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Radiogenomics mapping noninvasively determines important relationships between the molec-

ular genotype and imaging phenotype of various tumors, allowing advances in both clinical

care and cancer research. While early work has shown its technical feasibility, here we extend
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radiogenomic mapping to a locoregional level that can account for the molecular heterogene-

ity of tumors. To achieve this, our data processing pipeline relies on three main steps: 1) the

use of multi-omics data fusion to generate a set of 100 interpretable gene modules, 2) the use

of patch-based image analysis (specifically of contrast-enhanced T1-weighted weighted MR

images) combined with Generalized Linear Models (GLM) to establish potential links be-

tween module expressions and local MR signal, and 3) the use of expression heatmaps based

on GLMs decision values to explore visualization of tumor molecular heterogeneity. The

performance of the proposed approach was evaluated using a leave-one-patient-out cross-

validation method as well as a separate validation data set. The top performing models were

based on a small set of 20 features and yielded Area Under the receiver operating character-

istic Curve (AUC) above 0.65 on the validation cohort for eight modules. Next, we demon-

strate the clinical and biological interpretation of four modules using molecular expression

heatmaps superimposed on clinical radiographic images, showing the potential for assess-

ing tumor molecular heterogeneity and the utility of this method for precision treatment in

clinical decision making and imaging surveillance.

Introduction

Radiogenomics is an burgeoning field of science that reveals important relationships between

molecular properties of tumors and their macroscopic appearance on radiographic imaging used in

the clinical setting. It is defined by the linking of quantitative image features with molecular data

and holds the potential to be readily translatable to clinical decision making by the identification
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of imaging biomarkers that can accurately predict underlying tumor biology and the efficacy of

treatment. The actual translation of this approach to the clinic is feasible as medical imaging is a

standard part of the routine diagnostic work-up and surveillance of cancer patients.

It is well known that there is genomic heterogeneity between tumors and also within individ-

ual tumors 1, 2. However, the only way to determine tumor genotype is through invasive surgical

sampling, and given the spatial inhomogeneity of genomic expression within a tumor, informa-

tion about the local in vivo microenvironment 3 and locoregional tumor precursor cells-of-origin 4

can be lost in biopsies. The creation of radiogenomic maps bypasses the need for surgical sam-

pling in order to understand a tumor lesions’ underlying biology and the changes that may result

from treatment intervention. The application of radiogenomic maps has been demonstrated in

hepatocellular carcinoma 5, lung cancer 6–8, and gliomas (particularly high grade gliomas such as

glioblastoma) 9–12. The aforementioned analyses utilized human-based semantic descriptions of

the tumor appearance on imaging such as the Visually AcceSsible Rembrandt Images (VASARI)

features 13, while others utilized global imaging features such as the extent of tumor associated va-

sogenic edema, regions of non-enhancing tumor, enhancement and necrosis from semi-automatic

segmentations of tumors with imaging analysis software 12, and lastly, global extraction of more

classical radiomics quantitative features extracted across the gross tumor volume 14. In contrast,

radiogenomics models in the two latter studies demonstrate significant but average performance.

Importantly, there exists a significant body of literature confirming that molecular expression is

variable within a single tumor lesion and, therefore, studies which assume homogeneity across the

entire volume of tumor may lead to an oversimplified and inaccurate radiogenomics model.
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To this end, recent studies investigated a locoregional approach based on manually delineated

necrotic, enhancing, edematous or nonenhancing tumor regions 15, 16. Beig et al. 15 observed

that the localized radiomics features that were most informative of hypoxia distinguished between

short- and long- term survivors. Similarly, Hu et al. 16 revealed significant imaging correlations

with local expression of molecular markers in glioblastoma. This study had a low sample size of

only 13 tumors due to the need for multiple localized image-guided biopsies and the unique chal-

lenge in the clinical setting of brain tumors requiring neurosurgical intervention which may not be

clinically indicated.

In this study, we implement radiogenomics mapping that accounts for the locoregional heterogene-

ity of brain tumors as observed on imaging and link signature image features with their molecular

profiles. We use an automated and localized image analysis by dividing the tumors into patches.

The latter is based on the hypothesis that confined tumor habitats have distinct molecular and

imaging signatures when compared to larger tumor volumes 17. Moreover, this provides the op-

portunity to estimate local molecular profiles and further relate them using a holistic approach to

assess brain tumors. We focus this study on human glioblastoma (GBM), which is the most com-

mon and most lethal form of primary brain cancer in adults, accounting for 16% of all primary

tumors and 82% of all malignant tumors within the central nervous system 18. GBM occurs most

frequently within the 45-70 year age group with a mean age of 63 years in the USA, and is 1.6

times more prevalent in males than females 18. GBMs are typically fast-growing and infiltrative

tumors that are invariably fatal. With current standardized treatment, the median survival rate for

patients with glioblastoma is just 14.6 months, and the five-year overall survival rate is 4.7% 18.
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Our work shows that locoregional modeling of Magnetic Resonance (MR) images of GBM can

capture gene module expression and heterogeneity within this tumor.

Methods

Study populations: multi-omics and MR imaging data. We used two distinct and publicly

available radiogenomics datasets: we first used patients from The Cancer Genome Atlas (TCGA)

glioblastoma data set 19 to develop locoregional radiogenomics maps, and then validated them us-

ing the REpository of Molecular BRAin Neoplasia DaTa (REMBRANDT) dataset 20, 21. We used

multi-omics molecular data from TCGA project including gene expression, DNA methylation and

DNA copy number data 19. The gene expression data were produced using Agilent microarrays

for GBM. Preprocessing was done by log-transformation and quantile normalization of the arrays

22, 23. The DNA methylation data were generated using the Illumina Infinium Human Methylation

27 Bead Chip. DNA methylation was quantified using β-values ranging from 0 to 1 according to

the DNA methylation levels. We removed CpG sites with more than 10% of missing values in all

samples. We used the 15-K nearest neighbor algorithm to estimate the remaining missing values in

the data set 24. Finally, the copy number data we used were produced by the Agilent Sure Print G3

Human CGH Microarray Kit 1M×1M platform. This platform has high redundancy at the gene

level, but we observed high correlation between probes matching the same gene. Therefore, probes

matching the same gene were merged by taking the average. For all data sources, gene annotation

was translated to official gene symbols based on the HUGO Gene Nomenclature Committee iden-

tifiers. Next, TCGA samples were analyzed in batches and a significant batch effect was observed
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based on a one-way analysis of variance in most data modes. We applied Combat to adjust for

these effects 25. For the REMBRANT cohort only gene expression data was available produced by

Affymetrix GeneChip Human Genome U133 Plus 2.0 microarrays archived by G-DOC 26. Prepro-

cessing was done as previously reported 27. Briefly the RMA algorithm was used for preprocessing

the microarray data 28. Matched Magnetic Resonance (MR) images were available for both the

TCGA and REMBRANDT cohorts from The Cancer Imaging Archive (TCIA) 29. We used only

pre-surgical, gadolinium-enhanced, axial T1-weighted images with a slice thickness equal to or

less than 3 mm. This resulted in a total of 84 and 47 patients for the TCGA and REMBRANDT

cohorts, respectively.

Multi-omics data fusion. We used AMARETTO, a multi-omics data fusion framework creating

gene expression modules by integrating DNA methylation, DNA copy number and gene expression

data 30–32 using the TCGA data and created the gene expression modules on the REMBRANDT

data set. To generate a gene regulatory module network of glioma, we first applied AMARETTO

on the preprocessed copy number, DNA methylation and gene expression data. DNA methyla-

tion data was modeled using MethylMix 33–37 identifying only differentially methylated and tran-

scriptionally predictive genes. Genomic Identification of Significant Targets in Cancer (GISTIC)

was used to identify the recurrently amplified and deleted genes using DNA copy number data.

Both lists of genes were used in combination with RNA gene expression data to develop 100

AMARETTO gene modules 30, 31, 38 linking the genomic- and epigenomics-driven genes to their

targets. Modules were annotated using gene set enrichment analysis. We used the following gene-

set databases: MSigDB version 3 39, GeneSetDB version 4 40, CHEA for CHIP-X gene sets version
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2 41 and manually curated gene sets related to stem cells and immune gene sets. We use a hyper-

geometric test to check for enrichment of gene sets in the lists of hyper- and hypo-methylated

genes. We corrected for multiple testing using the False Discovery Rate (FDR) 42. Modules were

then created for the REMBRANDT data set using the regulator and target gene expression values.

Modules were represented by the mean average expression of all target genes in each module. Note

that only gene expression data is necessary to represent the modules, and no DNA methylation or

DNA copy number data is needed. All module values were standardized to have mean zero and

standard deviation equal to one.

MR Image analysis. Images from the TCGA and REMBRANDT cohorts were processed in the

following manner: Regions Of Interests (ROIs) encompassing the enhancing tumor area on all

contiguous axial slices were outlined by a panel of experienced radiologists and neuroradiologists

by consensus (KY, YL and MI). The pre-contrast T1 images were reviewed to ensure ROI per-

formance strictly on the enhancing component. Bias correction was applied to all images using

the FSL 5.0.9 FAST algorithm 43. All axial slices from all image series were resampled using

bi-cubic interpolation to have a pixel size of 0.5×0.5 mm2. Voxel values were standardized to

have an average of zero and unit variance inside the brain. The latter was achieved by fitting a

mixture of two Gaussians parameterized by (µ0, σ0) and (µ1, σ1) using an iterative Expectation-

Maximization algorithm and imposing µ1 − µ0 ≥ 50. The Gaussian model (µ1, σ1) is capturing

extended brain values. Standardized MR data was obtained by using the brain mean value µ1 and

standard deviation value σ1. The REMBRANDT preprocessed data and segmentations are made

publicly available on the TCIA wiki (doi: 10.7937/K9/TCIA.2018.3v6dl662).
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Next, we divided the tumor region into patches according to the following procedure (Figure 1).

The ROIs were divided into overlapping circular patches with a radius of r=12 pixels (6mm) in ax-

ial slices and centerx. r = 6mm was chosen as a trade-off between locality and the wealth of visual

information encompassed in the patches 44. The patches were randomly positioned while keeping

a minimum distance between patch centers equal to their radius r. The latter process was repeated

50 times to investigate robustness to patch positioning. Two sets of patches were extracted: from

the boundary b and from the core c of the ROI. The boundary patches were centered on the tumor

contour (Figure 1) and restricted to keep a minimum distance r between their centers. The core

patches can lie anywhere inside the ROI while keeping a minimum distance r between both their

centers as well as the tumor contour (Figure 1). The four lower- and uppermost axial slices con-

taining the tumor were discarded to avoid partial volume effects. An average of 23,981 boundary

and 21,129 core patches were obtained from a total of 1,527 slices for the 84 TCGA patients. Sim-

ilarly, 7,894 boundary and 8,004 core patches were obtained from 425 slices for REMBRANDT

patients. For each patient p, boundary and core feature vectors ηi = (ηi,m=1,...,20) were extracted to

construct the feature matrices from the collections of K boundary and L core patches centered at

locations xb
k and xc

l , respectively. Twenty intensity features were obtained per patch as the counts

in each histogram bins in the interval [−1, 1] with a bin width of 0.1. Boundary and core texture

features were obtained from responses of Circular Harmonic Wavelets (CHW), which consists of

a filterbank analyzing local circular frequencies at multiple scales 45, 46. The responses of the filters

aggregated over the boundary patches provide tumor margin descriptors, whereas their responses

aggregated over the core patches yield texture attributes 47. The wavelet coefficients (i.e., the re-
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sponses of the filters) were obtained by convolving the MRI slice with every filter, and the mean

energies of the coefficients were computed over an image patch to provide scalar feature values.

Three dyadic scales were used to cover the circular patches. Circular harmonic sets in [0, N ] were

tested with N = 0, . . . , 5, yielding feature vectors of size 3(N + 1).

Radiogenomics modeling. The over- and under-expression of the gene modules was predicted

on a patch basis using a multivariate linear model based on the vectors of intensity features ηi.

One fourth of the patients with most extreme gene expression were chosen in order to define sets

of exemplar patients for each gene module q. Therefore, among the 84 and 47 patients of TCGA

and REMBRANDT respectively, 10 and 5 patients with most negative module expression and

10 and 5 patients with most positive module expression were selected per gene module to rep-

resent it. Three validation strategies were used to estimate the predictive performance of each

module-specific model: (1) a Leave-One-Patient-Out Cross Validation (LOPO-CV) on the 20 ex-

treme patients selected per module from the TCGA dataset, (2) training the model with TCGA

and validating it on REMBRANDT, and (3) a LOPO-CV on the 10 extreme patients selected per

module from the REMBRANDT dataset. When using LOPO-CV, we carefully separated patches

by patients between the training and test sets. Receiver Operating Characteristic (ROC) analysis

was carried out on a patch basis. Separate models were built for boundary and core patches. The

class membership yq,i (i.e., over- versus under-expressed gene module q) of the patch i expressed

in terms of its feature vector ηi was estimated using a Generalized Linear Model (GLM) 48 as

yq,i = β0,q + β
T
q ηi, (1)

where the decision value yq,i = [−1, 1] for under- and over-expression of q in a training patch i.
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Results

AMARETTO modules capture major glioblastoma pathways. We used AMARETTO to build

100 gene expression modules based on 426 TCGA patients. Each module was further annotated

using gene set enrichment analysis (Supplementary Table 1) resulting in modules enriched in key

biological pathways including apoptosis, cell cycle, immune response and angiogenesis (Figure 2).

Next, we validated these modules using the gene expression data of the REMBRANDT validation

cohort. Approximately two thirds of the modules have high R-square and module homogeneity in

the REMBRANDT cohort (Supplementary Table 2).

Radiogenomics modeling. For each module the Area Under the ROC Curve (AUC) was measured

based on the GLM’s continuous decision values. AUCs were computed for predictions based on

either core or boundary patches (Figure 1 and Table 1). AUCs were averaged over 50 repetitions of

the random patch positioning. Performance comparison and combination of intensity and texture

features show that texture-based models cannot accurately predict the presence or absence of gene

modules, and that combining them with intensity harms the predictive performance in most cases

(Supplementary Table 3). Therefore, we focused on intensity-based models. AUCs above 0.65 for

all three validation setups were observed for modules 70 and 90 when the model was based on core

patches as well as for modules 36 and 84 when based on boundary patches. AUCs above 0.65 with

both TCGA LOPO and REMBRANDT validation were observed for modules 32, 24 and 45 when

the model was based on core patches as well as for module 45 when based on boundary patches.

Note that the latter was best predicted using core patches. AUCs above 0.70 with both TCGA
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LOPO and REMBRANDT LOPO were observed for modules 11, 93, 68, 22, 42, 55, 61 and when

based on core patches.

Biological interpretation. For the core patches, the best results were observed for several mod-

ules including modules 32, 11, 93 and 45. Module 32 is enriched in gene sets related to neural

differentiation of embryonic stem cells 49 and contains genes involved in synaptogenesis, synaptic

transmission and transmission of nerve impulse. This module is regulated by QKI, a gene involved

in myelination and oligodendrocyte differentiation and QKI has been shown to maintain stemness

of glioma stem cells 50. Module 11 is a core cell cycle module and is regulated by TNFRSF1A

and MYCN, among others, both widely documented to be involved in cell cycle progression in

many cancers. Module 93 is enriched in genes located in the membrane, receptor tyrosine kinase

pathways, and the ERBB pathway supported also by ERBB3 as one of the regulators of Module

93. Module 45 is enriched in processes related to ion transport and is only regulated by one gene,

the transmembrane gene FAM57B. Module 24 has few enrichments and corresponds to unknown

biology. Next, two modules has good performance across all three test scenarios, modules 90 and

70. Module 90 includes ERBB3 as driver gene and is involved in transmembrane tyrosine kinase

activity. Module 70 is enriched in processes related to packaging of telomere ends and RNA poly-

merase transcription, likely driven by module 70 regulator gene REV3L. For the boundary patches,

fewer modules had acceptable performance, including modules 36, 84 and 45, although module

45 is better predicted using core patches. Module 36 is enriched in the TP53 pathway, contains

MDM2 and CDK4, and reflects DNA repair processes. Module 84 is enriched in multiple path-

ways related to development and has TPBG, BCAN, TCF12 and ANXA11 as regulators. This
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module is supported by the function of BCAN, a gene highly expressed in gliomas and promoting

the growth and cell motility of brain tumor cells.

Visualization of locoregional module expression. The approach used for patch-based module

prediction provides the opportunity to reveal and visualize local tumor patterns related to the

over- or under-expression of the corresponding gene module on test patients. For each module

q, heatmaps were generated based on the value yq,i of the decision function (Equation 1) of GLMs

trained on TCGA for every local patch i of the REMBRANDT dataset. The maximum absolute

value of the score over the tumor slice is normalized to one. Whereas many heatmaps were homo-

geneous over the tumors, we observed several heatmaps suggesting molecular heterogeneity. For

example, heatmaps of Modules 32 and 45 show intriguing heterogeneity across the tumor ROI in

the T1 post-gadolinium image of the same patient (Figure 3). Next, the heatmap for module 70

shows heterogeneity across GBM regions highlighting the common patterns across subjects sug-

gestive of over- and under- expression of the gene module (Figure 4). Module 70 is significantly

enriched in processes involved in key pathways associated with RNA transcription.

Validation of expression heatmaps. Because our measure of gene module expression is global

over the tumor, the performance of patch-based local predictions of gene modules is biased towards

morphologically uniform tumors (Table 1). We can, however, study the relation between predictive

performance and the thresholds on the decision values (i.e., the output of the GLM model as de-

fined in Eq. 1) to avoid forcing the model to provide a decision when patches have a weak absolute

decision value. This shows that the AUC as a function of the threshold on the absolute decision
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values monotonously increases as a function of the predictive performance for most modules (Fig-

ure 5), suggesting that the decision values of the proposed models allow for a true identification

of the local patches that are involved in the gene module expression. This indirectly validates the

association between locoregional image patches and gene expression (Figures 3 and 4).

Discussion

We proposed a radiogenomics approach to study the intricate relationships between imaging phe-

notypes of GBMs and their molecular properties. Our approach relies on three main steps, includ-

ing: (i) multi-omics data fusion to generate interpretable gene modules, (ii) locoregional image

analysis and supervised multivariate models to establish multivariate models between MR image

features and module expressions and (iii) the construction of module expression heatmaps to visu-

alize intratumoral molecular heterogeneity as image overlays. When compared to previous works

on radiogenomics of GBMs, we used automated image analysis with a finer grained level to take

into account the locoregional heterogeneity of tumors and their molecular profiles. Secondly, the

multi-omics clustering algorithm AMARETTO applied to the TCGA data allowed us to reduce data

dimensionality while generating interpretable gene modules (Figure 2). Two thirds of the modules

were also consistently observed on the validation cohort (REMBRANDT) with high R-square and

module homogeneity (Supplementary Table 2). The proposed locoregional radiomics modeling

was found to yield predictive AUCs on both cohorts for 15 modules (Table 1). For five of them, the

model trained on TCGA could be used directly to predict their expression in REMBRANDT. For

the other seven, significant AUCs were observed for both TCGA and REMBRANDT LOPO, but
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not when directly applying the model from TCGA on REMBRANDT. The number of features used

in the models was at most 20 (i.e., the normalized intensity histogram bins), whereas the number

of instances (i.e., patches) was in the range of 8,000 to 20,000. This ensured a number of instances

far superior to the dimensionality of the model, thus limiting drastically the risk of overfitting as

well as the risk of fortuitous discoveries and associations.

Next, we were able to associate biologically meaningful and clinically relevant interpretations for

the best predicted gene modules. In particular, module 32 is involved in the maintenance of glioma

stem cells, module 11 is a core cell cycle module and module 93 is involved in the receptor tyro-

sine kinase pathways. Finally, module 84 is linked to BCAN, a highly expressed gene in gliomas

promoting the growth and motility of brain tumor cells. It is therefore meaningful to observe that

module 84 is best predicted using patches extracted from the boundaries of the tumors and that

BCAN expression can be deduced from MR imaging. Moreover, it has not escaped our attention

that two drug targets are among the regulators of modules that can be predicted from imaging:

TNFRSF1A and ERBB3. TNFRSF1A is a target of VB-111 an antiangiogenic agent that showed

effectiveness in phase 1 trials 51 and is currently evaluated in a phase 3 trial (NCT02511405).

Secondly, ERBB3 is part of the EGFR family, and an emerging cancer drug target 52. Previous

results have shown that targeting EGFR and EGFRvIII in glioblastoma results in compensatory

mechanisms in other family members including ERBB3, therefore targeting ERBB3 is potentially

equally important 53, 54.

Texture features were not found to carry relevant information related to local heterogeneity (Sup-

plementary Tables 3). While the latter is contradictory to the findings of 15 and 16 showing that

14

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/304105doi: bioRxiv preprint first posted online Apr. 18, 2018; 

http://dx.doi.org/10.1101/304105
http://creativecommons.org/licenses/by-nc/4.0/


texture attributes are correlated with the genotype of the tumor, a fundamental difference in our

approach is the use of very localized image instances as patches with a radius of 12 pixels (6mm).

It is difficult to extract rich texture information on these small ROIs, where the number of possible

digital spatial frequencies is small and the influence of neighboring objects (e.g., skull or cortical

gyri) is dominant 55. Moreover, these previous reports used other texture feature types (i.e. Laws,

Gabor, Haralick, local binary patterns and the discrete orthonormal Stockwell transform), which

can also account the discrepant findings 15 and 16.

Next, the exploratory expression heatmaps are the first attempts to reveal the relationship between

cancer driver gene module expressions and local imaging patterns using only global gene expres-

sion patterns. They provide the opportunity to identify imaging patterns on contrast-enhanced

T1-weighted images that are most related to the expression of a given module (Figure 3 and 4).

When used for gene modules that obtained both high predictive performance and biological inter-

pretation, the proposed visualization opens up avenues for assessing and quantifying personalized

response to treatment targeting precise genes by observing the presence and heterogeneity of the

radiogenomics map.

Finally, we studied the relationship between thresholded GLM’s absolute decision values and the

predictive performance to validate the predictions and the associated heatmaps. This avoided forc-

ing models to provide a decision when the patches have low absolute decision values and showed

that with increasing threshold value, the model performance consistently increased (Figure 5). This

suggests that the proposed expression heatmaps are truly highlighting regions with high under- or

over-expression of the modules. Combing our work with parallel efforts focusing on multiple
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sampling points (e.g., guided by the proposed expression heatmaps) in order to obtain local gene

expression for validation promises to provide additional validation of the locoregional MR imaging

patterns reflecting molecular properties of GBM 16. Taken together our radiogenomics framework

provides future research direction for treatment allocation, treatment follow-up and treatment mon-

itoring by using MR imaging phenotypes that reflect molecular properties of brain tumors.

To conclude, we extended radiogenomics mapping to a locoregional level that can account for the

molecular heterogeneity of GBM tumors. In addition to the demonstration of the feasibility of

the latter with an external validation set, we built a radiogenomic map for clinically relevant gene

modules with illustrative support from molecular expression heatmaps superimposed on medical

images.
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Table 1 AUCs associated with radiogenomics modeling. The results are sorted based on TCGA LOPO.

Average and standard deviations over the 50 MC repetitions are reported. AUC=Area under the Receiver

Operating Characteristic curve, TCGA=The Cancer Genome Atlas, LOPO=Leave-One-Patient-Out cross

validation.

Modules
TCGA

LOPO

REMBRANDT

trained on

TCGA

REMBRANDT

LOPO

Core patches

Module 32 0.8786± 0.0024 0.6569± 0.0334 0.4826± 0.0195

Module 11 0.8755± 0.0017 0.1844± 0.0094 0.8013± 0.0099

Module 93 0.8301± 0.0029 0.3798± 0.0104 0.8309± 0.0054

Module 68 0.7917± 0.0027 0.263± 0.0066 0.6521± 0.0064

Module 24 0.7874± 0.0061 0.7902± 0.0065 0.5749± 0.012

Module 45 0.7873± 0.0057 0.7733± 0.006 0.5689± 0.0112

Module 22 0.7667± 0.006 0.3066± 0.0178 0.6686± 0.0117

Module 42 0.7276± 0.017 0.2099± 0.0081 0.8038± 0.0092

Module 55 0.7265± 0.0044 0.5429± 0.0063 0.6933± 0.0076

Module 90 0.7176± 0.0089 0.6685± 0.0277 0.6514± 0.0064

Module 61 0.7006± 0.0049 0.2576± 0.013 0.7316± 0.01

Module 70 0.6827± 0.004 0.6563± 0.0074 0.729± 0.0072

Boundary patches

Module 45 0.6632± 0.003 0.692± 0.005 0.6327± 0.0059

Module 36 0.6581± 0.0044 0.6524± 0.0117 0.7112± 0.0059

Module 84 0.6573± 0.0028 0.7036± 0.0118 0.7352± 0.0082
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Figure 1 Workflow for radiogenomic modeling using patches by dividing the tumor

region into overlapping circular patches with a radius of 6mm. We used two types of

patches, core and boundary patches, shown in red and yellow respectively.

Figure 2 Visualization of the relationships between the gene expression modules. Grey

nodes are modules (co-expressed gene sets); blue nodes are cancer driver genes. Blue

links represent membership of a cancer driver to a module, and green lines represent

membership to a regulatory program of a module. We have annotated key gene set

enrichments on the modules. A magnified part of the network is displayed on the left

showing four modules including Module 20 together with their cancer driver genes.

Figure 3 Comparison of expression heatmaps for modules 32 and 45 in the same pa-

tient, where both modules were globally under-expressed in the whole tumor. The axial

views suggest that the under-expression does not come from consistently low MR signal

for module 32, whereas only consistently high MR signal relates to the under-expression

of module 45. This patient belongs to the REMBRANDT data and the heatmaps was

generated using the model built on TCGA.

Figure 4 Expression heatmaps for module 70 in three different REMBRANDT patients

when using the model built on TCGA. Its global expression was positive, negative and pos-

itive for the patients shown on top, middle and bottom, respsectively.Its over-expression

is characterized by a consistent intermediate/low MR signal across patients.

25

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/304105doi: bioRxiv preprint first posted online Apr. 18, 2018; 

http://dx.doi.org/10.1101/304105
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5 Evolution of AUC with respect to the threshold on absolute decision values

(TCGA LOPO) for the top 10 gene modules shown in Table 1. The observed performance

increase suggests that the model is able to truly identify the instances that are involved in

the gene module expression.
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