
✐
✐

“main˙BTA” — 2017/10/4 — 18:47 — page 63 — #63 ✐
✐

✐
✐

✐
✐

CHAPTER 3

Biomedical Texture Operators and
Aggregation Functions
A Methodological Review and User’s Guide

Adrien Depeursinge,a,∗,∗∗ and Julien Fageot∗
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Abstract
This chapter reviews most popular texture analysis approaches under novel comparison
axes that are specific to biomedical imaging. A concise checklist is proposed as a user guide
to assess the relevance of each approach for a particular medical or biological task in hand.
We revealed that few approaches are regrouping most of the desirable properties for achiev-
ing optimal performance. In particular, moving frames texture representations based on
learned steerable Riesz operators showed to enable data-specific and rigid-transformation-
invariant characterization of local directional patterns, the latter being a fundamental prop-
erty of biomedical textures. Potential limitations of having recourse to data augmentation and
transfer learning for deep convolutional neural networks and dictionary learning approaches
to palliate the lack of large annotated training collections in biomedical imaging are men-
tioned. We conclude by summarizing the strengths and limitations of current approaches,

c⃝ Elsevier Ltd.
All rights reserved. 63
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providing insights on key aspects required to build the next generation of biomedical texture
analysis approaches.

Keywords: Biomedical texture analysis, convolutional neural networks, deep learning,
dictionary learning, Gabor filters, gray-level co-occurrence matrices, gray-level run-length
matrices, gray-level size-zone matrices, local binary patterns, steerable wavelets.

1. Introduction
When starting from scratch to enable quantitative image analysis in a biomedical re-
search project or a clinical setting, the number of available approaches can be discon-
certing. Whereas implementing intensity-based features already raises several chal-
lenges in terms of reproducibility and relevance to a particular medical or biological
applicative context, finding adequate texture measures requires extensive expertise as
well as time-consuming iterative validation processes. Knowing precisely the type of
textural information sought and further opting for the appropriate analysis technique
is as much challenging as crucial for success. To that end, Section 2 of Chapter 1
proposed a formal definition of Biomedical Texture (BT) from both perceptual and
mathematical perspectives. It was suggested that BT are realizations of intricate and
non-stationary spatial stochastic processes, and that spatial scales and directions are
fundamental properties of BT. The relation between scale and directions was further
developed in Section 4.1 of Chapter 2, suggesting that the Local Organization of Image
Directions (LOID) is a fundamental property of BT. The LOIDs relate to the texton
theory (see Section 2.4 of Chapter 1), where textons are crucial elements of preatten-
tive vision [33]. Section 3.1 of Chapter 1 introduced a general framework of texture
analysis methods where any BTA approach can be decomposed into a succession of
local texture operators and regional aggregation functions. In addition, Section 3.3
of Chapter 1 and Chapter 7 provided evidence that the type of handcrafted geomet-
ric invariances required for BTA are invariances to non-rigid transformations1, which
considerably differs from general purpose texture analysis traditionally used in com-
puter vision for photographic image analysis. These aspects were further clarified
and exemplified in Chapter 2, where a set of comparison dimensions between BTA
methods was introduced. In particular, non-exclusive categories of texture operators
were presented, including (i) directionally insensitive, (ii) directionally sensitive, (iii)
aligned, (iv) Moving Frames (MF) and (v) learned. The discrimination abilities of
each category was evaluated, where the destructive effects of integrative aggregation

1Optimal operators should be equivariant to translations and locally equivariant to rotations.
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Figure 3.1: Overview and dependence of the BTA approaches reviewed in this chapter.
These categories were chosen based on their popularity and diversity.

were demonstrated. In particular, it was found that some groups of operators lose their
ability to characterize the LOIDs when integrated over a Region Of Interest (ROI), the
latter being required to obtain scalar-valued texture measurements. The ultimate chal-
lenging requirement of combining the ability to describe the LOIDs with robustness
to rigid transformations was only fulfilled by two similar groups of operators: aligned
and MFs.

In this work, we compare most popular BTA approaches under the light of the novel
comparison dimensions introduced in Chapter 2. A concise checklist is proposed to
assess the relevance of each BTA approach for a particular medical or biological task
in hand. The main groups of methods considered are (i) convolutional (Section 2, fur-
ther information on CNNs can be found in Chapters 4 and 9), (ii) Gray-Level Matrices
(GLM, Section 3), (iii) Local Binary Patterns (LBP, Section 4), and (iv) fractals (Sec-
tion 5, further information can be found in Chapter 5). The main categories of BTA
methods are summarized in Fig. 3.1. Our choice to review these categories is based
on their popularity and diversity. The strengths and weaknesses of the methods are
summarized and discussed in Section 6. The notations used in this chapter are based
on Section 2.2 of Chapter 1.
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2. Convolutional approaches
A large group of approaches called convolutional are based on linear texture operators.
In spatial domain, the application of a linear operator Gn to f (x)2 at the position x0 is
characterized by the operator function gn(x) as

G{ f }(x0) = (gn ∗ f )(x) =
∫

x∈RD
f (x)gn(x0 − x) dx. (3.1)

The operation (gn ∗ f )(x0) is called a convolution: we slide the operator function gn(x)
to the input texture function f (x) over all positions x0. When the position x0 is fixed,
we remark that the value of G{ f }(x0) is simply the scalar product

Gn{ f }(x0) = ⟨ f (·), gn(x0 − ·)⟩. (3.2)

A convolution in the spatial domain corresponds to a multiplication in the Fourier
domain as

(gn ∗ f )(x)
F←→ ĝn(ω) f̂ (ω).

Convolution operators are the ones for which the response map hn(x) depends lin-
early on the input texture function f (x). The definition of the function gn(x) is a priori
free of constraints. For the convolution, the spatial support of the operator is exactly
the domain on which the operator function gn(x) is nonzero. Operators with finite spa-
tial supports are desirable to study local texture properties of non-stationary processes
(see Section 3.1 of Chapter 2), hence we shall consider localized operator functions.
Also, band-pass filters for which ĝn(0) = 0 (i.e., zero gain for the null frequency ω = 0
corresponding to the average) are able to focus on texture alone and do not include
any intensity information. This ensures improved robustness of the texture operator
responses to variations in illumination.

As will be exploited thereafter, it is often interesting to define new texture operators
based on convolution operators, with the goal of locally aligning the orientation. We
develop this framework in the 2D setting. The matrix rotation with angle θ0 is noted

Rθ0 =
(
cos θ0 − sin θ0
sin θ0 cos θ0

)
.

Consider a convolution operator Gn with operator function gn(x). For each location
x0, we set

θx0 = arg max
θ0∈[0,2π)

〈
f (·), gn(x0 − Rθ0 ·)

〉
(3.3)

2In this section, except as otherwise stipulated, we will consider continuous operators and functions in-
dexed by the coordinate vector x. Discretized versions can be obtained following the notions introduced
in the Section 2.2 of Chapter 1.
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Here, θx0 is the angle that maximizes the scalar product between the texture image
f (x) and the rotated version of gn(x) around the location x0. It is therefore the angle
for which the operator function is the most aligned with f (x) at position x0. We then
define

Hn{ f }(x0) = ⟨ f (·), gn(x0 − Rθx0
·)⟩ (3.4)

=

∫

x∈RD
f (x)gn(x0 − Rθx0

x)dx.

The response map hn(x) = Hn{ f }(x) is no longer linear in f (x), therefore the texture
operator Hn is not a convolution operator in the sense of Eq. (3.1). We include the
angle alignment in this section since it is based on the convolutional framework and
characterized by the operator function gn(x) according to Eq. (3.4). Convolution oper-
ators and local angle alignment together allow to design texture operators equivariant
to rotations that can be used to study the local orientation in the texture image.

The most popular convolutional approaches in texture analysis are detailed in the
following subsections while distinguishing three main categories of convolutional op-
erator functions (see Fig. 3.1): circularly/spherically symmetric filters (Sec. 2.1), di-
rectional filters (Sec. 2.2), and learned filters (Sec. 2.3). It is worth noting that direc-
tional and learned filters are non-exclusive categories.

2.1. Circularly/spherically symmetric filters
Circularly/spherically symmetric filters are convolutional texture operators with func-
tions that only depend on the radial polar coordinate r (see Section 2 of Chapter 2):
gn(x) = gn(||x||) = gn(r). A direct consequence of this is their complete lack of direc-
tional sensitivity.

A simple example of such convolutional texture processing is based on Lapla-
cian of Gaussian (LoG) filters3. Their handcrafted operator function gσ(x) is a radial
second-order derivative of a D-dimensional Gaussian filter as

gσ(x) = − 1
πσ2

(
1 − ||x||

2

2σ2

)
e−
||x||2
2σ2 , (3.5)

where the standard deviation of the Gaussianσ controls the scale of the operator. LoGs
are band-pass and circularly/spherically symmetric. It is straightforward to notice in
Eq. (3.5) that gσ(x) only depends on the norm of x and is therefore circularly sym-
metric: we have gσ(x) = gσ(r). Their 2D profiles and response maps obtained with
synthetic tumors are depicted in Fig. 1.12 of Chapter 1. LoGs can also be approxi-
mated by a difference of two Gaussians4. LoGs were mentioned to be important in

3They are also called Mexican hat filters due their 2D shape.
4The Difference of Gaussians (DoG) best approximates LoG when the ratio of the two variances of the
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Table 3.1: Properties LoG filters.

Operator linearity Linear.
Handcrafted Yes.

3D extension
Trivial as the second-order derivative of a 3D Gaussian function. The LoGs are
circularly/spherically symmetric functions which only depend on the radial coordi-
nate r.

Coverage of image
directions

Complete: the angular part is constant for a fixed radius r.

Directionality and local
rotation-invariance

Not directional and locally rotation-invariant.

Characterization of the
LOIDs No.

Coverage of image
scales

Incomplete for a single value of σ. However, their wavelet extension allows a full
coverage of the spatial spectrum [65].

Band-pass Yes.
Gray-level reduction Not required.

Illumination-invariance No. However, they are robust to changes in illumination because LoGs are band-
pass filters.

Aggregation function Integrative (typically): computes the average of the absolute values or the energies
of the response maps over M.

biological visual processing by Marr in [43].
Multi-scale texture measurements η can be obtained by averaging the absolute val-

ues or the energies of the response maps (i.e., |hσn(x)| or h2
σn

(x), respectively) of a
series of operators with increasing values of σ1 < σ2 < · · · < σN (see Fig. 1.12 of
Chapter 1). They are implemented in 2D in the TexRAD5 commercial medical re-
search software [23]. The properties of LoG filters are summarized in Table 3.1.

2.2. Directional filters
Several handcrafted approaches were proposed for texture analysis using directional
filters. The latter are sensitive to image directions (see Section 4.2 of Chapter 3). The
most important and popular methods are discussed in this section, including Gabor
wavelets (Section 2.2.1), Maximum Response 8 (MR8, Section 2.2.2), Histogram of
Oriented Gradients (HOG, Section 2.2.3), and the Riesz transform (Section 2.2.4).

Gaussians are σ1 =
σ2√

2
.

5http://texrad.com, University of Sussex, Brighton, UK, as of 21 November 2016.
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2.2.1. Gabor wavelets
A popular example is the family of Gabor wavelets [36, 52, 29], which consists in
a systematic parcellation of the Fourier domain with elliptic Gaussian windows (see
Fig. 3.2). The D-dimensional filter function of the Gabor operator gρ,σ,θ(x) is the
most general function that minimizes the uncertainty principle [50] (see Section 3.1
of Chapter 2). Moreover, it was suggested in [9] that 2D Gabor filters are appropriate
models of the transfer function of simple cells in the visual cortex of mammalian
brains and thus mimicking the early layers of human visual perception. In the spatial
domain, they correspond to Gaussian-windowed oscillatory functions as

gρ,σ,θ(x) =
σ1σ2

2π
e−σ

2
1 x̃2

1+σ
2
2 x̃2

2 ej2πρx̃1 , (3.6)

where ρ is the center of the Gaussian window in Fourier, σ = (σ1,σ2) contains the
radial and orthoradial standard deviations of the Gaussian window in polar Fourier, and
x̃ = (x̃1, x̃2) = Rθx defines the radial and orthoradial elliptic Gaussian axes in space.

Multi-scale and multi-orientation texture measurements η are obtained by averag-
ing the absolute values or the energies of the response maps (i.e., |hρ,σ,θ(x)| or h2

ρ,σ,θ(x),
respectively) for various values of ρ, σ, and θ. The properties of Gabor wavelets are
summarized in Table 3.2.

2.2.2. Maximum Response 8 (MR8)
Another popular example of handcrafted directional filterbank is the MR8 approach [66].
The latter includes a filterbank with a collection of 38 operator functions gn(x) (see
Fig. 3.3). Two of them are circularly symmetric (one Gaussian and one LoG). Eigh-
teen are directional multi-scale edge detectors based on oriented first-order Gaussian
derivatives. Another eighteen are directional multi-scale ridge detectors based on ori-
ented second-order Gaussian derivatives. However, the approach yields a total of eight
response maps. The first two come from the convolution of the image with the circu-
larly symmetric Gaussian and LoG filters. The remaining six are computed as follows.
For each directional detector types (i.e., first- and second-order Gaussian derivatives),
only one detector per scale is kept. Among the six different filter orientations per
scale, the detector kept at the position x0 is the one that maximizes the detection in
the sense of Eq. (3.3), where θ0 is coarsely discretized. This results in six texture op-
erators Gn=1,...,6 that are “aligned” at every position and achieve approximated local
rotation-invariance. This process is illustrated in Fig. 3.3.

The aggregation function consists in pixel-wise clustering of the maximum filter
responses to create a texton dictionary (see Section 2.4 of Chapter 1). Class-wise mod-
els can then be created as texton occurrence histograms, which can be used to compare
texture instances by measuring distances between them (e.g., Euclidean, χ2). The vec-
tor of texture measurements η contains the bin values of the texton occurrences. The
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Table 3.2: Properties of Gabor wavelets.

Operator linearity Yes.
Handcrafted Yes.

3D extension
Requires using 3D elliptic Gaussian windows in the volumetric Fourier domain and
systematically indexing their orientations with angles θ, φ (corresponding to angles
ϑ,ϕ in spherical Fourier, see Section 2 of Chapter 2).

Coverage of image
directions

Complete with appropriate choices of directions θ and orthoradial standard devia-
tions σ2 respecting Parseval’s identity.

Directionality and local
rotation-invariance

Directional and not locally rotation-invariant. A local rotation of the input image
f (Rθ0 ,x0 · x) will swap the responses of the operators with various orientations θ.

Characterization of the
LOIDs

No. Gabor filters/wavelets are unidirectional operators that are not able to charac-
terize the LOIDs when used with an integrative aggregation function (e.g., average,
see Section 4.2 and Fig. 2.13 of Chapter 2). MF representations based on a con-
sistent alignment criteria (e.g., Hessian-based structure tensor, see Section 4.3 and
Fig. 2.14 of Chapter 2) can be used to locally align Gabor operators (using e.g.,
steerability [47]) and allow characterizations of the LOIDs.

Coverage of image
scales

Complete for filters with appropriate choices of radial frequencies ρ and standard
deviation σ1 respecting Parseval’s identity. This is the case for Gabor wavelets.

Band-pass Yes.
Gray-level reduction Not required.

Illumination-invariance No. However, they are robust to changes in illumination because Gabor filters are
band-pass.

Aggregation function Integrative (typically): computes the average of the absolute values or the energies
of the response maps over M.

properties of the MR8 approach are summarized in Table 3.3.

2.2.3. Histogram of Oriented Gradients (HOG)
An efficient gradient-based MF representation is the local image descriptor used in the
Scale Invariant Feature Transform (SIFT) approach [40] called Histogram of Oriented
Gradients (HOG). The texture function f (x) is first filtered with circularly symmetric
multi-scale DoG filters gσi(x) (see Section 2.1) using a dyadic scale progression (i.e.,
σi+1 = 2σi), which yields a collection of response maps hσi(x). At a fixed scale i,
corresponding to the standard deviation σi = σ, the gradient orientation map hθσ(x) is
computed from the response map hσ(x) as

hθσ(x) = arctan
(∇x2{hσ}(x)
∇x1{hσ}(x)

)
, (3.7)

06The texton dictionary is derived from the data, but the operators are handcrafted.
07Clustering results in averaging within local homogeneous regions in the feature space.
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Figure 3.2: One isolated scale ρ of Gabor wavelets with 4 orientations θ and a spectral
dispersion of σ = (σ1,σ2). Note that the spatial angular polar coordinate θ is equiva-
lent to the Fourier angular coordinate ϑ.

where ∇x1{hσ}(x) and ∇x2{hσ}(x) yield gradients maps. Eq. (3.7) provides local an-
gle values maximizing the gradient magnitude in the spirit of Eq. (3.3). For a fixed
orientation θ, we set u(θ) = Rθ(1, 0) = (cos θ, sin θ) and ∇u(θ) = cos θ · ∇x1 + sin θ · ∇x2

the oriented derivative with direction u(θ). We define the oriented response map as
hσ,θ{x0} = ∇u(θ){hσ}(x0). When using discretized image functions, operators and re-
sponse maps hσ(ξ), the latter can be estimated using pixel differences as

∇x1{hσ}(ξ) = hσ(ξ1 + ∆ξ1, ξ2) − hσ(ξ1 − ∆ξ1, ξ2),
∇x2{hσ}(ξ) = hσ(ξ1, ξ2 + ∆ξ2) − hσ(ξ1, ξ2 − ∆ξ2).

(3.8)

For each position x0, the dominant gradient direction θx0 is obtained by maximizing
Eq. (3.7). To define the HOG operators, we align and sample the orientation θ =
θq − θx0 =

2π
q − θx with q = 1, . . . , 8. The final collection of HOG operators Gσ,q is

given at location x0 by

Gσ,q{ f }(x0) = hσ,q(x0).
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Table 3.3: MR8 properties.

Operator linearity No. The filtering operations are linear, but keeping the maximum value among the
six orientations is a non-linear operation.

Handcrafted The operators are handcrafted6.

3D extension Requires extending the filter orientations to 3D with systematic sampling of angles
θ, φ.

Coverage of image
directions

Near to complete, but not strictly respecting Parseval’s identity.

Directionality and local
rotation-invariance

Directional and approximate local rotation-invariance.

Characterization of the
LOIDs

No, all MR8 operators are unidirectional. In addition, they are “aligned” indepen-
dently at a position x0 and do not yield MF representations.

Coverage of image
scales

Incomplete.

Band-pass Yes, with the exception of the circularly symmetric Gaussian filter (low-pass).
Gray-level reduction Not required.

Illumination-invariance No, mostly because of the circularly symmetric Gaussian filter.

Aggregation function
Consists of two consecutive aggregation functions: a first piece-wise integrative
function7 is used to construct the texton dictionary and second integrative function
counts the texton occurrences and organize them in a histogram.

The value of hσ,q(x0) can be efficiently evaluated using the steerability of the gradient
operator [21] as

hσ,q(x0) = cos(θq − θx0 ) · ∇x1{hσ}(x0) + sin(θq − θx0 ) · ∇x2{hσ}(x0). (3.9)

The collection of HOG operators Gσ,q provides a MF representation oriented with
θx0 and containing eight redundant frame components (see Section 4.3 of Chapter 2).
Whereas the response maps hσ(x) depend linearly on the texture image f (x), it is not
anymore the case for the HOG operators due to the local alignment of the angle: the
HOG operators are not convolution operators themselves, but take advantage of the
convolution framework since they are based on the DoG filters.

For obtaining texture measurements η, the responses of HOG operators can be ag-
gregated over regions M using component-wise averages (see Fig. 2.15 of Chapter 2).
This allows building scale-wise histograms of oriented gradients, where each bin q
corresponds to the average response of the response map hσ,q(x) of its corresponding
operator Gσ,q over M. The properties of HOGs are summarized in Table 3.4.

2.2.4. Riesz transform
A more elegant approach to compute directional transitions between pixel values is to
compute them in the Fourier domain instead of using pixel differences in Gaussian-
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isotropic mutliscale oriented gradients multiscale oriented Laplacians

m

L1 × L2

g(f(x),m) = g(f(Rθ0x),m), ∀θ0 ∈ [0, 2π), ∀x ∈ RL1×L2

Oriented edge detectors
(1st-order Gaussian derivative)

Oriented ridge detectors
(2nd-order Gaussian derivative)

Gaussian

LoG

θ2=
π

6
θ1=0 θ3=

π
3

θ4=
π
2 θ5=

2π
3

θ6=
5π
6

θ6=
5π
6

θ5=
2π
3

θ4=
π
2

θ3=
π
3

θ2=
π

6
θ1=0

f (x)
x0

Figure 3.3: Top row: the 38 operators of the MR8 filterbank. At a given position x0,
the collection of operators Gn=1,...,8{ f }(x0) consists of a subset of the six directional
operators with maximum response over all orientations θ1,...,6 plus the two circularly
symmetric operators. This results in eight responses for each position (hence the name
of the approach), which are marked in red in the example above.

smoothed images as presented in Eq. (3.8). This also provides the opportunity to easily
compute higher-order image derivatives of order l as

∂l

∂xl
d

f (x)
F←→ ( jωd )l f̂ (ω), (3.10)

where 1 ≤ d ≤ D. It can be noticed that differentiating an image along the direction
xd only requires multiplying its Fourier transform by jωd. Computing lth-order deriva-
tives has an intuitive interpretation (e.g., texture gradient for l = 1, curvature for l = 2),
which makes them attractive for understanding the meaning of the texture measures in
a particular medical or biological applicative context. However, a pure image deriva-
tive filter as computed in Eq. (3.10) is high-pass (because multiplied by ωd) and ac-
centuates high frequencies along xd. Therefore, it is desirable to implement image
derivatives as all-pass filters, which is provided with the real Riesz transform8 R{ f }(x)

8The Riesz transform is the multi-dimensional extension of the Hilbert transform.
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Table 3.4: HOG properties.

Operator linearity
No. The initial filtering operations are linear, but “aligning” the HOGs with the
dominant directions θx0 obtained from Eq. (3.9) is a non-linear operation.

Handcrafted Yes.

3D extension Requires extending the gradient orientations to 3D with systematic sampling of
angles θ, φ, which is proposed in [58].

Coverage of image
directions

Complete.

Directionality and local
rotation-invariance

Directional and locally rotation-invariant.

Characterization of the
LOIDs

Yes. The HOGs provide MF representations oriented with θx0 (see Eq. 3.7).

Coverage of image
scales

Incomplete and depends on the choices of DoG scales σ.

Band-pass Yes.
Gray-level reduction Not required.

Illumination-invariance No. However, they are robust to changes in illumination because gradient operators
computed on top of DoGs coefficients are band-pass.

Aggregation function
The average of the response maps of each HOG operator’s responses can be used to
build the scale-wise histogram of oriented gradients. This yields a gradient-based
MF representations (see Section 4.3 of Chapter 2).

as [64]

R{ f }(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1{ f }(x)
...

RD{ f }(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
F←→ −j

ω

||ω|| f̂ (ω), (3.11)

It can be noticed by dividing the Fourier representation with the norm of ω transforms
Eq. (3.10) in D all-pass operatorsRd. For a fixed order L, the collection of higher-order
all-pass image derivatives are defined in Fourier as

R̂l{ f }(ω) = (−j)L

√
L!

l1! · · · lD!
ωl1

1 · · · ω
lD
D(

ω2
1 + · · · + ω2

D

)L/2 f̂ (ω), (3.12)

which yields a total of
(

L+D−1
D−1

)
= (L+D−1)!

L!(D−1)! all-pass filters for all combinations of the
elements ld of the vector l as |l| = l1 + · · · + lD = L. The collection of Riesz operators
of order L is denoted by RL. A set of band-pass, multi-scale and multi-orientation
operator functions gσ,l(x) can be obtained by simply applying the Riesz transform to
circularly symmetric wavelets or multi-scale filters, e.g., the LoG filter gσ (see Eq. 3.5)
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is determined by the partial derivatives in Eq. (1). Whereas 2N Riesz filters
are generated by (1), only N + 1 components have distinct properties due to
commutativity of the convolution operators in (2) (e.g., ∂2/∂x∂y is equivalent
to ∂2/∂y∂x). The Riesz components yield a steerable filterbank [15] allowing
to analyze textures in any direction, which is an advantage when compared to
classical Gaussian derivatives or Gabor filters. Qualitatively, the first Riesz com-
ponent of even order corresponds to a ridge profile whereas for odd ones we obtain
an edge profile, but much richer profiles can be obtained by linear combinations
of the different components. The templates of h1,2(x) convolved with Gaussian
kernels for N=1,2,3 are depicted in Fig. 1. The Nth–order Riesz transform can
be coupled with an isotropic multiresolution decomposition (e.g., Laplacian of
Gaussian (LoG)) to obtain rotation–covariant (steerable) basis functions [15].

The main idea of the proposed approach is to derive texture signatures from
multiscale Riesz coefficients. An example showing healthy and fibrosis tissue
represented in terms of their Riesz components with N=2 is depicted in Fig. 2 a).
In order to provide a local categorization of the lung parenchyma, lung regions
in 2D axial slices are divided into 32×32 overlapping blocks with a distance
between contiguous block centers of 16. The Riesz transform is applied to each
block, and every Riesz component n = 1, . . . , N+1 is mapped to a multiscale
representation by convolving them with four LoG filters of scales s = 1, . . . , 4
with a dyadic scale progression. In a total of (N+1)×4 subbands, the variances
σn,s of the coefficients are used as texture features along with 22 grey level
histogram (GLH) bins in [-1050;600] Hounsfield Units (HU). The percentage
of air pixels with values ≤ −1000 HU completes the feature space learned by
support vector machines (SVM) with a Gaussian kernel.

The local dominant texture orientations have an influence on the reparti-
tion of respective responses of the Riesz components, which is not desirable for
creating robust features with well–defined clusters of instances. For example, a
rotation of π/2 will switch the responses of h1 and h2 for N=1. To ensure that
the repartitions of σn,s are comparable for two similar textures having distinct
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f (x)
gσ,1,0
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gσ,3,0

gσ,0,1

gσ,1,1

gσ,2,1

gσ,0,2

gσ,1,2 gσ,0,3

∗ gσ,1,0(x) �gσ,0,1(x)

hσ,1,0(x) hσ,0,1(x)

Figure 3.4: Two-dimensional Lth-order Riesz texture operators with functions gσ,l(x)
providing Lth-order image derivatives at a fixed scale σ. Applying L = 1 texture op-
erators with functions gσ,1,0 and gσ,0,1 to the input texture f with convolution yields
response maps hσ,1,0(x) and hσ,0,1(x) decomposing f into its vertical and horizontal di-
rections, respectively. Qualitatively, L = 1 corresponds to gradient estimation whereas
L = 2 estimates the Hessian. They both have intuitive interpretations (e.g., texture
slope for L = 1, curvature for L = 2), which makes them attractive for understanding
the meaning of the texture measures in a particular medical or biological applicative
context.

as

gσ,l(x) = Rl{gσ}(x).

Examples of 2D real Riesz operators and their application to a directional texture are
shown in Fig. 3.4. They are implemented as a plugin for quantitative image analysis
on the ePAD radiology platform (see Chapter 13). 3D real Riesz filters are depicted
in Fig. 2.12 of Chapter 2 and are implemented in the QuantImage radiomics web
platform9 (see Chapter 12).

Riesz operators as defined in Eq. (3.12) are not locally rotation-invariant/equivariant.
However, local rotation-invariance/equivariance and rich MF representations can be
achieved in a convenient fashion through the most interesting property of Riesz tex-
ture operators, which is steerability. The Riesz operator functions gσ,l(x) are steerable,
which will be detailed in 2D in the following text. 2D steerability means that the re-
sponses of gσ,l rotated by an angle θ0 can be very efficiently computed with a linear

9https://radiomics.hevs.ch, as of March 1 2017.
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gσi,1,0(Rθ0 x, 0) = cos θ0 · gσi,1,0(x, 0) + sin θ0 · gσi,0,1(x, 0)gσ i,1,0(Rθ0 x, 0) = cosθ0 · gσ i,1,0(x, 0) + sinθ0 · gσ i,0,1(x, 0)gσ i,1,0(Rθ0 x, 0) = cosθ0 · gσ i,1,0(x, 0) + sinθ0 · gσ i,0,1(x, 0)

= -0.878 · + -0.479 ·θ0 =
5π
6

:

⇒

f (x)

e2,x0

e1,x0

θx0
ηM =

1
|M|

∫

x0∈M

(
A1
θx0
R1{ f }(x0)

)2
dx0

gσ,1,0(Rθ0 x) = cosθ0 · gσ,1,0(x) + sinθ0 · gσ,0,1(x)

Figure 3.5: Top row: Example of the steering of the first-order Riesz operator gσ,1,0
at the position x0 = 0 with an angle θ0 = 5π

6 . Bottom row: rich MF representations of
f (x) can be obtained from locally steered Riesz filterbanks (exemplified for L = 1).

combination parameterized by a steering matrix AL
θ0

as

RL{gσ}(Rθ0 x) = AL
θ0
RL{gσ}(x), (3.13)

where gσ is the circularly symmetric function used to control the spatial support of the
operators. For order 1 (i.e., L = 1), A1

θ0
is equal to the 2D rotation matrix Rθ0 . For each

scale σ, rich D-dimensional MF texture representations can be obtained by finding the
local angle θx0 maximizing the response of one chosen Riesz operator function gσ,l1,...,lD

for each position x0 using steerability [5, 18, 15, 7, 11]. For instance, 2D angle maps
corresponding to a texture function f can be obtained for L = 1 as

θx0 := arg max
θ0∈[0,2π)

(
cos θ0 · gσ,1,0 ∗ f (x0) + sin θ0 · gσ,0,1 ∗ f (x0)

)
. (3.14)

This is a particular case of the angle alignment framework introduced in Eqs. (3.3)
and (3.4).

A collection of MF texture measurements η can be obtained from component-wise
averages of the absolute values (or energies) of the Riesz wavelet coefficients steered
with angle maps obtained from e.g., Eq. (3.14). Steerability of the real Riesz transform
and its use for the construction of MF representations is illustrated in Fig. 3.5. The
properties of real Riesz-based texture analysis are summarized in Table 3.5.

By slightly modifying the definition of the Riesz transform (see Eq. 3.12) into its
complex form, it is also possible to obtain two-dimensional texture descriptors that
can linearly quantify the amount of local circular frequencies. The latter are implicitly
modeled by LBP operators, which unfortunately require a binarization and discretiza-
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Proposition 1 (c.f. [28, Proposition 4.1.]). Let ĥ : [0,∞) →R

be a smooth function satisfying:
1) ĥ(ρ) = 0 for ρ >π (bandlimited),

2)
∑

s∈Z

∣∣ĥ
(
2sρ

)∣∣2 = 1,

3)
dnĥ
dρn

∣∣∣∣∣
ρ=0

= 0 for n = 0, . . . , N (vanishing moments).

Using any norm p as 1 ≤ p ≤∞, the mother wavelet φ whose
Fourier transform is given by

φ̂ (ω) = ĥ
(
∥ω∥ℓp

)
(5)

generates a normalized tight wavelet frame of L2(R2) whose
basis functions

φs,k (x) =φ
(
x −2s k

)
(6)

have vanishing moments up to order N . In particular, any
f ∈ L2

(
R2) can be represented as

f =
∑

s∈Z

∑

k∈Z2

〈
f , φs,k

〉
φs,k . (7)

As a particular example of such wavelets, in this work, we
use Simoncelli’s isotropic wavelet [29] defined by its radial
frequency profile

ĥ(ρ) =
{

cos
(
π
2 log2

(
2ρ
π

))
, π

4 < ρ ≤π

0, otherwise.
(8)

From the primal isotropic wavelet defined in this section
we generate polar separable ones by the application of the
multi-order complex Riesz transform.

C. The Multi-Order Complex Riesz Transform

The multi-order complex Riesz transform is used to
obtain systematic representations of image directions. The
first-order complex Riesz transform corresponds to the
multi-dimensional extension of the Hilbert transform and
was introduced in the literature by Larkin [30, 31]. The latter
is defined in the Fourier domain as

R f (x) ↔
(ωx + jωy )

∥ω∥ f̂ (ω) = ejϕ f̂pol(ρ,ϕ). (9)

Similarly to the Hilbert transform, it corresponds to a
convolution-type operator that acts as an allpass filter. Its
phase response is completely encoded in the orientation.

The Riesz transform is translation- and scale-invariant.
More precisely,

∀y ∈R2, R f (·− y)(x) =R f (·)(x − y) (10)

∀a ∈R+, R f
( ·

a

)
(x) =R f (·)

( x
a

)
. (11)

The nth-order complex Riesz transform Rn is defined as
the n-fold iterate of the complex Riesz transform R. In the
Fourier domain,

Rn f (x) ↔ ejnϕ f̂pol(ρ,ϕ). (12)

The higher order Riesz transform inherits the invariance
properties of the complex Riesz transform, since they
are preserved through iteration. Thus, it is scale- and
translation-invariant, and provides a unitary mapping from
an L2

(
R2) tight wavelet frame to another one.

Fig. 4. Profiles of CHWs φ(n)
s,k for n = 0, . . . ,5. Top, middle and bottom rows

correspond the real, imaginary parts and absolute values, respectively.

D. Circular Harmonic Wavelet Frames

We apply the multi-order complex Riesz transform to
a primal isotropic function that satisfies Proposition 1.
The generated wavelet frames are called circular harmonic
wavelets (CHW) and allow systematic characterizations of
image scales and directions. We note that our CHWs are
similar to ones of Jacovitti [26], with the difference that the
latter ones are non-tight. The new wavelet functions are
defined as φ(n) :=Rnφ. More precisely, in Fourier, we have

F
{
Rn{φs (·− y)}

}
(ρ,φ) = 2s ĥ(2sρ)ejnφ−jρ0ρ cos(φ−φ0). (13)

The n-channel tight wavelet frame is generated as
{φ(n)

s,k =F−1{φ̂(n)
s,k }}n∈S . In this case, the elements of the

distinct set S are called harmonics (corresponding to the
exponentials). The nth-order CHW φ(n)

s,k has a rotational
symmetry of order n around its center that corresponds
to the nth-order rotational symmetry of ejnφ. CHWs are
depicted in Figure 4 for n = 0, . . . ,5.

The wavelets φ(n)
s,k form a tight wavelet frame, thus any

finite-energy function f can be decomposed as

f =
∑

n,s,k

〈
f , φ(n)

s,k

〉
φ(n)

s,k . (14)

A remarkable property of the CHWs is that of being self-
steerable, where any rotation of φ(n)

s,k can be expressed as a
linear combination of their own real and imaginary parts.
More precisely,

φ(n)
s,0,θ0

(x) =φ(n)
s,0 (R−θ0 x) = e j nθ0φ(n)

s,0 (x), (15)

where R−θ0 =
[

cos(θ0) −sin(θ0)
sin(θ0) cos(θ0)

]
. Therefore, any rotation of a

multi-order CHW representation can be obtained with the
block-diagonal steering matrix Aθ0 as

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re
(〈

f ,φ(1)
s,0,θ0

〉)

Im
(〈

f ,φ(1)
s,0,θ0

〉)

.

.

.

Re
(〈

f ,φ(n)
s,0,θ0

〉)

Im
(〈

f ,φ(n)
s,0,θ0

〉)

.

.

.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ0) −sin(θ0)
sin(θ0) cos(θ0)

. . .

cos(nθ0) −sin(nθ0)
sin(nθ0) cos(nθ0)

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Aθ0

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re
(〈

f ,φ(1)
s,0

〉)

Im
(〈

f ,φ(1)
s,0

〉)

.

.

.

Re
(〈

f ,φ(n)
s,0

〉)

Im
(〈

f ,φ(n)
s,0

〉)

.

.

.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It can be noticed that Aθ0 is sparse and the steering of
multi-order representations requires much less computa-
tion when compared to other steerable wavelet represen-
tations with full steering matrices [28] (e.g., Riesz wavelets,
Simoncelli’s pyramid).

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

Re
�
gCH
σ,l (x)

�

Im
�
gCH
σ,l (x)

�

|gCH
σ,l (x)|

Figure 3.6: Impulse responses of Circular Harmonics (CH) of order l = 0, . . . , 5.

tion of the circular neighborhoods resulting in a potentially large loss of information.
This is not the case when using the complex Riesz transform. The 2D l-th order com-
plex Riesz transform Rl

C is defined in polar coordinates in Fourier as [62]

R̂l
C{ f }(ρ,ϑ) = e jlϑ f̂ (ρ,ϑ). (3.15)

Using a process similar to construct real Riesz filters, applying the complex Riesz
transform to circularly symmetric filters or wavelets (e.g., LoG filters, Eq. 3.5, or circu-
larly symmetric Simoncelli wavelets, Eq. 2.2 of Chapter 2) yields steerable, complex,
and band-pass Circular Harmonic (CH) filters or wavelets gσ,l(x) = Rl

C{gσ}(x) ∈ C
with l = 0, . . . , L [32, 38]. CHs stand out as the canonical representation of steer-
ability [62], which implies that every steerable representation gσ,L,c with c = 1, . . . ,C
components per scale can be obtained with a C × (L + 1) complex shaping matrix U
as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gσ,L,1
...

gσ,L,C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gσ,0
...

gσ,L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.16)

As a consequence, any steerable representation can be obtained with a specific shap-
ing matrix U (e.g., gradient and Hessian real Riesz, Simoncelli’s steerable pyramid).
Examples of CH filters are shown in Fig 3.6. Rich and locally rotation-invariant de-
scriptions of the LOIDs can be obtained with a very cheap computational cost by
computing the complex magnitudes of the response maps hσ,l=0,...,L(x). The collection
of CH with various orders l = 0, 1, . . . , L defines an orthonormal system correspond-
ing to a Fourier basis for circular frequencies up to a maximum order L. The process
is similar to LBP as presented in [1] but with the desirable properties of a fully linear
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Table 3.5: Properties of real and complex Riesz texture representations, as well as
Steerable Wavelet Machines (SWM).

Operator linearity No. The filtering operations are linear, but “aligning” the filters either using opera-
tor steering or the complex magnitude of CH are non-linear operations.

Handcrafted Yes for real and complex Riesz. No for learned SWMs operators (see Section 2.3.1).

3D extension

Real Riesz representations are extended to 3D by considering the subspace of filters
spanned by all combinations of partial derivatives relatively to {x1, x2, x3} [5, 18]
(see Eq. 3.12). The extension of complex Riesz transforms (i.e., CH) to three di-
mensions is not straightforward. Spherical harmonics-based representations can be
considered [70, 59].

Coverage of image
directions

Complete.

Directionality and local
rotation-invariance

Directional and not locally rotation-invariant in their initial form. However, rich
directional and locally rotation-invariant representations can be obtained at a low
computational cost by either using the complex magnitudes (complex Riesz) or
steerability (real and complex Riesz as well as SWMs).

Characterization of the
LOIDs

Yes. Moreover, rich and learned MF representations can be obtained with steerabil-
ity and SWMs.

Coverage of image
scales

Complete when used with circularly symmetric wavelet representations [15] (e.g.,
Simoncelli [51], Meyer [8], Shannon [63]).

Band-pass Yes.
Gray-level reduction Not required.

Illumination-invariance No. However, they are robust to changes in illumination when Riesz operators are
based on band-pass circularly symmetric primal functions.

Aggregation function The average or covariances of the absolute values (or energies) of each Riesz oper-
ator response can be used [7, 16].

approach (e.g., no gray-level transformation required) besides the final step comput-
ing the complex magnitudes. However, absolute values of CH filters do not define MF
representations since the inter-harmonic phase is lost by taking the magnitude of the
responses of the operators. Rich MF representations can be obtained by steering all
harmonics with a unique local orientation θx0 , as proposed in [16]. Although more
computationally expensive than using the magnitudes of the operators, steering them
is relatively cheap because CH are self-steerable, resulting in block-diagonal steering
matrices AL

θ0
for multi-order representations.

Texture measures η can be obtained from the averages or covariances of absolute
values (or energies) of steered or non-steered Riesz response maps over a region of in-
terest M [7]. The properties of complex Riesz-based texture analysis are summarized
in Table 3.5.
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2.3. Learned filters
All texture operators described and discussed in the previous sections are handcrafted.
This means that the type of texture information extracted by theses operators is as-
sumed to be relevant for the texture analysis task in hand. Therefore, the design of
these operators in terms of the coverage of image scales and directions was based on
prior assumptions (e.g., ad-hoc or based on theoretic guidelines, see Section 3.1 of
Chapter 1). Whereas classical approaches use machine learning on top of handcrafted
representations, more recent approaches proposed to derive the design of the operators
from data to identify the combinations of scales and directions that are optimal for the
texture analysis task in hand. When compared to handcrafted operators, learned ones
reduce the risk of unnecessary modeling of texture properties that are not related to the
targeted application (see Fig. 2.5 of Chapter 2). They eliminate human bias to include
or exclude arbitrary operator scales and directions. It is worth noting that learned ap-
proaches still predominantly use handcrafted components of the aggregation function
(e.g., ReLU, sigmoid, pooling, see Section 2.3.3). Three important approaches for
learning convolutional texture filters are discussed in this section, including Steerable
Wavelet Machines (SWM, Section 2.3.1), Dictionary Learning (DL, Section 2.3.2),
and deep Convolutional Neural Networks (CNNs, Section 2.3.3).

2.3.1. Steerable Wavelet Machines (SWM)
In [12, 17, 14] and [16], we proposed to use SVMs to learn optimally discriminant
linear combinations of real or complex Riesz operators. The most interesting property
of this approach called Steerable Wavelet Machines (SWM) is to combine the flex-
ibility of learned representations with steerability10, i.e., we learned the lines uc of
the shaping matrix U (see Eq. 3.16) using one-versus-all classification configurations.
This yields class-specific steerable signatures of the essential stitches of biomedical
tissue (allowing locally rotation-invariant descriptions of the LOIDs) that can be used
for building data-specific MF representations. This approach is based on handcrafted
representations of image scales based on dyadic circularly symmetric wavelet func-
tions and we are currently extending the learning to image scales as well. The learned
operators are limited to the span of Riesz representations. However, it was observed
that a limited number of circular harmonics (e.g., L = 3, . . . , 10) yields optimal texture
representations for classification. In addition, the span of CH becomes less and less
restricted with large values of L and can represent any function for L→ ∞ since it
can be interpreted as a Fourier transform for circular frequencies. The properties of
SWMs are summarized in Table 3.5.

10Linear combinations of steerable subspaces are themselves steerable.
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γp =

⎛
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fi(ξ − ξ0,p)

...

fi(ξ − ξ8,p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ0,p ξ1,p ξ2,p

ξ3,p ξ4,p ξ5,p

ξ6,p ξ7,p ξ8,p

Figure 3.7: Dictionary learning (DL) process from one single image fi(ξ). A collection
of 3 × 3 patches γp(ξ) are extracted from fi. The patch matrices are vectorized to create
vectors γp. K-means clustering is used in the space spanned by instance vectors γp to
find N atoms gn, fi(ξ) that are representative of fi. These atoms are called textons and
can be further used as texture operator functions.

2.3.2. Dictionary Learning (DL)
Recent popular approaches propose to fully learn operators from data (e.g., a collection
of bounded discretized texture functions I = { f1(ξ), f2(ξ), . . . , fI(ξ)}) with very little
constraints besides their maximal spatial support G1 × · · · ×GD. A first notable exam-
ple is unsupervised Dictionary Learning (DL). The learned set of operators will de-
pend on the learning criteria used [61]. Basic dimensionality reduction methods such
as Principal Component Analysis (PCA), Independent Component Analysis (ICA), or
K-means clustering based on the |G| pixel values of G1 × · · · ×GD patches γp(ξ) can
be used to derive N essential atoms gn,I(ξ), which can be further used as operator
functions [54]. PCA requires that the atoms are orthogonal to each other (i.e., it re-
moves correlation between them). ICA minimizes the correlation as well as higher
order dependence between atoms, which are not necessarily orthogonal. K-means
finds N prototype atoms gn,I(ξ) from clustering of the |G|-dimensional space spanned
by the pixel values of the patches γp(ξ). In this particular case, the atoms are also
called textons [37, 72], which were identified as the elementary units of pre-attentive
human texture perception [33]. Textons relate to texture primitives (see Section 2.4 of
Chapter 1) and to the LOIDs (see Section 4.1 of Chapter 2). The process for extracting
3 × 3 textons from a texture function f (ξ) is illustrated in Fig. 3.7.

Another successful unsupervised approach was based on creating a collection of
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atoms from which we can reconstruct the patches γp(ξ) with a coefficients vector αp
containing a minimum number of non-zero elements [41, 24]. Every atoms gn,I,λ are
vectorized, transposed and piled up to create the |G| × N dictionary matrix D with N
atoms. Solving the following optimization problem for a collection of P patches can
be used to compute both D and α as

D := arg min
D,α

P∑

p=1

||γp − Dαp||22 + λ||αp||1, (3.17)

where || · ||1 is the ℓ1-norm11 and λ is controlling the sparsity of the atom coefficients
α. Additional topological constraints were added in Topographic Independant Com-
ponent Analysis (TICA) to take into account the important knowledge that patches that
are spatially close to each other have similar statistical propoerties [31]. All texture
operators dictionaries D learned with unsupervised approaches (e.g., K-means, PCA,
ICA, TICA, reconstruction, see Eq. 3.17) are not directly optimizing a discriminative
criteria, which means that they are not necessarily optimal for biomedical texture clas-
sification of a set of considered tissue types. To tackle this issue, supervised dictionary
learning was proposed [41], where D is obtained as

D := arg min
D,b,α

P∑

p=1

C
(
yp, γ

T
p Dαp + b

)
+ λ||D||2F , (3.18)

where γp are the vectorized training patches and their labels
(
yp ∈ {−1,+1}

)
p=1,...,P

,
C(yp, y̆p) is the cost function12, b the bias, and || · ||F the Frobenius matrix norm13.
An inherent challenge of DL methods is the large number of free parameters (i.e.,
features or variables) to learn which is equal the size (i.e., measure) of the dictionary
|G| × N, resulting in a very high-dimensional feature space. This typically requires
a very large collection of training patches to respect the recommended ratio between
feature dimensionality and number of training instances equal to ten [28]. As an order
of magnitude, 121,0000 training patches are required to learn 1000 11 × 11 atoms. A
collection of N texture measurements η can be obtained by computing the averages
of the absolute values or energies of the response maps hn(ξ) = (gn ∗ f )(ξ) within a
region of interest M. The properties of DL-based texture analysis are summarized in
Table 3.6.

11The ℓ1-norm of a vector x is ||x||1 =
∑D

d=1 |xd |, whereas the ℓ2-norm is ||x||2 =
√∑D

d=1 x2
d.

12The cost function defines how label prediction errors of the estimations y̆p are penalized. The logistic
loss function is used in [41] and is defined as C(yp, y̆p) = log(1 + e−ypy̆p ).
13The Frobenius matrix norm is defined as ||A||F =

√∑I
i=1
∑J

j=1 a2
i, j, where ai, j are the elements of A.
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Table 3.6: Properties DL texture operators.

Operator linearity Yes.

Handcrafted No. The texture operators functions gn(ξ) (i.e., the dictionary atoms) are fully de-
rived from a collection of training texture functions I.

3D extension Straightforward. It requires vectorizing 3D image patches γp(ξ). However, the
number of free parameters will grow cubically.

Coverage of image
directions

Complete, but only over the restricted spatial support G of the atoms.

Directionality and local
rotation-invariance

Directional and not locally rotation-invariant. Data augmentation can be used to im-
prove robustness to input rotation, but it has undesirable effects (see Section 2.3.4).

Characterization of the
LOIDs

Yes, but not in a locally rotation-invariant fashion.

Coverage of image
scales

Incomplete. Typical spatial supports G of the atoms are 3 × 3, 5 × 5, 11 × 11, which
is much smaller than the spatial supports F of biomedical texture functions.

Band-pass No.
Gray-level reduction Not required.

Illumination-invariance No. The texture operators functions are not band-pass filters.

Aggregation function The average of the absolute values (or energies) of each atom response can be used.

2.3.3. Deep Convolutional Neural Networks (CNN)
One major and very successful work on filter learning are CNNs and their deep ar-
chitectures14 [26, 67, 35, 55, 56]. Review and applications of deep learning in texture
analysis for tissue image classification are further detailed in Chapters 4, 9 and 10. In
a nutshell, deep CNNs consist of a cascade of Q convolutional layers, where each of
the latter typically contains

(i) a multi-channel convolution of the input fn′,q(ξ)15 with a set of N G1 × · · · ×GD
multi-channel operator functions gn,n′,q(ξ), called receptive fields,

(ii) a simple pointwise non-linear gatingV(x) of the response map hn,q(ξ),

(iii) an optional cross-channel normalization [35] and,

(iv) a pooling operation resulting in a down- or up-sampling of hn,q(ξ).

14A notable exception is the Scattering Transform (ST) [3], which is a hancrafted deep CNN.
15The first layer q = 1 will use the original image fn′ ,1(ξ) as input, whereas the next layers q = 2, . . . ,Q will
use the n′ = 0, . . . ,N′ outputs (i.e., channels) fn′ ,q−1(ξ) of the previous layer as input for the convolution.
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In 2D, the multi-channel convolution in a layer q between the input fn′,q−1(ξ) and the
set of N multi-channel filters gn,n′,q(ξ) is

hn,q(ξ) =
N′∑

n′=1

(gn,n′,q ∗ fn′,q−1)(ξ). (3.19)

(3.19) yields a multi-channel response map hn,q(ξ) with a dimensionality of F1 × F2 × N′

for a 2D input function of domain F. The convolution is two-dimensional, where no
cross-channel convolution is carried out. Popular examples of non-linear gating func-
tionsV(x) are the Rectified Linear Unit (ReLU)

VReLU(x) = max(0, x),

the sigmoid function

Vsig(x) =
1

1 + e−x ,

the absolute value and the energy. The aim of the pooling operation is to down- or
up-sample feature maps to achieve a multi-scale analysis throughout the cascade of
convolutional layers. Whereas the upsampling operation is often straightforward (no
specific super-resolution approach [55]), the downsampling requires using a criteria
on which value to keep over local patches (e.g., maximum, minimum, median, sum,
average). The structure of one convolutional layer is depicted in Fig. 3.8.

Deep CNN architectures consist of a cascade of convolutional layers containing
a large collection of operator functions gn,n′,q(ξ) learned to minimize a cost function
C(yp, y̆p). The total number of free parameters is equal to the product of the number
of channels per operator N′, the number of operator per layer N, the size of the spatial
support |G| of the operators, and the number of layers Q, if we assume that N, N′ and
|G| are identical over all layers. It is very common for CNN architectures designed for
classification to have a final Fully Connected (FC) layer that computes the decision
value based on a linear combination of all elements of the final feature maps hn,Q(ξ).
As an example, the complete forward function uforward( f (ξ)) of a classification CNN
transforms the input texture fp(ξ) into an estimated class label y̆p

16 is a composition
of all functions uq from all layers as

uforward( f (ξ); g) : F→ R, (3.20)
y̆p = uforward( fp(ξ); g) = uFC(· · · u2(u1( fp(ξ); g1); g2) · · · ); gFC), (3.21)

where gq is the collection of free parameters of the operator functions gn,n′,q(ξ) in the
layer q, and g is the total collection of free parameters of the model. When CNN ar-

16y̆p can be binary (e.g., y̆p ∈ {−1,+1}) or continuous (e.g., probability y̆p ∈ [0, 1], or y̆p ∈ R). We will
assume that y̆p ∈ R in our example.
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Figure 3.8: Structure of one typical convolutional layer of CNNs. The multi-channel
output of the previous layer q − 1 constitutes the input fn′,q−1(ξ) of the layer q. A multi-
channel convolution is carried out between the channels of fn′,q−1 and the collection of
n = 1, . . . ,N operator functions gn,n′,q and yields a collection of response maps hn,q(ξ)
as detailed in Eq. (3.19). The latter undergo a simple pointwise non-linear gating
V(x), followed by a pooling operation to output the final feature maps fn,q(ξ). In the
example above, the 5 × 5 operator functions gn,n′,q are initialized with random values
following a normal distribution with zero mean. The non-linear gating functionV is a
ReLU, and the pooling operation is a 4× downsampling process (noted as ↓ 4) where
the maximum value is kept over 4 × 4 patches and a distance (or stride) of 4 between
their centers.

chitectures are designed for segmentation (e.g., U-Net [55]), the output of the forward
function is an estimated segmentation map y̆p(ξ). Based on a set of training textures
from which the true labels yp are known, it is possible to compute the prediction errors
between y̆p and yp. The cost of this error is determined by the cost function C(yp, y̆p).
Typical C(yp, y̆p) (also called loss function) are the logistic loss function for classifi-
cation, or Euclidean loss for regression. The total cost function Ctot over the entire
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FCq = 1 q = 2 q = 3 q = 4 q = 5 error

yp : salivary glandanaplastic
medulloblastoma

g1 g2 g3 g4 g5 gFCforward

backpropagation

C(yp, y̆p)

∂Ctot

∂gFC

∂Ctot

∂g5

∂Ctot

∂g4
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∂Ctot

∂g2

∂Ctot

∂g1

fp(ξ) y̆p = uforward( fp(ξ); g)

Figure 3.9: CNN architecture with a cascade of Q = 5 convolutional and one fully
connected layers. The forward function uforward( f (ξ); g) is a composition of layer-wise
functions ug and transforms an input image fp(ξ) into a predicted label y̆p. The cost
function Ctot of accumulated errors over the entire training set is minimized through
several epochs using backpropagation to update the free parameters g. The latter al-
lows learning the optimal profile of the convolutional operator functions gn,n′,q.

training set (called epoch) is accumulating errors over instances p as

Ctot(g) =
1
P

P∑

p=1

C
(
yp, uforward( fp(ξ); g)

)
.

After computing the total cost over one epoch t, the parameters of the model gt are
modified to minimize the total loss as

gt+1 = gt − βt
∂Ctot

∂g
(gt), (3.22)

where βt is the learning rate at the epoch t. Solving Eq. (3.22) learns the operator
functions gn,n′,q(ξ) and is called backpropagation. ∂Ctot

∂g is computed using the chain
rule, which allows combining the derivatives of the loss with respect to the parame-
ters gq of each consecutive layer [26]. Solving Eq. (3.22) through a total number T
of epoch can be efficiently carried out with gradient descent optimization techniques.
An example of a CNN architecture, its forward function and backpropagation is illus-
trated in Fig. 3.9. CNN-based texture analysis do not yield texture measurements per
se as it directly outputs a tissue class probability or segmentation map. The aggrega-
tion function results from a cascade of pooling operations and, if applicable, the FC
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Table 3.7: Properties of deep CNNs for biomedical texture analysis.

Operator linearity Yes. The operators Gn,n′ ,q are linear, but the full forward function is not.

Handcrafted No.

3D extension Requires using 3D operators, which was recently proposed in [19, 44, 6]. Training
3D CNNs is challenging because the number of parameters grows cubically.

Coverage of image
directions

Complete, but only over the discrete spatial support G of the operators.

Directionality and local
rotation-invariance

Directional and not locally rotation-invariant. Data augmentation can be used to
improve robustness to input rotation, but it has undesired effects (see Section 2.3.4).

Characterization of the
LOIDs

Yes, but not in a locally rotation-invariant fashion.

Coverage of image
scales

Near-to-complete with the spatial support of the operators and the cascade of down-
or up-sampling pooling operations. The coverage is not systematic though and do
not respect Parseval’s identity. A truly multi-scale CNNs was proposed in [68].

Band-pass No.
Gray-level reduction Not required.

Illumination-invariance No. The texture operator functions are not band-pass filters.

Aggregation function The aggregation function results from a cascade of pooling operations and, if appli-
cable, the FC layer.

layer. The number of free parameters can be extremely large. For instance, a network
with 10 layers, 10 11 × 11 operators per layer with 10 channels and with a 50 × 50 FC
layer leads to > 108 free parameters. It therefore requires very large training sets to
correctly learn the model, which is most often difficult to get in biomedical imaging.
An approach called transfer learning is often used is to tackle this problem [53, 46]
(see Section 4.3.3 of Chapter 4). It consists of re-using models trained with millions
of images from other domains (e.g., photographs in ImageNet [10]). In the particular
case of biomedical texture analysis, reusing these models is risky because the types of
invariances learned by networks based on photographic imagery resulting from scene
captures obtained with varying viewpoints is very different from the ones desirable
in BTA (see Section 3.3 of Chapter 1). In interesting observation is that when large
datasets are available, the type of operators learned in the first layers of deep CNNs
share very similar properties with handcrafted convolutional filters such as LoG, Ga-
bor, MR8, and Riesz. The properties of CNNs for biomedical texture analysis are
summarized in Table 3.7.

2.3.4. Data augmentation
Data augmentation aims to tackle two important limitations of filter learning approaches
with a large number of free parameters: DL and CNNs [35, 53, 46, 55]. First, both
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approach require very large training sets to respect an acceptable ratio between the
number of free parameters and training instances and allow suitable generalization
performance (i.e., limiting the overfitting of the training data). Second, neither of the
methods are invariant to local scalings or local rotations. Whereas invariance to image
scale is most often not desirable for biomedical texture analysis, invariance to local
rotations is fundamental (see Section 3.3 of Chapter 1). Data augmentation consists
of generating additional training instances from geometric transformations (including
non-rigid) of the available ones, and to further train the models with these new in-
stances. It provided very important performance gain in various applications [35, 53],
including biomedical [55]. However, it is obvious that forcing convolutional opera-
tors to recognize sheared, scaled and rotated versions of the texture classes without
augmenting the degrees of freedom will result in a strong decrease of the specificity
of the model. In particular, forcing invariance to local rotations will make operators
insensitive to directions, which was illustrated in [25]. A quantitative comparison be-
tween circularly symmetric and locally aligned operators (e.g., MF representations) is
detailed in Section 4.4 of Chapter 2. In this context, learning steerable filters allows
adapting the texture representation while keeping local rotation-invrariance and high
specificity of the operators [12, 16].

3. Gray-level matrices
There are mainly three approaches based on Gray-Level Matrices (GLM): Gray-Level
Co-occurrence Matrices (GLCM), Gray-Level Run-Length Matrices (GLRLM), and
Gray-Level Size Zone Matrices (GLSZM). Their simplicity is at the origin of their
popularity and many implementations can be found (e.g., MaZda17, see Chapter 11,
LIFEx18, Matlab19, Scikit-image20, QuantImage web platform21, see Chapter 12, ePAD
texture plugins22, see Chapter 13). They are often used together. They are based on
discrete texture functions f (ξ) and operators Gn. Their extensions to 3D are straight-
forward. However, they suffer from several imperfections. A major one is the non-
systematic coverage and poor preservation of image scales and directions, especially
when the spatial supports G1,n × · · · ×GD,n of their operators are large. Therefore, they
are best suited for applications where the size of the ROIs are small (e.g., small lesions
in low-resolution medical images). They also require drastic reductions of gray levels,
where the values of f (ξ) ∈ R are quantized with Λ values as fΛ(ξ) ∈ {1, . . . ,Λ}. The

17http://www.eletel.p.lodz.pl/programy/mazda/, as of March 4 2017.
18http://www.lifexsoft.org, as of November 20 2016.
19http://www.mathworks.com/help/images/ref/graycomatrix.html, as of November 20 2016.
20http://scikit-image.org/docs/stable/api/skimage.feature.html, as of February 26 2017.
21https://radiomics.hevs.ch, as of March 4 2017.
22http://epad.hevs.ch, as of March 4 2017.
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quantization is typically based on Λ = 8, 16, 32, which results in an important poten-
tial loss of information when analyzing rich image contents coded with 12 to 16 bits23.
Their properties are reviewed and detailed in the three following subsections 3.1, 3.2
and 3.3.

3.1. Gray-Level Co-occurrence Matrices (GLCM)
GLCMs [30] can be seen as a collection of operators mapping the discretized and
quantized image function fΛ(ξ) to binary output values at a position ξ0 as

Gλi,λ j

∆k { fΛ}(ξ0) =

⎧⎪⎪⎨
⎪⎪⎩

1 if fΛ(ξ0) = λi and fΛ(ξ0 + ∆k ◦ ∆ξ) = λ j,

0 otherwise,
(3.23)

where λi and λ j are the pixel values at positions ξ0 and (ξ0 + ∆k ◦ ∆ξ), respectively.
∆k and ∆ξ contains the dimension-wise shifts and sampling steps, respectively (see
Section 2.2 of Chapter 1). ∆k ◦ ∆ξ denotes the element-wise product24 between the
two vectors as

∆k ◦ ∆ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆k1 · ∆ξ1
...

∆kD · ∆ξD

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The aggregation function is integrative. It counts the responses of the operators and
organizes them in square co-occurrence matrices of dimensionsΛ2 indexed by (λi, λ j),
where Λ is the number of gray-levels. A series of scalar texture measurements25 η
is obtained by computing statistics (e.g., contrast, correlation, entropy) from the co-
occurrence matrices. Their properties are summarized in Table 3.8. GLCMs are not
invariant to local rotations, but the later is often approximated by either regrouping
the counts of operators over all directions in a shared matrix, or by averaging scalar
texture measurements from co-occurrences matrices obtained with different directions
(see Fig. 3.10).

3.2. Gray-Level Run-Length Matrices (GLRLM)
GLRLMs [22] count the number of aligned pixels (called stride) with equal gray-level
value λ, length γ ∈ N∗ and direction θ. Their operators Gλ,γ,θ{ fΛ}(ξ0) yield a value of
1 if a stride starting at ξ0, of length γ, and direction θ is detected, and 0 otherwise. An
example of a GLRLM operator and its response map is depicted in Fig. 3.11.

The aggregation function counts the number of strides detected with the corre-

23Image pixels encoded with 16 bits can take more than 65,000 possible values.
24It is also called the Hadamard product.
25They are often called Haralick features [30].
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Table 3.8: GLCM properties.

Operator linearity Nonlinear.
Handcrafted Yes.

3D extension Straightforward: displacements ∆k ◦ ∆ξ between pixels can live in subsets of either
R2 or R3.

Coverage of image
directions

Incomplete: typical directions used are θ1,...,4 = 0, π4 ,
π
2 ,

3π
4 in 2D.

Directionality and local
rotation-invariance

Unidirectional and not rotation-invariant. However, local rotation-invariance is of-
ten approximated by either regrouping the counts of operators over all directions in
a shared matrix, or by averaging scalar texture measurements from co-occurrences
matrices obtained with different directions (see Fig. 3.10).

Characterization of the
LOIDs

No.

Coverage of image
scales

Incomplete: typical displacements values are ||∆k|| ≈ 1, 2, 3. Moreover, displace-
ments along image diagonals (e.g., θ2 = π4 and θ4 = 3π

4 ) are often considered to
have integer norms (e.g., 1, 2, 3) instead of their actual values (e.g.,

√
2, 2
√

2, 3
√

2),
resulting in anisotropic descriptions of image scales.

Band-pass
Qualitatively equivalent in the sense that the mean value of the image is not influ-
encing the output value of the operator. It is worth noting that the transfer function
is not defined in the Fourier domain because the operator is nonlinear.

Gray-level reduction A reduction is required to avoid obtaining very large and sparse co-occurrence ma-
trices. Typical gray-level reductions are Λ = 8, 16, 32.

Illumination-invariance No, although it is approximated by reducing the number of gray-levels Λ.

Aggregation function
Integrative: counts the binary responses of each GLCM operator Gλi ,λ j

∆k over M
and organizes them in a corresponding co-occurrence matrix indexed by λi and λ j.
Scalar texture measurements η called Haralick features are obtained from statistics
of the co-occurrence matrices.

θ1 = 0 θ2 =
π
4

θ3 =
π
2 θ4 =

3π
4

· · · ·ξ0 ξ0ξ0ξ0

Gλi,λ j

2,2 Gλi,λ j

0,2 Gλi,λ j

−2,2Gλi,λ j

2,0

G̃λi,λ j

||∆k||≈2

Figure 3.10: Approximate local rotation-invariance with GLCMs: the responses of
GLCM operators Gλi,λ j

∆k1,∆k2
are combined over four directions θ1,...,4 to reduce the di-

rectional sensitivity of the operators and approximate locally rotation-invariant texture
analysis. In 2D, the angle between the vectors ∆k and e1 = (1, 0) is noted θ (see Sec-
tion 2 of Chapter 2).
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Table 3.9: GLRLM properties.

Operator linearity Non-linear.
Handcrafted Yes.

3D extension Straightforward: run directions can be extended to 3D and indexed with angles θ, φ.

Coverage of image
directions

Incomplete: typical directions used are θ1,...,4 = 0, π4 ,
π
2 ,

3π
4 in 2D.

Directionality and local
rotation-invariance

Unidirectional and not rotation-invariant. However, local rotation-invariance is of-
ten approximated by either regrouping the counts of operators over all directions, or
by averaging scalar texture measurements from run-length matrices obtained with
different directions.

Characterization of the
LOIDs

No.

Coverage of image
scales

Complete if the maximum run-length γ is equal to the size of the image. How-
ever, run length along image diagonals (e.g., θ2 = π4 and θ4 = 3π

4 ) are often con-
sidered to have integer γ values (e.g., 1, 2, 3) instead of their actual values (e.g.,√

2, 2
√

2, 3
√

2), resulting in anisotropic descriptions of image scales.

Band-pass
Qualitatively equivalent in the sense that the mean value of the image is not influ-
encing the output value of the operator. It is worth noting that the transfer function
is not defined in the Fourier domain because the operator is nonlinear.

Gray-level reduction A reduction is required to avoid obtaining very large and sparse run-length matrices.
Typical gray-level reductions are Λ = 8, 16, 32.

Illumination-invariance No, although it is approximated by reducing the number of gray-levels Λ.

Aggregation function

Integrative: counts the binary responses of each GLRLM operator Gλ,γ,θ over M
and organizes them in a corresponding run-length matrix indexed by integer values
of λ and γ. Scalar texture measurements η are obtained from statistics of the run-
length matrices.

sponding operator and organizes them in a run-length matrix indexed by λ and γ. The
size of this matrix is the number Λ of gray-levels considered times the number of
stride lengths tested. The texture measures η are obtained from statistics of the run-
length matrices (e.g., short run emphasis, run-length non-uniformity, see [71]). Their
properties are summarized in Table 3.9.

3.3. Gray-Level Size Zone Matrices (GLSZM)
GLSZMs [60] are extending the concept of GLRLM to zone areas or volumes. Their
operators Gλ,ζ{ fΛ}(ξ0) yield a binary value of 1 if ξ0 belongs to a uniform zone with
gray-level λ, i.e., any zone with area equal to ζ containing ξ0, and area ζ ∈ N∗, and ξ0
does not belong to a uniform zone with larger area.

The aggregation function counts the number of zones detected with the correspond-
ing operator and organizes them in a size-zone matrix indexed by λ and ζ. The size
of this matrix is the number Λ of gray-levels considered times the number of zone ar-
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Figure 3.11: Application of a GLRLM operator Gλ=7,γ=4,θ=0 to an input image fΛ. Its
response map hλ=7,γ=4,θ=0(ξ) highlights the presence of the sought stride with gray-
level 7, length 4 and orientation 0 at the position ξ0.

Table 3.10: GLSZM properties.

Operator linearity Non-linear.
Handcrafted Yes.

3D extension
Straightforward: the search for contiguous pixels with identical gray-level values
can be extended from 8-connected 2D neighborhoods to their 26-connected 3D
counterparts.

Coverage of image
directions

Complete.

Directionality and local
rotation-invariance

Insensitive to image directions. Elongated and circular zones are mixed.

Characterization of the
LOIDs

No.

Coverage of image
scales

Complete if the maximum zone surface ζ is equal to the area of the image. However,
the notion of scale is ill-defined because a fixed zone area ζ can correspond to both
elongated or circular regions.

Band-pass
Qualitatively equivalent in the sense that the mean value of the image is not influ-
encing the output value of the operator. It is worth noting that the transfer function
is not defined in the Fourier domain because the operator is nonlinear.

Gray-level reduction A reduction is required to avoid obtaining very large and sparse size-zone matrices.
Typical gray-level reductions are Λ = 8, 16, 32.

Illumination-invariance No, although it is approximated by reducing the number of gray-levels Λ.

Aggregation function

Integrative: counts the binary responses of each GLSZM operator Gλ,ζ over M and
organizes them in a corresponding size-zone matrix indexed by integer values of λ
and ζ. Scalar texture measurements η are obtained from statistics of the size-zone
matrices.

eas tested. The texture measures η are obtained from statistics of the matrices, which
are the same as for the GLRLM (see [71]) plus two additional measures introduced
in [60]. Their properties are summarized in Table 3.10.
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4. Local Binary Patterns (LBP)
Rotation-invariant Local Binary Patterns (LBP) were first introduced by Ojala et al. in
2002 [45] and many extensions were proposed later on (e.g., [1, 27, 39]). At a position
ξ0 of the image f , the LBP operator Gγ,r{ f }(ξ0) describes the organization of binarized
pixels over circular neighborhoods Υ

(
γ, r, ξ0

)
of radius r containing γ equally spaced

points. The gray value of points that do not fall exactly in the center of pixels are
estimated by interpolation (see Fig. 3.12, top). The decimal value of the operator
is given by the binary sequence of the circular neighborhood (e.g., 10101010 = 170,
see Fig. 3.12, middle). The binary value of a point p ∈ Υ(γ, r, ξ0

)
is 1 if f (ξ1) >

f (ξ0), and 0 otherwise, with ξ1 the pixel location where p is located. An example of
approximately locally rotation-invariant LBP texture analysis is depicted in Fig. 3.12
middle and bottom.

The responses of the operators are aggregated over a ROI M by counting the binary
sequences (or decimal values) and organizing them in a histogram. The latter can be
used for extracting texture measures η. The properties of LBPs are summarized in
Table 3.11.

5. Fractals
Another popular method in BTA is to estimate the fractal properties of biomedical
tissue, e.g., how structures are similar across a series of monotonously increasing
scales [42, 2]. The latter is measured with the Fractal Dimension (FD) ηFD. The
larger the FD, the most regular structures are through multiple scales and corresponds
closely to our intuitive notion of roughness [48]. The maximum FD is equal to the di-
mensionality D of the texture function. For 2D texture functions indexed by the spatial
coordinates (x1, x2) ∈ R2, we typically consider the set S = {(x1, x2) ∈ R2 : f (x1, x2) =
y} ⊂ R2 for a fixed value y ∈ R. Note that S is a level set of f . Then, the fractal dimen-
sion can take values 0 ≤ ηFD ≤ 2. A comprehensive description and review of fractal
analysis for BTA is presented in Chapter 5.

A popular method for computing the FD is the box-counting approach, while sev-
eral other methods exist (e.g., box counting and probabilities [34], based on Fourier
analysis [48] or wavelets [49], see Chapter 5 for detailed descriptions and more ap-
proaches). Box-counting relies on a collection of multi-scale operatorsGn. For simpli-
fication, let us assume that the latter have square or cubic spatial support G1,n = G2,n =

· · · = GD,n = sn. The collection of operators have monotonously increasing spatial
supports Gn ⊂ Gn+1. In order to simply exemplify the box-counting algorithm, let us
consider binary images fτ(ξ) ∈ {0, 1} obtained from the binarization of an input image
f (ξ) with a threshold τ26. At a position ξ0, each fractal operator Gn counts the number

26The binarization step or grey-level reduction is usually not recommended for box-counting as this would
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Table 3.11: LBP properties.

Operator linearity Non-linear.
Handcrafted Yes.

3D extension

Not trivial: The ordering of points is straightforward in 2D on circular neighbor-
hoods, but is undefined in 3D for spherical neighborhoods [13]. Approaches were
proposed to either define an arbitrary ordering for each (γ, r) over (θ, φ) and to use
it for all positions [20], or to use cylindrical neighborhoods by concatenating the
responses of 2D LBP operators along a given axis ξd [4].

Coverage of image
directions

Complete if γ considers all pixels/voxels touching the 2D/3D perimeter of Υ for a
fixed radius r.

Directionality and local
rotation-invariance

Directional and locally rotation-equivariant. Local rotation-invariance can be ob-
tained either by performing circular bit-wise right shifts of the binary codes and
keeping the minimum value [45] (see Fig. 3.12), or by computing the modulus of
the discrete 1D Fourier transforms of the binary code [1]. In the former case, local
rotation-invariance is achieved by locally aligning the operators (see Section 4.3 of
Chapter 2).

Characterization of the
LOIDs

Yes, with invariance/equivariance to local rotations. However, they do not define
MF representations since each operatorGγ,r is aligned independently at the position
ξ0.

Coverage of image
scales

Incomplete: typical radius values are r = 1, 2, 3. Multi-scale LBPs were proposed
in [69] when extracted on top of wavelet coefficients.

Band-pass
Qualitatively equivalent in the sense that the mean value of the image is not influ-
encing the output value of the operator. It is worth noting that the transfer function
is not defined in the Fourier domain because the operator is nonlinear.

Gray-level reduction Not required. However, the local binarization operation results in an important
reduction of the values analyzed.

Illumination-invariance Yes.

Aggregation function
Integrative: counts the responses of each LBP operator Gγ,r over M and organizes
them in a histogram. The collection of scalar texture measures η contains the bins
of the histogram

p of pixels with value equals to 1 (i.e., fτ(ξ0) = 1) over its support Gn. This yields N
response maps hn(ξ0) = Gn{ fτ}(ξ0).

The aggregation function consists of fitting a log-log profile of the averages of hn
through the responses of the collection of operators with spatial supports of varying
sizes sn, where |Gn| = sn

D. The average number p of pixels with value equals to 1 over
a region of interest M is computed as

p(sn) =
1
|M|
∑

ξ∈M
hn(ξ).

both arbitrarily discard important texture information and degrade the stability of the calculation of ηFD

(see [2, 57] and Chapter 5).
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Figure 3.12: Extraction of LBP texture measures on f1(ξ). Top row: example of two
different circular neighborhoods Υ

(
γ, r, ξ0

)
. Middle row: a LBP operator G8,1{ f1}(ξ0)

encodes the LOIDs at the position ξ0 over a circular neighborhood Υ
(
8, 1, ξ0

)
with γ =

8 equally-spaced points and a radius r = 1 pixel. Its binary response for a +-shaped
primitive is 10101010, which correspond to a decimal value of 170. The response
maps of the operators are aggregated over the region M by counting the binary codes
and organizing them into an histogram of texture measurements ηM. Bottom row:
local rotation-invariance with LBPs. Local image rotations Rθ0,ξ0

· ξ correspond to
bit-wise circular shifts of the binary codes. Local rotation-invariance can be achieved
by minimizing the decimal values of the binary codes over all possible discrete circular
shifts θ0 =

qπ
4 , ∀q ∈ {0, 1, . . . , 7}.

The FD is obtained with the value of ηFD that best fits the following relation

log (p(sn)) ≃ ηFD log (sn) . (3.24)

In this particular case, ηFD = 2 corresponds to a perfectly regular image filled with
ones. The box counting method is illustrated in Fig. 3.13, where two biomedical tex-
tures with different FD are compared. The properties of fractal-based texture analysis
are summarized in Table 3.12 and are further developed in Chapter 5. The FD is in-
variant to image scale, which entails the risk of regrouping tissue structures of different
natures (see Section 3.3 of Chapter 1).
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Figure 3.13: 2D box-counting method used to estimate the fractal dimension ηFD of
a texture. Although not recommended in general, a binarization of the texture images
is used in this example. The latter is carried out with a thresholding operation,where
the threshold τ was chosen to highlight cell nucleus in f1 and the vascular structure
in f2. The visualization of the profiles p(sn) reveals the fractal nature of the vascular
structure with a FD of 1.8. The maximum FD bound of 2 corresponding to a fully
white image corresponds to the dashed red line in the profiles p(sn).

6. Discussions and conclusions
A qualitative comparison of most popular BTA approaches was proposed under the
light of the general framework introduced in Section 3.1 of Chapter 1, and based
on the comparison dimensions presented in Chapter 2. Our aim is to both provide
a user guide for choosing a BTA method that is relevant to the problem in hand, as
well as to provide insights on key aspects required to build the next generation of
BTA approaches. The review focused on most popular group of methods and was not
exhaustive. It included (i) convolutional methods and their operator subtypes: circu-
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Table 3.12: Properties of fractal-based texture analysis using the box-counting method.

Operator linearity In principle yes, but it depends on the type of transformation of pixel values. In the
example, the binarization of f is a non-linear operation.

Handcrafted Yes.
3D extension Straightforward by using multi-scale 3D boxes as operators’ supports.

Coverage of image
directions

Complete.

Directionality and local
rotation-invariance

Insensitive to image directions.

Characterization of the
LOIDs No.

Coverage of image
scales

Complete. However, the FD is invariant to image scale, which entails the risk of
regrouping tissue structures of different natures.

Band-pass
Not qualitatively equivalent in the sense that the mean value of the image has an
influence on the output value of the operator. It is worth noting that the transfer
function is not defined in the Fourier domain because the operator is nonlinear.

Gray-level reduction
No. A binarization step or grey-level reduction is usually not recommended as
this would both arbitrarily discard important texture information and degrade the
stability of the calculation of ηFD (see [2, 57]).

Illumination-invariance No.

Aggregation function Constructs the log-log profile of the averages of operator response maps hn obtained
with operators of spatial supports with varying sizes sn (see Fig. 3.13).

larly/spherically symmetric, directional and learned, (ii) gray-level matrices and their
subtypes: GLCMs, GLRLMs, GLSZMs, (iii) local binary patterns and a few exten-
sions, and (iv) fractals based on the box-counting method. All approaches’ operators
were found to be equivariant to translations, which is an inherited property from the
general framework introduced in Section 3.1 of Chapter 1. However, very few methods
were combining both the ability to characterize the LOIDs and with invariance to local
rotations. In particular, most approaches are either invariant to local rotations because
they are insensitive to directions (e.g., combined GLCM or GLRLM operators, LoGs,
fractals) and they cannot characterize the LOIDs or, they are directional but not locally
rotation-invariant (e.g., unidirectional GLCM or GLRLM operators, Gabor wavelets,
unaligned real Riesz, DL, CNNs). Within this dilemma, one may favor directional
versus directionally insensitive approaches depending on the expected importance of
the LOIDs versus invariance to local rotations, respectively. The only approaches that
are able to characterize the LOIDs with invariance to (local) rigid transformations are
LBPs as well as CH and steered real Riesz wavelets. Other factors must be taken
into account to evaluate the relevance of the method. A important property which
is responsible for the success of approaches such as DL and CNNs is the ability to
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derive the texture operators27 from the data in a supervised or unsupervised fashion.
A challenge for the success of the learning-based methods is to have sufficient repre-
sentation of each intra-class variants, which are most often not available in focused
and innovative biomedical applications (see Chapter 6). Quick fixes have been exten-
sively used to tackle this challenge. A first one is to introduce implicit handcrafted
invariances with data augmentation, which has the undesirable effects of both increas-
ing the training computational load (minor issue), and more importantly to decrease
the specificity of the model [25] (see Section 2.3.4). A second fix is to use transfer
learning in order to recycle models trained on other image types. This is not exempt
of risks as borrowing models from general computer vision with strong invariance to
scale (e.g., models trained on ImageNet) are not fulfilling the requirement of BTA (see
Section 2.3). An inherent risk of methods requiring important gray-level reductions or
binarization (e.g., GLM, LBP, fractals based on box-counting) is to miss or mix impor-
tant texture properties. It was found that methods based on learned steerable wavelets
(i.e., SWMs [16, 12]) were regrouping several desirable properties such as the ability
to learn optimally discriminant sets of LOIDs with invariance to rigid transformation,
with a small amount of training data, and without requiring neither data augmentation
nor gray-level reductions. Few methods were found to provide easily interpretable
texture measurements. Notable examples among them are the contrast and energy
measures of GLCMs, the fractal dimension and roughness [48] (see Chapter 5), as
well as 2D and 3D steered real Riesz wavelets that are measuring image derivatives of
various orders in a locally rotation-invariant fashion [15, 11, 18, 5] (see Section 2.4.4
of Chapter 12).

We recognize several limitations of the current review, including the absence of
quantitative comparison of performance, computational complexity and time of the
approaches. Detailed reviews of specific BTA properties, approaches or applications
are presented in Chapter 7 (invariance to rigid transformations), Chapters 4 and 9(deep
learning), Chapter 6 (machine learning), and Chapter 10 (digital histopathology).
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