv) that the BC-A is
properly authorized (that a certificate of the BC-A is valid
and ACL policy is satisfied). The endorsing peers take the
transaction proposal inputs as arguments to the invoked func-
tion of the smart contract. The smart contract is then executed
against the current state database to produce transaction results
that is sent in a form of the endorsement response (6). Then,
BC-A verifies the endorsing peer signatures and compares the
proposal responses to determine if the endorsement responses
are the same before submitting the transaction (together with
received responses) to Ordering Service that will also verify
the corresponding endorsement responses (7).

When the orderer receives transactions, it orders them
chronologically and creates blocks of transactions, that are
then “delivered” to all peers on the channel (8), to update
the ledger. As we assume having two ledgers, the transactions
issued for each of them, are sent through separate channels.
For instance, further in the paper, we discuss the updates of the
Transaction Ledger that happens in a similar way as described
above, just by using a separate channel.

IV. TESTED SCENARIOS

The realized system has been tested and studied in four
different scenarios. The main actors (CA-A1, BC-A1, BC-
A2, and BC-A3) have been kept for all the tests7. However,
their capabilities and needs have been changed, thus generating
different and arbitrary dynamics.

The interactions 1 to 4 in Figure 3 are common to all the
tests. The related Agent-UML (AUML) diagram is shown in
Figure 4.

Table I summarizes the four configurations used in the
following scenarios. The four agents offer and may request
the execution of a given set of services. All the services are
indicated by Sn(ti), n ∈ 1, N , where N is a total number of
the services and ti is a release time.

7The executions of the four scenarios have been recorded and are available
at the following link: https://retis.sssup.it/ d.calvaresi/scenarios4wi/

r: eCert r: eCert r: eCert r: eCert

r: eCert(A1)
r: eCert(A2)
r: eCert(A3)

eCert(A1) eCert(A2) eCert(A3)

r: eCert(A4)

eCert(A1)
eCert(A2)
eCert(A3)
eCert(A4)

eCert(A4)

CA-A1 BC-HL BC-A1 BC-A2 BC-A3 BC-A4

Fig. 4. Agent registration and certificate request.

During the negotiation, the services are exchanged in the
form of a tuple characterized by

< serviceID >< cost >< timeToComplete > (1)

TABLE I
SERVICES AND NEEDS DISTRIBUTION OVER THE SCENARIOS.

Snr Services BC-A1 BC-A2 BC-A3 BC-A4

1 Ofr S1(t0) S2(t0) S2(t0), S3(t0), S5(t0)
Dmd S2(t3)

2 Ofr S1(t0) S2(t0) S2(t0), S3(t0), s5(t6)
Dmd S5(t0)

3 Ofr S1(t0) S2(t0) S2(t0), S3(t0), S5(t0) S2(t0)
Dmd S2(t3)

4 Ofr S1(t8) S2(t0) S2(t0), S3(t0), S5(t0)
Dmd
Legend: Snr - scenario, Ofr - offered, Dmd - demanded

A. Scenario 1
After the registration phase (see Figure 4), the agents

publish the services they offer on SL, Figure 5 (p1,p2,p3).
In this scenario, BC-A1 needs the execution of S2. Querying

SL, it finds two available executors (BC-A2 and BC-A3).
Therefore, it proceeds engaging in a negotiation with them.
The proposals received are BC-A2: cost = 4 and time = 9
and BC-A3: cost = 3 and time = 10. In this case, BC-A1
implements a cost-oriented heuristic. Thus, it awards for the
execution of S2 the agent BC-A3, rejecting BC-A2. At the
completion of S2, BC-A3 writes on TL that a given transaction
(identified by a unique ID) is concluded8 and notifies BC-
A1. Accordingly, BC-A1 evaluates the outcome received and
writes as well about the transaction completed8.

We introduced this two-folded evaluation to enable the
investigation of possible discrepancy among the evaluation
provided by the agents (demander and executor). Such a mis-
alignment can be due to several factors: (i) diverse evaluation
metrics, (ii) honest mistakes, and (iii) possible strategic lies.
Concerning the possibility of lying, it might be due to mis-,
dis-, mal-information, and intentional lies.

By employing the two-folded evaluation within TL, such
ambiguous situation can be easily identified. Moreover, it is

8 according to the format shown in Listing 3



p1: SL(S1) p2: SL(S2) p3: SL(S2,S3,S5)

r1: S2(A?)

Agent registration and certificate request

CA-A1 BC-HL BC-A1 BC-A2 BC-A3 BC-A4

result(p1) result(p2) result(p3)

result(r1) r2: exec(S2)
r2: exec(S2)

result(r1) result(r1)

bid awarded
bid rejected

p3: TL(S2, ... , ...)

inform(S2)

p3: TL(S2, ... , ...)

Fig. 5. Agent registration and certificate request.

possible to identify recidivist, intentional, and honest behav-
iors. Hence, based on transparency, consistency, and persis-
tence provided by the BCT, accurate investigation can be
conducted.

Finally, almost instantaneous controls on the agents behav-
iors and reputation calculation can be performed directly in
the TL throughout the use of smart contract without relying
on a single trusted entity.

Once tested the basic functionality, it was necessary to study
the corner cases. The next sections analyze the cases when:

• a given agent is looking for a service not yet available in
the ledger (Scenario 2);

• an agent that is currently down was chosen to provide a
service (Scenario 3);

• an agent banned from the community (e.g., due to his
malicious behavior his certificate was revoked) tries to
interact with other agents in the community (Scenario 4).

B. Scenario 2
In this configuration, BC-A1 needs the execution of S5

(released at t0). The only agent able to perform it is BC-A3
(who publishes it only at t6). In this case, we implemented
two possible solutions:

• forced the agent to check periodically SL;
• allowed the agent to register for events (e.g, a block is

committed to a peer’s ledger or a given smart-contract-
event is executed) so that they can be notified when a
given ledger changes9.

C. Scenario 3
In this configuration, BC-A1 needs the execution of S2

(released at t3). In this scenario, we simulated a down-fall
of BC-A2 at t2 (right after the registration of its services
on SL). BC-A1 opens the negotiation with BC-A2, BC-A3,

9http://hyperledger-fabric.readthedocs.io/en/latest/

and BC-A4. It gets back the bid from the first two but does
not receive an answer from BC-A4. Therefore, at the end of
the bidding window BC-A1 proceed to evaluate the only bid
received neglecting BC-A4 for that transaction.

D. Scenario 4
In this last scenario, BC-A1 wants to publish its service

S1 (released at t8) on TS. However, earlier than t8, we
imposed to such an agent to demonstrate malicious behaviors.
Consequently, its certificate gets revoked (and appears in the
Certificate Revocation List (CRL10) issued by CA) before the
time to publish his service occurred. Therefore, the agents
that will try to negotiate with BC-A1 will be notified that the
certificate of BC-A1 was revoked, and BC-A1 will not be able
to issue any more transactions to interact with the ledgers (for
both query and update).

V. DISCUSSION

The nature of MAS can be both cooperative and competi-
tive. However, in both cases agents have to rely on the quality
of the information and resources exchanged. The risk of being
exploited or deceived can hamper the dynamics of a single
agent and the whole community. Therefore, to enforce the
concept of trust, the developed system aims at providing a
unambiguous and immutable means to punctually compute and
update the agent reputation.

Our ongoing work focuses on realizing smart contracts able
to unequivocally update the reputation on TL. By doing so, we
can avoid relying on a trusted entity (agent) who can be subject
to manipulation or possibly biased judgment, especially if
unique. One can argue that by employing PKI and a single
certification authority for the current implementation we keep
a risk of having a single point of failure. However, as we
decouple the functionalities of the identity management (MS)
and computing reputation (smart contracts) we can provide
stronger security. Moreover, single MS can be substituted by
Collective Authority servers, an example of such is presented
in [35]. CA (that is a component of MS) can also be decentral-
ized (thus eliminating a risk of having a single point of failure)
by plugging a chain of CAs, and using threshold signatures as
announced for the later releases of Hyperledger Fabric.

BCT also provides a solution to the problem of reaching a
distributed consensus on the reputation value among the peers
in the community: every peer executes the same smart contract
and the transactions are aligned by the orderer. The latter can
also be distributed and then can employ a consensus protocol
such as PBFT – a partially synchronous protocol for Byzantine
state machine replication that was presented in [36] and has
been used in the design of the previous version of Hyperledger
Fabric (v0.6). As mentioned in Section III, this framework
enables the possibility of providing both overall- and specific-
values for the agent reputation only by modifying the logic
of smart contracts. Enabling specific-values-based reputation
means being able to evaluate all the possible features charac-
terizing the agents’ behaviors. In particular, a given agent can
be evaluated according to its capability of (i) performing and
(ii) evaluating a given task.

Currently, every evaluation is written on the ledger by both
the participant of a given transaction (demander and executor)

10https://tools.ietf.org/html/rfc5280



according to their judgment. When both the values have been
written on TL, a smart contract can be triggered. Base on the
values provided, it can compute and update the reputations.
Moreover, analyzing previous behaviors, further investigations
can be conducted.

Thanks to the blockchain technology, evaluation and reputa-
tions values can also be tracked and monitored over the time.
Thus, the timely understanding of malicious and suspicious
activities/intention can be easily achieved. Such investigation
can be possible by extending the structures of SL and TL
(see Listings 1, 2, and 3) and implementing the related smart
contracts.

VI. CONCLUSION

This paper addressed the challenge of enabling trusted
interactions in MAS. We studied the binding of BCT and
MAS, and proposed the design, development, and evaluation
of a MAS based on Jade and Fabric Hyperledger v1.0. In
the design phase, we identified the MAS functionalities to be
improved in (i) agent identity management, (ii) distribution of
the DF, and (iii) tamper-proof storage of the agent interactions
to enable the trustworthy computation of the agent reputation.

Such a system has been tested in different configurations
and scenarios, both in regular and corner cases.

The results confirmed that the implementation of such sys-
tem constitutes a solid ground for having trusted interactions
in MAS. Moreover, it enables the possibility of computing
both overall and specific values for the agent reputation by
storing immutable evaluations and, based on them, updating
the reputation via smart contracts in a transparent way. Devel-
oping the smart contracts for computing the reputation is an
ongoing work that is unveiling imperative challenges for both
agent and blockchain communities. The application primarily
targeted are startup assessment and tourism-orient platforms

REFERENCES

[1] D. Calvaresi, A. Claudi, A. Dragoni, E. Yu, D. Accattoli, and P. Sernani,
“A goal-oriented requirements engineering approach for the ambient as-
sisted living domain,” in Proceedings of the 7th International Conference
on PErvasive Technologies Related to Assistive Environments, 2014, pp.
20:1–20:4.

[2] A. Dubovitskaya, V. Urovi, I. Barba, K. Aberer, and M. I. Schumacher,
“A multiagent system for dynamic data aggregation in medical research,”
BioMed Research International, vol. 2016, 2016.

[3] D. Calvaresi, D. Cesarini, P. Sernani, M. Marinoni, A. Dragoni, and
A. Sturm, “Exploring the ambient assisted living domain: a systematic
review,” Journal of Ambient Intelligence and Humanized Computing, pp.
1–19, 2016.

[4] D. Calvaresi, M. Schumacher, M. Marinoni, R. Hilfiker, A. Dragoni,
and G. Buttazzo, “Agent-based systems for telerehabilitation: strengths,
limitations and future challenges,” in Proc. of X Workshop on Agents
Applied in Health Care, 2017.

[5] F.-S. Hsieh, “Modeling and control of holonic manufacturing systems
based on extended contract net protocol,” in American Control Confer-
ence, 2002. Proceedings of the 2002, vol. 6, 2002, pp. 5037–5042.

[6] B. Yu and M. P. Singh, “An evidential model of distributed reputation
management,” in Proceedings of 1st international conference on Au-
tonomous Agents and Multiagent Systems. ACM, 2002, pp. 294–301.

[7] S. D. RAMCHURN, D. HUYNH, and N. R. JENNINGS, “Trust in
multi-agent systems,” The Knowledge Engineering Review, p. 1–25,
2004.

[8] Y. Hedin and E. Moradian, “Security in multi-agent
systems,” Procedia Computer Science, vol. 60, pp. 1604
– 1612, 2015, knowledge-Based and Intelligent Information
and Engineering Systems 19th Annual Conference, KES-2015,
Singapore, September 2015 Proceedings. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915023972

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[10] M. Swan, Blockchain: Blueprint for a new economy, 2015.
[11] D. Tapscott and A. Tapscott, Blockchain Revolution: How the technology

behind Bitcoin is changing money, business, and the world, 2016.
[12] D. Calvaresi, A. Dubovitskaya, J. P. Calbimonte, K. Taveter, and

M. Schumacher, “Multi-agent systems and blockchain: Results from a
systematic literature review,” 2018.

[13] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE. John Wiley & Sons, 2007, vol. 7.

[14] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in Proc.
of Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[15] J. Granatyr, V. Botelho, O. R. Lessing, E. E. Scalabrin, J.-P. Barthès,
and F. Enembreck, “Trust and reputation models for multiagent systems,”
ACM Computing Surveys (CSUR), vol. 48, no. 2, p. 27, 2015.

[16] A. Dragoni, F. Mascaretti, and P. Puliti, “A generalized approach to
consistency based belief revision,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 992, pp. 231–236, 1995.

[17] A. Dragoni and P. Giorgini, “Distributed belief revision,” Autonomous
Agents and Multi-Agent Systems, vol. 6, no. 2, pp. 115–143, 2003.

[18] I. Pinyol and J. Sabater-Mir, “Computational trust and reputation
models for open multi-agent systems: a review,” Artificial Intelligence
Review, vol. 40, no. 1, pp. 1–25, Jun 2013. [Online]. Available:
https://doi.org/10.1007/s10462-011-9277-z

[19] J. Sabater and C. Sierra, “Regret: A reputation model for gregarious
societies,” in Fourth workshop on deception fraud and trust in agent
societies, vol. 70, 2001, pp. 61–69.

[20] C. Cachin and M. Vukolić, “Blockchains consensus protocols in the
wild,” arXiv preprint arXiv:1707.01873, 2017.

[21] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Interna-
tional Cryptology Conference. Springer, 2017, pp. 357–388.

[22] T. Swanson, “Consensus-as-a-service: a brief report on the emergence
of permissioned, distributed ledger systems,” 2015.

[23] E. C. Ferrer, “The blockchain: a new framework for robotic swarm
systems,” arXiv preprint arXiv:1608.00695, 2016.

[24] M. Bottone, F. Raimondi, and G. Primiero, “Multi-agent based simula-
tions of block-free distributed ledgers,” 2018.

[25] S. Kozlowski, “An audit ecosystem to support blockchain-based account-
ing and assurance,” in Continuous Auditing: Theory and Application.
Emerald Publishing Limited, 2018, pp. 299–313.

[26] A. Zuiderwijk, M. Janssen, and C. Davis, “Innovation with open data:
Essential elements of open data ecosystems,” Information Polity, vol. 19,
no. 1, 2, pp. 17–33, 2014.

[27] J. Dai and M. A. Vasarhelyi, “Toward blockchain-based accounting and
assurance,” Journal of Information Systems, vol. 31, pp. 5–21, 2017.

[28] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation
systems for online service provision,” Decision support systems, vol. 43,
no. 2, pp. 618–644, 2007.

[29] K. N. Khaqqi, J. J. Sikorski, K. Hadinoto, and M. Kraft, “Incorporating
seller/buyer reputation-based system in blockchain-enabled emission
trading application,” Applied Energy, vol. 209, pp. 8–19, 2018.

[30] K. Qayumi, “Multi-agent based intelligence generation from very large
datasets,” in Cloud Engineering (IC2E), 2015 IEEE International Con-
ference on. IEEE, 2015, pp. 502–504.

[31] J. Gattermayer and P. Tvrdik, “Blockchain-based multi-level scoring
system for p2p clusters,” in Int Conf Parallel Processing Workshops
ICPPW. IEEE, 2017, pp. 301–308.

[32] S. J. Russell and P. Norving, “Norvig,” Artificial Intelligence: A Modern
Approach, pp. 111–114, 2003.

[33] D. Calvaresi, M. Marinoni, A. Sturm, M. Schumacher, and G. Buttazzo,
“The challenge of real-time multi-agent systems for enabling iot and
cps,” International Conference on Web Intelligence, 2017.

[34] S. D. Ramchurn, D. Huynh, and N. R. Jennings, “Trust in multi-agent
systems,” The Knowledge Engineering Review, vol. 19, pp. 1–25, 2004.

[35] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities “honest or bust”
with decentralized witness cosigning,” in Security and Privacy (SP),
2016 IEEE Symposium on. Ieee, 2016, pp. 526–545.

[36] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.


