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Introduction: Hand amputations can dramatically affect the capabilities of a person. Machine learning 
applied to Surface Electromyography (sEMG) is currently among the best solutions to control dexterous 
prosthetic hands. However, it still affected by low robustness1,2 and by the fact that sEMG control 
performance in amputees is highly subject-dependent (also due to clinical parameters, including remaining 
forearm percentage and phantom limb sensation)3. This paper analyzes the variability of classification 
accuracy in different hand movements (both in intact and hand amputated subjects) with the aim of 
identifying solutions that can improve prosthesis control robustness. 
 
Materials and methods: The considered subjects include 5 hand amputees and 5 matched intact subjects 
respectively from the 2nd and 3rd Ninapro dataset4. The acquisition setup includes 12 Delsys Trigno 
electrodes, a Cyberglove II and a portable laptop. The acquisition protocol includes 6 repetitions of 40 
different hand movements. Both the acquisition setup and protocol are described in detail in Atzori et al.4. 
Movement classification includes windowing at 200 ms, signal feature extraction and classification5,6. The 
features consist of the normalized concatenation of: Root-Mean-Square (RMS), time domain statistics 
(TD)7, Histogram (HIST)8, marginal Discrete Wavelet Transform (mDWT)9. As classifier we used Random 
Forests10. Classification accuracy was normalized subtracting the sample average and dividing by the 
standard deviation. The Kruskal-Wallis test was used to perform statistical comparisons. 
 
Results: Different movements are classified with different average accuracy and there is an overall 
correspondence in how well the movements are classified in intact subjects and hand amputees (Fig. 1). 
The normalized classification accuracy of different movements is significantly different on average both in 
intact and hand amputated subjects (p<0.01). In almost all cases, there are not significant differences 
between intact and hand amputated subjects in the normalized classification accuracy of each movement, 
thus there is a correspondence in how well each movement is classified in the two samples. In general, 
basic hand movements are classified better than the average, basic wrist movements have average 
performance, hand grasps have lower than the average, functional movements strongly depend on the 
movement. 
 
Conclusions: The results correspond well to the organization of the muscle into the forearm. Prostheses 
control robustness may be augmented by developing control systems that are based on the movements that 
obtain higher average normalized classification accuracy. The correspondence of the normalized 
classification accuracy of each movement in intact subjects and hand amputees may allow to develop 
successful transfer learning strategies to train the algorithms faster and to make them more robust. A deeper 
analysis of the results may allow to differentiate them according to the clinical parameters of the 
amputation and the surgery procedures. 
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Single movement normalized classification accuracy in intact subjects.
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Single movement normalized classification accuracy in hand amputees.

 
Figure 1 Normalized classification accuracy of each movement in intact subjects and hand amputees. The bars represent the 
normalized average in terms of standard deviations (St. dev.) and the value zero corresponds to the average classification accuracy of 
all movements. The errorbars represent the standard deviation of each movement. 
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