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1 Università Politecnica delle Marche, Ancona, Italy
{n.falcionelli, d.n.mekuria}@pm.univpm.it,

{p.sernani, a.f.dragoni}@univpm.it
2 University of Applied Sciences Western Switzerland, Sierre, Switzerland

{albert.brugues, michael.schumacher}@hevs.ch
3 Scuola Superiore Sant’Anna, Pisa, Italy

d.calvaresi@sssup.it

4 Open University of the Netherlands, Heerlen, the Netherlands
stefano.bromuri@ou.nl

Abstract. The increasing incidence of chronic diseases is a major chal-
lenge for the healthcare sector. Personal Health Systems (PHSs) address
the self-management of chronic diseases, by decentralizing the health
monitoring outside hospitalized environments. Rule based agents allow
bringing domain experts’ knowledge into PHSs. However, agents must
meet the requirements of real monitoring scenarios, characterized by
massive streams of events. Hence, with the aim to monitor the health
status of diabetic patients, two logic-based agent minds for an agent-
oriented PHS are presented. One agent mind is based on the standard
version of jREC, a Prolog-based implementation of Cached Event Cal-
culus, while the other is a customization of the standard jREC mind
that exploits an event-indexing technique. Both of them are as well inte-
grated into MAGPIE, a Java agent platform. The paper then compares
and analyzes the performances of the proposed agent minds, by comput-
ing the time needed to trigger different type of alerts, when the number of
recorded events (e.g. values of physiological parameters) increases. The
results show that the customized jREC mind performs much better when
an high number of events need to be checked, making its use advisable
in monitoring scenarios.

1 Introduction

The incidence of chronic diseases in the population is recognized as a major
challenge for the healthcare sector [2]. For instance, the number of people affected
by diabetes has doubled in the last 20 years [33]. Statistics from WHO report that
more than 400 million individuals live with diabetes, and losses in the GDP for
diabetes-related costs from 2011 to 2030 are estimated at 1.7 trillion USD [32].



Personal Health Systems (PHSs) aim at supporting the self-management of
chronic diseases and reducing the healthcare costs, supporting medical doctors
in following the patients’ disease evolution [10]. PHSs implement the “healthcare
to anyone, anytime, and anywhere” paradigm, by increasing both the coverage
and the quality of healthcare [31]. In fact, PHSs bring the health technology to
domestic environments, by localizing healthcare services to the specific needs,
practices, and situations of people and their social contexts [24]. PHSs ensure
the continuity of care, focusing on a knowledge-based approach integrating past
and current data of each patient together with statistical evidence [29]. A PHS
is composed of three tiers [30]: Tier 1 is the Body Area Network (BAN), i.e. the
set of sensors on the patient’s body to monitor her health parameters; Tier 2 is
the personal server, usually a mobile device, which collects and aggregates the
parameters and events produced by the BAN; Tier 3 is the remote server which
processes and stores the data from the personal server and supports doctors in
following the treatment of patients at home.

Beyond the modeling capabilities of agent-based frameworks [28] and their
still opened challenges [13, 12], Multi-Agent Systems have been proved useful in
the healthcare sector implementing modularity, distribution, and personalization
for data management, decision support systems, planning and resource alloca-
tion, and remote care [18], being ideal for PHSs. In [8], an agent-based platform
called MAGPIE implements a programmable expert PHS to monitor patients
suffering from diabetes. In particular, that agent platform adds scalability to the
PHS by shifting from Tier-3 to Tier-2 the computation needed for the patient
monitoring. To obtain such scalability, the agents, composed by an agent body
and an agent mind, run directly on the personal server. The agent body is the
part of the agent that collects the data acting as an interface between the BAN
in Tier-1 and the agent mind. The agent mind, based on an Event Calculus
(EC) engine, is the part of the agent that checks the data collected from the
body to perform the monitoring task and trigger alerts for the medical doctors
logging in Tier-3. The approach of MAGPIE allows improving the scalability of
the PHS when the number of patients increases, compared to a centralized PHS
where the computation is performed in Tier-3. However, another aspect has to
be taken into account: the scalability of the agent mind when the number of
events increases. In fact, the use of rule engines based on EC usually restricts
the number of events and rules to be applied in a real monitoring scenario, where
short time delays are needed to apply corrective actions. Thus, the next step to
apply the agent-based PHS in real scenarios requiring long-term monitoring is
to develop agent minds capable of caching and retrieving events efficiently.

This paper addresses such issue by proposing two agent minds for the MAG-
PIE agent platform presented in [8]. The agent minds have been implemented
using jREC, a Cached Event Calculus (CEC) reasoner based on Java and tuPro-
log [5], to move the computational complexity from query to update time by
caching the maximum validity intervals for fluents. Even if both based on jREC
and integrated into the MAGPIE agent platform, the proposed agent minds dif-
fer on the way in which they handle event streams. One is a straightforward



integration of the jREC engine, and the other is based on an indexing technique
that gives to jREC the ability to process event streams more efficiently.

In addition, as the main contribution of the paper, the performances of the
jREC-based agent minds are evaluated on the time required to trigger an alert,
when the number of events generated by the agent body increases. Diabetes has
been adopted as the use case for the monitoring rules to be checked.

The rest of the paper is organized as follows. Section 2 presents the paper
background on EC, CEC, jREC and red-black trees. Section 3 describes an
overview of the entire PHS in which the agent minds runs, shows the encoding
of the monitoring rules to check alerts based on glucose and blood pressure levels
in diabetic patients, as well as problems and solutions that arise when massive
streams of events have to be handled by reasoning engines. Section 4 presents
the experimental results to evaluate the two agent minds. Section 5 describes
the work related to the presented research. Section 6 draws the conclusions of
the paper and outlines the future work.

2 Background

This section introduces the concepts on which the proposed agent minds are
based on.

2.1 Event Calculus

EC is a logic formalism for reasoning about actions and their effects in time [20].
Therefore, it is a suitable tool for modeling expert systems representing the evo-
lution in time of an entity by means of the production of events. EC is based on
many-sorted first-order predicate calculus, known as domain-independent ax-
ioms, which are represented as normal logic programs that are executable in
Prolog. The underlying time model of EC is linear. EC manipulates fluents,
where a fluent represents a property that can have different values over time.
The term F=V denotes that a fluent F has value V as a consequence of an action
that took place at some earlier time-point and not terminated by another ac-
tion in the meantime. Table 1 summarizes the main EC predicates. Predicates,
functions, symbols and constants start with lowercase letter, while variables start
with uppercase letter. Predicates in the text are referenced as predicate/N, where
predicate is the name of the predicate and N its arity (e.g. number of arguments).

The domain independent axioms of EC are the following:

holdsAt(F = V, 0)← initially(F = V ). (1)

holdsAt(F = V, T )←
initiatesAt(F = V, Ts), Ts < T,

not broken(F = V, [Ts, T ]).

(2)

Predicate (1) states that a fluent F holds value V at time 0, if it has been
initially set to this value. For any other time T > 0, the predicate (2) states that



Table 1: Main Event Calculus predicates

Predicate Meaning

initially(F=V) The value of fluent F is V
at time 0

holdsAt(F=V,T) The value of fluent F is V
at time T

holdsFor(F=V,[Tmin,Tmax]) The value of fluent F is V
between Tmin and Tmax

initiatesAt(F=V,T) At time T the fluent F is
initiated to have value V

terminatesAt(F=V,T) At time T the fluent F is
terminated from having
value V

broken(F=V,[Tmin,Tmax]) The value of fluent F is
either terminated at Tmax,
or initiated to a different
value than V between Tmin

and Tmax

happensAt(E,T) An event E takes place at
time T updating the state
of the fluents

the fluent holds at time T if it has been initiated to value V at some earlier time
point Ts, and it has not been broken on the meanwhile.

broken(F = V, [Tmin, Tmax])←
terminatesAt(F = V, T ), Tmin < T, Tmax > T.

(3)

broken(F = V1, [Tmin, Tmax])←
initiatesAt(F = V2, Ti), V1 6= V2,

Tmin < Ti, Tmax > Ti.

(4)

Predicates (3) and (4) specify the conditions that break a fluent. Predicate
(3) states that a fluent is broken between two time points Tmin and Tmax
if within this interval it has been terminated to have value V. Alternatively,
predicate (4) states that a fluent is broken within a time interval if it has been
initiated to hold a different value.

holdsFor(F = V, [Tmin, Tmax])←
initiatesAt(F = V, Tmin),

terminiatesAt(F = V, Tmax),

not broken(F = V, [Tmin, Tmax]).

(5)

holdsFor(F = V, [Tmin, infP lus])←
initiatesAt(F = V, Tmin),

not broken(F = V, [Tmin,+∞]).

(6)



holdsFor(F = V, [infMin, Tmax])←
terminatesAt(F = V, Tmax),

not broken(F = V, [−∞, Tmax]).

(7)

Predicates (5), (6) and (7) deal with the validity intervals of fluents. In par-
ticular, predicate (5) specifies that a fluent F keeps value V for a time interval
going from Tmin to Tmax if nothing happens in the middle that breaks such
an interval. Predicates (6) and (7) behave in the same way, but deal with open
intervals.

The domain dependent predicates in EC are typically expressed in terms of
the initiatesAt/2 and terminatesAt/2 predicates. One example of a common rule
for initiatesAt/2 is

initatesAt(F = V, T )←
happensAt(Ev, T ),

Conditions[T ].

(8)

The above definition states that a fluent is initiated to value V at time T if an
event Ev happens at this time point, and some optional conditions depending on
the domain are satisfied. In relation with MAGPIE, the agent platform in which
the proposed agent mind has been integrated, these events that must happen
are physiological measurements from the patient.

2.2 Cached Event Calculus and jREC

Straightforward implementations of EC [20] have time and memory complexity
which are not practical for developing real applications. This is due to the fact
that every time the EC engine is queried, the computation starts from scratch,
and all fluents validity intervals are calculated again. Cached Event Calculus
(CEC), proposed by Chittaro and Montanari [14], tries instead to overcome this
inefficiency by giving EC a memory mechanism, and moving computation from
query time to update time.

CEC formalizes the concept of Maximal Validity Interval (MVI), that repre-
sents a time interval in which a particular fluent holds without being terminated
by any event. A fluent is also associated to a list of MVIs, in order to express all
the time intervals in which that fluent holds continuously.

Whenever the rule engine is updated (e.g. by inserting a new event occur-
rence), the fluents’ MVIs are calculated, and then stored for further use, allowing
incremental computation for following updates. Also, every time a new event is
added to the database, CEC manages to compute MVIs only for the fluents that
can vary with that event, and does not check the MVIs of those fluents that
cannot possibly change, thus avoiding unnecessary computation.

jREC is a reasoning tool based on Java and tuProlog that implements a
lightweight version of CEC [5]. Since MAGPIE is also written in Java, it has
been chosen to implement the proposed agent minds, in order to ensure seamless
integration with the agent platform.

jREC consists of three main components:



– The Prolog theory, which represents the actual CEC axiomatization that is
loaded into tuProlog;

– The Java engine, which allows to query and update the database without
having to interact directly with tuProlog, as well as adding specific domain-
dependent theories;

– The Tester, which is a GUI based stand-alone tool for editing theories, vi-
sualizing fluents’ MVIs and event occurrences, mainly used for prototyping
and developing domain-dependent theories.

2.3 Red-black trees

A red-black tree (RBT) is a well known data structure proposed by Rudolf Bayer
in 1972 [3]. It is a binary search tree which provides O(log(n)) Worst Case time
complexity for operations such as node searching, insertion and deletion, as well
as O(n) Worst Case space complexity [3]. This is made possible thanks to node
coloration: every node of the tree is augmented with an extra bit, and based on
the value of such bit, the node is considered to be red or black.

The aforementioned operations rely on such coloration feature to achieve
Worst Case logarithmic time complexity and linear space complexity. In fact,
every operation that modifies the RBT has to comply with very precise policies
which constrain how the nodes should be moved or re-painted. These policies
guarantees that the nodes in an RBT are always balanced after every opera-
tion, giving such data structure the epiteth of self-balancing. Even though the
obtained balance is not perfect, it is proven to be good enough to provide the
declared performances [3].

Red-black trees can be effectively exploited as indexing data structures. As
it will be also explained in Section 3, one of the agent minds that are proposed
in this work relies on such RBT-based indexing in order to efficiently process
event streams.

3 System overview

The implemented agent minds run in Tier-2 of the MAGPIE agent-based PHS
for self monitoring of diabetes. The entire PHS is depicted in Figure 1. Each
patient has its own agent composed by a body (Tier-1) and a mind (Tier-2)
running on the personal server: in Tier-1 data are collected from the patients
through a BAN; in Tier-2, the agent minds are responsible to trigger possible
alerts based on the patients’ physiological values, running domain dependent
rules which could be customized for each patient. The triggered alerts have to
be sent as a notification to medical doctors connected to Tier-3.

3.1 MAGPIE Agent Platform

MAGPIE is an agent platform integrated with the Android OS. It plays the
role of Tier-2 in a PHS by connecting the patient and the medical doctor, with
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Fig. 1: The agentified PHS. The agent mind runs in Tier-2, to monitor the pa-
tient’s physiological values.

the aim of improving the management of chronic diseases. From the side of
the patient it collects physiological values, whereas from the medical side it
models the medical knowledge in terms of monitoring rules expressed as domain
dependent axioms of EC. Interested readers can find in [9] a description of the
MAGPIE architecture and its integration with Android. In relation to this work,
a monitoring rule is defined as a combination of events that trigger an alert to be
notified to a medical doctor, where an event is considered as the measurement
of a physiological parameter. Therefore, the following two types of monitoring
rules are specified:

– Complex rules: consist of the combination of two or more events in a specific
time window, where the order in which the events happen is not considered.

– Sequential rules: consist of the sequence of two or more events in a specific
time window, where the particular order in which the events occur matters.

3.2 Diabetes Monitoring Rules

In order to detect alert conditions related to diabetes, a sequential and a com-
plex rule patterns are proposed. These rule patterns are based on the literature
available for glucose and blood pressure monitoring [16, 6] and checks physiolog-
ical values collected by the patient’s BAN. The patterns identify alert conditions
in the patient’s health status by modeling the sensor inputs as events that are
evaluated in the body of the rules. The two patterns are:

Pattern 1: Brittle diabetes, defined as a glucose rebound going from less than
3.8 mmol/l to more than 8.0 mmol/l in a period of six hours. This pattern can
be expressed with a sequential rule.

Pattern 2: Pre-hypertension, defined as two events of high blood pressure in a
period of one week. This pattern can be expressed with a complex rule.



Pattern 1 is implemented as follows:

initiatesAt(F = A, T ) : −
happensAt(ev(2, A,W ), T ),

happensAt(ev(1, A, ), T1),

Ts is (T −W ),

T > T1,

T1 >= Ts,

no alert(A, Ts).

(9a)

terminatesAt(F = A, T ) : −
happensAt(ev(1, A, ), T ).

(9b)

happensAt(ev(1, ‘brittle diabetes’, E), T ) : −
hours to epoch(6, E),

happensAt(glucose(G), T ),

G =< 3.8.

(9c)

happensAt(ev(2, ‘brittle diabetes’, E), T ) : −
hours to epoch(6, E),

happensAt(glucose(G), T ),

G >= 8.

(9d)

Rules (9a) and (9b) represent a generic sequential rule template with two
events. In particular, the fluent F (i.e. the alert) is initiated with value A when:
(i) two temporal ordered events occur inside a certain time window and (ii) when
the fluent does not hold anywhere else inside the time window (no alert/2). The
fluent F is instead terminated when the first event of the ordering happens.

Rules (9c) and (9d) customize the template for the glucose monitoring use
case. They instantiate the variables of the ev/3 term, specifying the time window
width (W ), the alert name (A) and the threshold values for G.

Pattern 2 is expressed in the following way:

initiatesAt(F = A, T ) : −
happensAt(alertcheck(A,W,NMax1), T ),

Ts is (T −W ),

count events tw(N1, evc(1, A), Ts, T ),

N1 >= NMax1,

no alert(A, Ts).

(10a)

terminatesAt(F = A, T ) : −
happensAt(alertcheck(A,W, ), T ),

holdsAt(F = A, T ).

(10b)



happensAt(evc(1, ‘pre-hypertension’), T ) : −
happensAt(blood pressure(S,D), T ),

S >= 130,

D >= 80.

(10c)

happensAt(alertcheck(‘pre-hypertension’, E, 2), T ) : −
weeks to epoch(1, E),

happensAt(evc(1, ‘pre-hypertension’), T ).

(10d)

Rules (10a) and (10b) represent a generic complex rule template with one
event type. In particular, the fluent F (i.e. the alert) is initiated with value A
when: (i) there are least NMax1 occurrences of the alertcheck/3 event inside
the time window and (ii) when the fluent does not hold anywhere else inside
the time window (no alert/2). Also, the count events tw/4 predicate is necessary
to handle different event temporal orderings without having to duplicate the
rule body for every permutation. Rules (10c) and (10d) customize the template
for the hypertension monitoring use case. They instantiate the variables of the
evc/2 and the alertcheck/3 terms specifying the time window width (W ), the
alert name (A) and the threshold values for S and D.

3.3 Event Handling with jREC

Efficient handling of massive event streams, while preserving the philosophy of
Event Calculus, and in broader terms, of Logic Programming, is a non-trivial
task. Techniques such as (i) event windowing/forgetting [1], (ii) theory pre-
compilation [1] and (iii) a priori assumptions on event temporal ordering, can
help to ease the burden of this process, but at the same time their adoption
will cause the reasoning approach to be less general and less flexible. Therefore,
since in real case monitoring scenarios these techniques and assumptions might
simply not be applicable, finding alternatives ways to tackle the problem in a
more general case becomes mandatory.

For example, jREC does not apply any simplifying assumption or technique
to the event streams: this forces the reasoner to spend a very high amount of
resources every time the engine’s knowledge base (KB) is updated with new
events. Whenever a list of new events has to be asserted into the KB, jREC
must perform the following steps:

– Sort the list of new events chronologically;
– Read all the events already present in the KB and put them in a list;
– Retract all the events from the KB;
– Sort the list of KB’s events chronologically;
– Merge the list of new events with the list of events read from the KB;
– Sort the newly obtained list chronologically and remove duplicates;
– Assert the events from the newly obtained list back into the KB;
– Calculate the effects on the fluents.



This procedure indeed maintains the reasoning as general and flexible as
possible, but it is also the main source of jREC inefficiency, since every new
event(s) insertion causes the engine to sort the event lists multiple times.

To tackle such issue, this paper proposes the integration of jREC with an in-
dexing data structure, i.e. the previously mentioned red-black trees. RBTs will
take the duty of maintaining the events temporal ordering by avoiding unneces-
sary sorting operations, and ensuring fast execution times.

The introduction of event indexing with RBTs allows to more precisely define
the proposed agent minds:

– An agent mind based on the standard jREC implementation (standard jREC);
– An agent mind based on a custom jREC implementation, which has been

augmented with RBT event indexing (RBT-index jREC).

It should be noticed that, since (i) an event normally contains multi-dimensional
data (i.e. timestamp and phyisiological values), (ii) an RBT only allows single-
dimensional indexing, and (iii) jREC needs the events to be ordered chronolog-
ically, the only choice is to consider the events timestamp as the key on which
the indexing will be performed.

4 Test setup and results

The performances of the two jREC agent minds have been evaluated using the
sequential and complex rule patterns described above. To accomplish that, syn-
thetic datasets containing glucose and blood pressure measurements have been
created. Each measurement is a tuple containing the value(s) and its timestamp.

4.1 Testing Protocol

To see how the performances of the agent minds evolve when the number of
events increases, a series of random dataset has been created, each one containing
a different number of events.

The events of each dataset are fed into the agent minds one by one, and the
time needed by each agent to trigger the alert is recorded. Every experiment is
repeated one-hundred times to obtain the mean and standard deviation values.

The biggest assumption of the experiment is that real datasets do not add
any value to the performance evaluation. In fact, the use of synthetic datasets
allowed to stress the agent minds on very specific and critical tasks.

4.2 Results and Discussion

The tests have been executed on an i7-6700K@4.20 GHz CPU with 16 GB@2400
MHz DDR4 RAM, running Ubuntu/Linux 16.04 and Java Runtime Environment
8u121.



It should be noticed that the main results of these tests are the execution
time trends, rather than the absolute values themselves (since they vary with
different machines).

From the plots in Figure 2a and 2b, it is clear that the two agent minds show
a very different behaviour: the execution time of the standard jREC agent mind
grows in a polynomial fashion, and is considerably higher than the counterpart’s.
In fact, from the plots in Figure 3a and 3b it can be observed that the execution
time of the RBT-index jREC agent mind follows a logarithmic-like curve.

The polynomial trend exhibited by the standard jREC agent mind can be
explained in terms of nested sortings: in fact, every time the engine knowledge
base is updated with one or more events, the logic machinery of the engine
launches multiple nested sorting clauses (see also Section 3.3).
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Fig. 2: Milliseconds needed by the two jREC agent minds to compute an alert,
for the different rules.



On the other hand, the logarithmic-like trend of the RBT-index jREC agent
mind highlight a direct correlation with the expected performances of the RBT-
based indexing. It also demonstrates that, as the number of event grows, the
execution time introduced by the reasoning on such events plays a minor role
on the overall execution time. This can be explained by considering that the
average number of events falling inside a rule timewindow is constant, since (i)
the average event inter-arrival time and (ii) rules time-windows duration are
fixed.

As a last remark on the performance gap, the logarithmic plots in Figure 2c
and 2d clearly highlight that, after 1000 events, the improvement almost reaches
2 orders of magnitude.
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Fig. 3: Detail of Figure 2a and 2b, showing only RBT-index jREC agent mind’s
trends.

The execution times of the two agent minds in a scenario with a small num-
ber of events highlights some peculiar behaviours. As can be clearly seen from
the plots (Figure 4a and 4b), when the number of events is smaller than 100,
the standard jREC agent mind shows better performances than the other. When
the number of events reaches 200, the situation is the opposite, with the RBT-
index agent mind being on top. This effect is due to the additional overhead
in RBT-index agent mind: to be more precise, with very few events, the event-
handling time gain obtained with the exploitation of the RBT-based indexing
is not enough to compensate the additional overhead introduced by such data
structure. By increasing the number of events, the event-handling time gain be-
comes increasingly more predominant over the data structure overhead, allowing
the RBT-index jREC agent mind to perform better on massive event streams.

With the machine used for the tests, it is shown that the RBT-index jREC
agent mind exhibits a clear performance improvement over the standard jREC
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Fig. 4: Detail of Figure 2a and 2b, with number of events going from 0 to 200.

agent mind. The execution time trends suggest that even scenarios with more
than a thousand events are reasonably manageable by the RBT-index agent
mind. Thus, some possible real-case applications for the said agent mind, with
the proposed rule patterns, can be:

– Detecting Brittle Diabetes with Continuous Glucose Monitoring devices.
They can provide glucose measurements up to one minute [16], so referring
to the Rule Pattern 1, it would mean a worst case scenario of 360 events.

– Detecting Pre-Hypertension conditions with digital arm sphygmomanome-
ters. It is enough to have two blood pressure measurements per day [6], so
referring to Rule Pattern 2, it would mean a worst case scenario of 14 events.

Even though the standard jREC agent mind performs slightly better with
a low number of events, this is not enough to justify its usage only in such
scenario.

5 Related work

Multi-Agent Systems (MASs) meet the requirements of the healthcare sector:
context awareness, reliability, data abstraction and interoperability, unobtrusive-
ness [4]. From a requirements engineering perspective, goal-oriented and agent-
based design methodologies are useful to tailor pervasive systems to end-users
and stakeholders’ needs [11]. When appied to PHSs, agent-based modeling has
the potential to bring the decision making at the level of self-management of
chronic diseases [21]. In the implementation phase, MASs in PHSs pursue the
enhancement of home-based self-care by using networks of sensors and remote
assistance, to increase the satisfaction of the patient and make an efficient use
of resources [17].



Reasoning agents in PHSs allow to transfer part of the knowledge from do-
main experts to the handheld devices used to perform the self-management
of chronic diseases. Beyond PHSs, other applications include energy manage-
ment [25], to control energy demand and production, home automation [26], to
coordinate the available appliances, and ambient assisted living [23, 27], with
monitoring purposes. In the context of PHSs, EC and MASs have been success-
fully applied to the self-management of diabetes [19, 7]. However, such works do
not take into account the scalability of the PHS. In fact, a clear advantage of
reasoning agents in the Tier-2 of PHSs is the system scalability with increas-
ing number of patients, as showed in [8]. Nevertheless, in such research, the
scalability of the agent minds with high streams of events is not considered.
Thus, there is the need to find the suitable tools to implement agent minds,
which are supposed to run in portable devices, even with high numbers of events
and large datasets. This is especially true for EC given its complexity. Indeed,
non-logic based pattern recognition has been proved, overall, more efficient than
traditional EC when performing predictions. However, it lacks the potential of
coding domain experts’ knowledge into logic rules and needs to train on large
amounts of data. Hence, caching and windowing techniques to make EC efficient
and applicable with large scale dataset have been investigated [5, 1]. There are
some already available tools that allow logic programming in terms of EC. One
of such is DECReasoner [22], a Discrete Event Calculus Reasoner: it implements
EC without any caching mechanism and, thus, it is not usable for this research,
due to its computation time with the datasets used for the performance tests.
A more efficient EC implementation is RTEC, which adds to EC support for
handling event streams [1]. However, RTEC techniques such as event window-
ing and theory pre-compilation do not match the flexibility requirements of the
proposed PHS. In addition, it is not compatible with the platform, as the agent-
oriented PHS is based on tuProlog and Java [8]. Thus, jREC has been used to
implement a prototype for the proposed agent mind, since it implements Cached
Event Calculus [5] with tuProlog, a Java-based Prolog engine [15]. Moreover, be-
ing Java-based, jREC and tuProlog can run on Android devices, allowing to run
the proposed agent mind on handheld devices.

6 Conclusions

In this work, two rule-based minds for monitoring agents running on Tier-2 of a
PHS have been presented and tested. Being both integrated into the MAGPIE
agent platform, one is based on the plain jREC reasoner and the other is a
customization of the standard jREC reasoner augmented with an RBT-based
indexing technique. In order to be used in real monitoring scenarios, the agent
minds have to be able to process massive event streams, represented by the
patient’s physiological values. Therefore, in addition to the customization of the
jREC reasoning engine, the main contribution of this paper is the performance
evaluation of proposed agent minds on the time needed to trigger alerts based
on glucose and blood pressure levels, in a diabetes monitoring scenario. Two



real application scenarios for the proposed agent minds are the detection of
brittle diabetes, with Continuous Glucose Monitoring, and the detection of Pre-
Hypertension conditions, with devices such as digital arm sphygmomanometers.

As future work, since PHSs are intended for the self-management of diabetes
with handheld devices, the tests should be performed on mobile phones, to obtain
more realistic figures. In this direction, the performance of the RBT-index jREC
agent mind can be further enhanced by improving the sophistication of the
current indexing solution. Furthermore, in order to validate the usefulness of the
rules, the tests should run on real datasets. Lastly, the system can be applied to
other use cases, in order to model rules for other diseases.
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