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Abstract. In the last decades, the use of Multi-Agent Systems (MAS) resulted in
being the most relevant approach to foster the development of systems perform-
ing distributed reasoning, automated/autonomous actions, and regulating compo-
nent interactions in unpredictable and uncertain scenarios. The scientific commu-
nity provided numerous innovative contributions about resource and task alloca-
tion seeking for optimal/sub-optimal solutions. The adoption of MAS in Cyber-
Physical Systems (CPS) is producing outstanding results. However, in current
MAS, the actual task execution is still delegated to traditional general-purpose
scheduling algorithms running within the agent (local scheduler of behaviors).
The main consequence is the incapability to enforce compliance with strict tim-
ing constraints (i.e., the impossibility of providing any guarantee about the sys-
tem’s behavior in the worst-case scenario). Therefore, the adoption of MAS is
hampered, excluding significant application scenarios such as safety-critical en-
vironments.
This paper proposes the schedulability analysis of various task-sets, that are fea-
sible using real-time schedulers, on top of traditional general-purpose solutions.
In particular, the study of deadline-missing rate occurring in general-purpose se-
tups, evaluated on an agent-based simulator developed on OMNET++, named
MAXIM-GPRT, is presented. The obtained results strengthen the motivations for
adopting and adapting real-time scheduling mechanisms as the local scheduler
within agents.

Keywords: Timing-Reliability, Deadline-Missing Rate, Scheduling Simulation,
Multi-Agent Simulator, Agent Local Scheduler

1 Introduction

Cyber-Physical Systems (CPS) can be composed of a multitude of electronic devices
with any sort of size. Therefore, they can be considered as the maximal expression
of distributed systems pervading humankind’s daily living [11]. Continuously interact-
ing with their surrounding, CPS can collect data exploiting ever-increasing types of



distributed sensors. Feedback and data elaborated locally or remotely feed both net-
works of simple sensors/actuators and intelligent, more complex, distributed entities.
The agent-based paradigm is definitely one of the most prominent and promising ap-
proaches supporting a broad range of distributed applications. Multi-Agent Systems
(MAS) are profusely contributing to domains such as energy [19], manufacturing [16],
e-health [7, 8], and telerehabilitation [10]. However, regardless of application scenarios,
dimensions, and distribution, the safety of the system and its users is a crucial require-
ment.

To operate in safety-critical scenarios, the absence of hardware failures and coding
errors is not a sufficient guarantee. Hence, a system is considered able to guarantee its
correct execution if it can deliberate the right output at or within a given time, even in
the worst-case scenario [5]. Hereafter, such a feature is referred as “timing-reliability”.
It is the fundamental property of the real-time computation systems, i.e., those systems
capable to react within precise time constraints to events in the environment where they
operate.

Concerning MAS, a multitude of elements operate simultaneously. Individually or
collectively, they have to be able to provide primitive mechanisms guaranteeing timing-
reliability. In particular, such components are: (i) an “intelligent/strategic” layer (i.e.
allows single components and the CPS as a whole to achieve their goals), (ii) a commu-
nication middleware (i.e. to allow the exchange of information and requests among the
components of the CPS), and (iii) local policies (i.e. schedulers and heuristics enabling
each component to execute its tasks). MAS have been employed in automatic, semi-
automatic and highly unpredictable and uncertain environments. Nevertheless, mecha-
nisms such as negotiation, communication, and local scheduling have to operate safely
in either one. Moreover, current agent-based frameworks cannot yet support the devel-
opment of a MAS able to guarantee full compliance [11]. In fact, according to the study
proposed in [9], most of the solutions composing the state of the art take the execution
of the allocated task for granted. Such an assumption is naive and unsustainable if deal-
ing with real safety-critical applications.

Contributions.
This paper studies qualitatively and quantitatively the behaviors of the local schedulers
employed in the most relevant agent-based platforms [9] and the most common nego-
tiation protocols. The obtained results have been compared and discussed with respect
to real-time scheduling algorithms.

In particular, considering that general-purpose scheduling algorithms neither con-
sider the deadline notion nor can provide any timing guarantee, to enable a performance
analysis we have:

(i) Developed an OMNET++ based simulator implementing: a dynamic number of
agents, Contract Net (CNET) and Contract Net With Confirmation (CNCP) ne-
gotiation protocols, First Come First Served (FCFS), Round Robin (RR), Earliest
Deadline First (EDF), and Constant Bandwidth Server (CBS) local schedulers.

(ii) Generated random tasks-sets characterized by parameters computed according to a
uniform distribution.

(iii) Analyzed and discussed the obtained outputs.



The paper is organized as follows: Section 2 presents and elaborates the state of
the art, Section 3 describes the simulator, Section 4 presents the tests generation and
execution. Moreover, it organizes, describes, and discusses the experimental results,
and finally Section 5 concludes the paper.

2 State of the art

In the MAS panorama, the notion of scheduling applies mainly to mechanisms of
task/resources allocation among the agents within one or more platforms. Although
such studies provided significant results, they took for granted the task/behavior exe-
cution after allocation and the compliance with the agreements (or commitment) stip-
ulated during the negotiation phase [6]. Such optimistic assumption has been shown to
be unpredictable, thus unacceptable for safety-critical applications [11].

In most of the cases, existing MAS are powered by platforms supporting the devel-
opment of agent-based systems. Hence, considering the study proposed by Kravari and
Bassiliades [17] as common ground, Calvaresi et al. [9] investigated the local schedulers
adopted/proposed by the most relevant agent platforms: almost all have implemented at
least one local scheduler. NetLogo [22] and Cormas [4] are two exceptions, delegating
the development of local schedulers to programmers. In fact, fostering the implemen-
tation of custom versions of behavior schedulers should promote a broader set of al-
gorithms. However, despite such flexibility, the dynamics of the customized schedulers
can be attributed to classic algorithms. In particular, MaDKit [14], RePast [12], and
Swarm [20] implement the FCFS, GAMA [13] and MASON [18] implement a priority
scheduler (e.g. SJF-like), Jason implements an RR applied to structured behaviors, and
finally JADE implements a non-preemptive RR [21]. The Jason and Jade implementa-
tions of RR result in being FCFS of intentions [3] in the first case and of behaviors in
the second. The FCSF and RR scheduling algorithms are two of the most known algo-
rithms and inspired a multitude of variants.

FCFS (also referred as FIFO) executes tasks in the exact order of their arrival (accord-
ing to their position in the ready queue). The absence of preemption or re-ordering in
this mechanism allows to classify the FCFS as “the simplest scheduling policy with
minimal scheduling overhead”.

RR slices the tasks’ computing time on the processor in equal time-quantum. Thus,
the tasks in the ready queue are cycled to get the CPU. If a running task is completed,
the processor directly computes the next one; otherwise, it saves the task status and
puts it back in the ready-queue before computing the next one (context switch). RR
is mainly appreciated for its fairness, preventing the tasks’ starvation. However, these
basic mechanisms, as they are, cannot be employed in safety-critical and real-time op-
erating systems because of the long waiting time, significant response time (which has
to be recalculated for any new task arrival [24]) and the lack of mechanisms for dealing
with strict-timing constraints.



In light of these factors, for both FCFS and RR, the risk of missing deadlines (how-
ever neglected) might dramatically increase, thus degrading system performance and
compromising its safety and reliability.

Concerning real-time compliant scheduling algorithms4, differently from FCFS and
RR, it is mathematically possible to prove the respect of strict timing constraints by per-
forming the task admission control [5]. The study of the behavior of MAS employing
general-purpose algorithms dealing with tasks characterized by deadlines reveals con-
crete risks and possibilities of failure.

The next section presents the simulator that has been realized to test different setups
and measure the recorded deadline-missing rate.

3 The Simulator: MAXIM-GPRT

The objective of this study is to evaluate the timing-reliability of the scheduling algo-
rithms at the bottom of currently available agent-based platforms. To perform such an
evaluation, a new Multi-Agent System SIMulator for General-Purpose and Real-Time
algorithms, named MAXIM-GPRT, has been realized.

MAXIM-GPRT relies on OMNET++ [23], which is a multi-platform component-
based framework written in C++, supporting the development of simulators for distributed-
like systems, and providing a crucial support for realizing (i) basic components (nodes),
(ii) interactions, and (iii) network and communication means. It is extensible, mod-
ular, and provides several simulation libraries, integrating a graphical development,
run-time environment, and, most importantly, enabling the development of real-time
simulations [2].

3.1 MAXIM-GPRT Structure

The simulator is composed of simple modules communicating with each-other by ex-
changing messages. Coded in C++, such active modules embody the agents. The basic
template offers extendable initialization procedure and primitives to handle the message
exchange. The modules have been extended to represent the agents’ knowledge, desires,
behaviors, and connections. Moreover, the modules are organized in a fully connected
network, structured using the specific NED (NEtwork-Description) language. For the
purposes of this study such NED-coded network involves two main types of agents:

– Classic agent: 0 to n agents sharing only a common generic structure, but charac-
terized by diverse and pliable features;

– Directory Facilitator (DF): borrowing the notion by the FIPA specifications about
agent platforms [1], the DF contains the mapping of the agents and the related
services offered. In the current view, it is meant to be 1 per community.

Figure 1 represents the agent composition. In such a way, it is possible to associate
a given task-set, scheduler, desires/goals, knowledge, a negotiation protocol (which is
the same for the entire community), and any required heuristic to every agent during
their initialization phase.

4 Schedulers able to guarantee that scheduled tasks will meet their timing constraints.
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Fig. 1: Agent composition.

In particular, Listing 1 shows the initialization function called only once for each
agent at the beginning of the simulation. Lines 3 to 11 load the simulator’s settings (e.g.,
the maximum dimension of the services vector). Then, a task generator and a needs5

handler, dealing respectively with a tasks vector and needs vector, are created. At line
15 “If the agent is the DF” follows, the service handler (containing all the services pub-
lished by the agents at run-time) is created. Otherwise, from line 18 to 21, the initializa-
tion function creates all the other objects used by the classical agents: the connections
table (mapping the in/out-ports), the heuristic handler (containing the heuristics used
in the negotiation phase), and the report files (used to track information such as dead-
line misses and response time). Finally, from line 22 to 31 the agent’s task-set setting,
the agent’s internal scheduler, the agent’s offered services, and its needs are configured
(Figure 1).

In the current version of MAXIM-GPRT, the agents can be equipped with:

– Scheduler: FCFS, RR, EDF, and CBS;
– Negotiation prot: CNET and CNCP;
– Heuristics: Considering that the output of the negotiations is not central in this

study, seeking simplicity and reproducibility we have: (H1) - if an agent can satisfy
a request, it will bid for it, (H2) - the first bidding agent is acknowledged for the
task execution.

5 given tasks which execution is delegated to other agents via negotiation



1 vo id a g e n t : : i n i t i a l i z e ( ) {
2 i f ( ! a g s i m h a s s e t t i n g s ) {
3 t r y {
4 EV << ” Loading g l o b a l s e t t i n g s . . . \ n ” ;
5 l o a d a g s i m s e t t i n g s f r o m x m l ( ) ;
6 } c a t c h ( e x c e p t i o n c o n s t& ex ) {
7 c e r r << ” E r r o r l o a d i n g t h e XML c o n f i g u r a t i o n f i l e \n ” ;
8 e x i t ( EXIT FAILURE ) ;
9 }

10 } e l s e
11 EV << ” G lo ba l s e t t i n g s a l r e a d y l o a d e d \n ” ;
12 a g s e t t i n g s = new A g s e t t i n g s ;
13 tGen = new TaskGen ;
14 a g N e e d s H a n d l e r = new NeedsHandle r ;
15 i f ( s t r c mp ( ”DF” , getName ( ) ) == 0) {
16 d f S e r v i c e H a n d l e r = new S e r v i c e H a n d l e r ;
17 }
18 e l s e {
19 a g s e t t i n g s −>s e t a g c o n n t a b l e ( g e t I n d e x ( ) , g e t V e c t o r S i z e ( ) ) ;
20 a g H e u r i s i c H a n d l e r = new Hhand le r ;
21 i n i t i a l i z e x m l r e p o r t ( ) ;
22 agentMSG ∗ g e t a g t a s k s m s g = s e t a g t a s k s ( ) ;
23 s c h e d u l e A t ( 0 . 0 , g e t a g t a s k s m s g ) ;
24 agentMSG ∗ g e t a g s c h e d m s g = s e t a g s c h e d u l e r ( ) ;
25 s c h e d u l e A t ( 0 . 0 , g e t a g s c h e d m s g ) ;
26 agentMSG ∗ s e t a g s e r v i c e s m s g = s e t a g s e r v i c e s ( ) ;
27 s c h e d u l e A t ( 0 . 0 , s e t a g s e r v i c e s m s g ) ;
28 agentMSG ∗ s e t a g n e e d s m s g = s e t a g n e e d s ( ) ;
29 s c h e d u l e A t ( 0 . 0 , s e t a g n e e d s m s g ) ;
30 }
31 }

Listing 1: Initialize configuration of MAXIM-GPRT

To study “timing reliability of general-purpose scheduler in MAS”, it has been de-
cided to employ CNET as the negotiation protocol, focusing on the deadline-missing
rate of the two most employed scheduling algorithms. Thus, the two main configura-
tions that have been tested in the several setups presented in Section 4 are (C1): FCFS
+ CNET, and (C2): RR + CNET.

3.2 MAXIM-GPRT Internal Mechanisms

The agent knowledge is represented by a set of tasks it is able to execute. Moreover,
from the same set of tasks, some or all of them can be marked as public, which means
that they are “services exposed to other agents in the case of necessity”. The execution
of such tasks is subject to the negotiation mechanisms.

Whenever a task is released (put into the ready queue), the deadline-check is trig-
gered. When a task is activated (getting the CPU) a check for its completion is triggered.



Depending on the scheduling algorithm, if preemption occurs, the completion check is
updated (whilst the deadline-check remains unaltered). These mechanisms enable to
monitor the evolution of the system, tracking its behaviors over the time.

Concerning the agents needs, they can be hard-coded or dynamically generated/re-
leased at run-time. In the scope of this study, seeking for reproducibility, the needs
have been (randomly) generated off-line and then released at run-time (according to the
task-sets generations constraints, see Section 4).

To ensure fairness, the needs have been uniformly distributed and generated accord-
ingly to the possibilities offered by the platform in a given setup.

Concerning the negotiation, the CNET has been employed in this study. At the start-
up of the platform (or whenever an agent decides to make a given service available)
the agent communicates to the DF the details about the exposed services which are
published on the DF table (in the format: agent - service(s)). Exploiting the classic
message exchange protocol, whoever needs a service gets the list of possible executors.
Then, according to the CNET mechanism, the negotiation takes place, employing the
heuristics H1 or H2 (presented in Section 3.1 respectively for selecting the possible
contractor and acknowledging the winning bid).

4 Experimental Setup and Results

In the scope of investigating the timing reliability, the deadline-missing rate recorded
by agents employing FCFS and RR as the local scheduler has been analyzed. The study
focuses on the execution of periodic tasks. All the generated task-sets are schedulable
under the EDF conditions (Processor Utilization Factor U ≤ 1). According to the se-
tups defined in Section 4.1, each task-set ranges regarding agent-utilization and single
task-utilization have been fixed. In particular, the values of Ui and Ci have been gener-
ated randomly applying a uniform probability distribution. The related periods Ti have
been computed according to Equation (1). The task-set generation included the needs
generation, which is subject to Equation (1) and to the heuristics H1 and H2.

Ti =
Ci
Ui

(1)

By doing so, and considering periodic tasks, all the task sets are feasible (i.e., no
deadline are missed), utilizing the EDF real-time scheduler that has been employed as
a term of comparison.

Such an algorithm manages the priority according to the absolute deadline (D) of
the tasks. Therefore, EDF’s ready queue is sorted accordingly, and the task getting the
CPU is always the one with the earliest deadline. In the event that a task with a closer
deadline than the deadline of the running task is released, a preemption is triggered.
According to Horn [15], given a set of n independent tasks with arbitrary arrival times,
any algorithm that at any instant executes the task with the earliest absolute deadline
among all the ready tasks is optimal with respect to minimizing the maximum lateness.

It is worth to recall that the processor utilization factor U is the fraction of pro-
cessor time spent in the execution of the task set [5], and it is calculated according to
Equation (2). If U is U > 1, the schedule is not feasible for any algorithm. If U ≤ 1,



the schedule is surely feasible for EDF and, depending on the task set features, it might
be schedulable for the other algorithms.

U =

n∑
i=1

Ci
Ti

(2)

The schedulability test performed by EDF relies on the calculation of U. It is quite
easy to be computed, sustainable to be done at run-time, and incremental. For example,
if the U of a given running task-set is 0.5, according to Equation 2, by adding a task τi
with computation timeCi = 2 and period T = 20 it increases to U = 0.6. Checking if a
new task can be added at run-time to the task-set has a considerably low computational
impact on the CPU and does not require to recompute the whole algorithm.

Missing both the notions of deadline and schedulability test (that can prove off-
line the respect of the timing constraints), the behaviors of FCFS and RR have been
investigated using the simulator presented in Section 3. The setups employed for such
a study are presented in the next section.

4.1 Simulation setups

The parameters characterizing the simulated scenarios employed for both FCFS and
RR are: (i) number of agents, (ii) single agent utilization factor, and (iii) single task uti-
lization factor6. Concerning the number of agents (Na), the configurations are: 3, 5, 10
(DF excluded). To better understand the impact of the agent utilization factor (Ua) on
the deadline-missing rate, three distributions have been tested: low Ual = (0.1 − 0.5),
medium Uam = (0.6− 0.8), and high Uah = (0.9− 1). Concerning the utilization factor
(Uτ ) of the single tasks composing the task-sets, three distribution have been defined:
(i) low Uτl = (0.1− 0.3), (ii) high Uτh = (0.4− 0.6), and (iii) mixed Uτx = Uτl ∪ Uτh .
Thus, by combining the parameters mentioned above and generating three configura-
tions for each set of parameters, a total amount of 486 task sets has been tested with
both FCFS and RR simulations and mathematically proved exploiting the EDF schedu-
lability test.

4.2 Results Presentation

The percentages of deadlines missed obtained in the first run, denoted as (x.x.x.17), is
executed for all the nine configurations over 10000 seconds of simulation, are shown in
Table 1 for FCFS, and in Table 2 for RR.

Figure 2 shows the number of deadline misses, comparing all the different setups
of the first of the analyzed runs (for both FCFS and RR). As expected, the configura-
tion with low utilization for both agents and single tasks does not produce any deadline
miss. Similarly, with both agent utilization and single task utilization high, few deadline
misses have been recorded. In particular, 8% in configuration 3.2.2.1 (FCFS) and 16%

6 The single contribution (Ci/Ti) given by a single task to the task-set of the agent executer is
referred as single task utilization factor.

7 The compact format x.x.x.x stands for (Na) . (Ua) . (Uτ ) . (N. of run)



Table 1: Deadlines missed by FCFS in run x.x.x.1 (simulated time 10000 seconds)

FCFS [%] (ddl-miss/tot-exec)

Na Ua Uτl Uτh Uτx

Ual [0%] (0/7987) [0%] (0/5497) [0.5%] (24/4175)
3 Uam [12%] (1665/13988) [0%] (0/4662) [10%] (499/5159)

Uah [16%] (2665/16319) [8%] (417/5328) [9%] (499/5660)

Ual [0%] (0/9276) [0%] (0/10711) [4%] (195/5502)
5 Uam [14%] (2201/15353) [0%] (0/4756) [13%] (1091/8500)

Uah [14%] (2612/18315) [0%] (0/15450) [18%] (1677/9335)

Ual [0%] (0/12147) [0%] (0/16810) [3%] (324/9927)
10 Uam [9%] (2781/31366) [0%] (0/27100) [5%] (642/13049)

Uah [13%] (4167/33026) [0%] (0/22938) [26%] (3950/15090)

Table 2: Deadlines missed by RR in run x.x.x.1 (simulated time 10000 seconds)

RR [%] (ddl-miss/tot-exec)

Na Ua Uτl Uτh Uτx

Ual [0%] (0/7987) [0%] (0/5497) [1%] (48/4175)
3 Uam [12%] (1664/13988) [0%] (0/4662) [10%] (502/5159)

Uah [16%] (2665/16319) [16%] (833/5328) [10%] (585/5660)

Ual [0%] (0/9276) [0%] (0/10711) [6%] (328/5502)
5 Uam [7%] (1067/15353) [0%] (0/4756) [17%] (1434/8500)

Uah [15%] (2667/18315) [0%] (0/15450) [23%] (2165/9335)

Ual [0%] (0/12147) [0%] (0/16810) [6%] (588/9927)
10 Uam [1%] (333/31366) [0%] (0/27100) [7%] (970/13049)

Uah [3%] (1000/33026) [0%] (0/22938) [28%] (4239/15090)

in 3.2.2.1 (RR). Such results might be due to the possibility of having harmonic execu-
tions8. Finally, considering a scenario closer to real-applications (high agent utilization
and task-set composed by mixed utilization factors) the occurrence of deadline misses
increases dramatically. Hence, with both FCFS and RR, Uτx record deadline misses with
any tested load (particularly in Uah ).

For example, Figure 3 presents the snap-shot of the first 200 seconds of the simula-
tion with 5 agents, Uam and Aτl in FCFS. It is visible, that task4 for agent 2 and task6
for agent 4 systematically miss multiple deadlines. According to the task-sets of such
simulation (see Table 3), it means that executing the tasks accepted throughout the ne-
gotiation destabilized the internal scheduler, thus causing the generation of the plotted
deadline misses.

8 A task set is said to be harmonic if the tasks have periods that are positive multiple with each
other. Given an utilization U ≤ 1, an harmonic task set is always schedulable and does not
produce deadline misses.



3 5 10
Number of agents

4000

3500

3000

2500

2000

1500

1000

500

0

(a) FCFS

3 5 10
Number of agents

4000

3500

3000

2500

2000

1500

1000

500

(b) RR

XU A
HU,U A

HU,HU A
HU,H

XU A
MU,U A

HU,HU A
HU,H

XU A
MU,U A

HU,HU A
HU,H

Fig. 2: Overall deadlines missed: run x.x.x.1

Fig. 3: Deadlines missed for: 5 agents, Uam, and Aτl [0-200s].

Table 3: Task-set for simulation 5 agents Uam and Uτl
A0 A1 A2 A3 A4

time ti Ci Ti Ui ti Ci Ti Ui ti Ci Ti Ui ti Ci Ti Ui ti Ci Ti Ui

1 6 30 0.2 1 6 30 0.2 1 6 30 0.2 1 6 30 0.2 1 6 30 0.2
2 2 10 0.2 3 3 15 0.2 4 1 5 0.2 5 4 20 0.2 6 5 25 0.2

t=0 0.4 0.4 0.4 0.4 0.4

t=1 2 2 10 0.2 3 6 15 0.2 4 1 5 0.2 5 4 20 0.2 6 5 25 0.2
2 2 10 0.2 3 6 15 0.2 4 1 5 0.2 5 4 20 0.2 6 5 25 0.2

0.8 0.8 0.8 0.8 0.8



Similarly, concerning FCFS, Figure 4c shows per which tasks missed their deadlines
agent over the time (first 200 seconds). The analyzed configuration is 10 agents, Uah ,
and Uτx (see task-set in Table 4). Such setup shows that long tasks can be delayed due
to the interference caused by the execution of smaller tasks.

Table 4: Task-sets for: 10 agents, Uah , and Uτx .
A0 ti Ci Ti Ui A1 ti Ci Ti Ui A2 ti Ci Ti Ui A3 ti Ci Ti Ui A4 ti Ci Ti Ui

1 6 11 0.54 2 5 9 0.55 3 4 7 0.57 4 10 17 0.58 5 7 12 0.58
(*) 11 6 30 0.2 (*) 12 5 25 0.2 (*) 13 4 20 0.2 (*) 14 10 50 0.2 (*) 15 7 35 0.2

A5 ti Ci Ti Ui A6 ti Ci Ti Ui A7 ti Ci Ti Ui A8 ti Ci Ti Ui A9 ti Ci Ti Ui

6 5 9 0.55 7 11 19 0.57 8 4 7 0.57 9 13 22 0.59 10 12 21 0.55
(*) 16 5 25 0.2 (*) 17 11 55 0.2 (*) 18 4 20 0.2 (*) 19 13 65 0.2 (*) 20 12 60 0.2

Aggregating the output obtained from all the simulations executed with 10 agents,
Figure 4a plots the amount of deadlines missed by the task-set with Uτl , Uτh , and Uτx
with respect to the variation of Ua obtained with FCFS.

Except for the task-sets with Uτh which do not miss any deadline, as mentioned at
the beginning of Section 4.2, the task-sets with Uτl have a higher miss ratio with respect
to the task-sets with Uτx .

This behaviour can be explained considering that to reach a utilization factor of
about 0.8, many small tasks are required (many more with respect to Uτh and Uτx ), thus
increasing the probability of competing for the processor due to their different execution
frequency.

Nevertheless, for Uah mixed task-sets record more deadline-misses with respect to
the others, since for higher U, it is possible to allocate more combinations of tasks hav-
ing Uτl and Uτh . Figure 4d plots a linear trend of the deadline-missed in the first 1200
seconds for the setup composed by 10 agents with Uah and Uτx .

Exploiting the same data aggregated to realize Figure 4a (i.e., deadline missed in all
the setups with 10 agents), the distribution of the deadline missed grouped for Ual , Uam,
and Uah over Uτl , Uτh , and Uτx is shown (see Figure 4b). Thanks to this visualization, it
is possible to emphasize the variation of the deadline-misses by the types of task-sets
over the distribution of the Ua. In particular, it is noticeable that the gap between the
deadlines missed by Uτl and Uτx with Uam is considerably greater than the gap the same
Uτl and Uτx counted with Uah .



D
e
a
d

lin
e
 m

is
se

s

0

500

1000

1500

2000

2500

3000

3500

0.0 0.2 0.4 0.6 0.8 1.0
Utilization level

Task-set with HU

Task-set with XU
Task-set with LU

(a) Deadlines missed for 10 agents over Uah per
Uτl , Uτh , and Uτx .

0

1000

2000D
e
a
d
lin

e
 m

is
se

s

3000

4000

Small Big Mixed
Task-set

(b) Deadlines missed for 10 agents over Uτl , Uτh ,
and Uτx per Ua.

(c) Deadline misses for 10 agents, Uah , and Uτx
[0-200s].

D
e
a
d

lin
e
 m

is
se

s

0

10

20

30

40

50

60

70

80

12001000800
time (s)

6004002000

(d) Deadline misses for 10 agents, Uah , and Uτx
[0-1200s].

Fig. 4: Results of the deadline miss analysis.

4.3 Discussion

Analyzing the results provided in Section 4, it is possible to understand that: (i) there is
no correlation between FCFS and RR’s behaviors, and (ii) in both FCFS and RR there
is a tight connection between the features of the task-sets and the performance of the
schedulers. Given this strong dependency, and the impossibility of providing any off/on-
line guarantee, the employment of such scheduling algorithms makes existing MAS
platforms non suitable for safety-critical applications. Nevertheless, such a variability
of behaviors could be tolerated in soft real-time systems, which however would be
forced to be over-dimensioned and empirically tested (when possible) in every expected
scenario.

Concerning the case of periodic tasks, EDF outperforms considerably FCFS and
RR, guaranteeing no deadline misses in all the tested setups. However, it still cannot
fully suite the MAS requirements. Hence, recalling that MAS can also negotiate the ex-
ecution of one-shot (aperiodic/sporadic) tasks, it emphasizes that requirements such as
(i) having mechanisms to handle aperiodic requests (major outcome of sporadic and un-



predictable negotiations) and (ii) guaranteeing isolation among tasks (in real-case sce-
narios, the tasks’ computational time cannot always be considered ideal and be trusted
by default), cannot be met solely by EDF.

Thus, to deal with the dynamic tasks’ activations and arrival times unknown a pri-
ori, the Constant Bandwidth Server (CBS) [5] is considered eligible. Moreover, it can
deal with dynamic admission tests (whenever it is required to add a new task to the sys-
tem) ensuring isolation among the tasks (thanks to an efficient bandwidth reservation
strategy), and finally, being based on EDF, it maintains the same advantages mentioned
above.

Table 5 summarizes its most characterizing features together with those of the
schedulers analyzed and discussed in the paper.

Table 5: Improvements required for Local Scheduler.
FCFS RR EDF CBS Features

§ § © © No deadline missed for U ≤ 1

§ § © © Utilization based acceptance test

§ § § © Providing schedulability test for aperiodic request

§ § § © Isolation between sporadic and periodic tasks9

§ § § © Server support and admission test

5 Conclusions
The proposed study analyzes the deadline miss ratio of general-purpose scheduling
algorithms employed by the most used multi-agent platforms. To investigate the so-
called timing-reliability in MAS, a MAS simulator named MAXIM-GPRT has been
developed. Being able of tuning parameters such as agent utilization factor, single task
utilization factor, and task-set composition revealed to be a crucial support for the per-
formance analysis.

This study produced evidence eliciting that the employment of MAS in scenarios
demanding mandatory compliance with strict-timing constraints is not safe yet. Thus,
adoption and adaption of real-time scheduling models in MAS are enforced.

The ongoing work consists in extending the presented study to other task models
such as periodic in an interval, aperiodic, and sporadic tasks.
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