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Abstract

This chapter clarifies the important aspects of biomedical texture analysis under the general
framework introduced in Chapter 1. It was proposed that any approach can be character-
ized as the combination of local texture operators and regional aggregation functions. The
type of scale and directional information that can or cannot be modeled by categories of
texture processing methods is revealed through theoretic analyses and experimental valida-
tions. Several key aspects are found to be commonly overlooked in the literature and are
highlighted. First, we demonstrate the risk of using regions of interest for aggregation that
are regrouping tissue types of different natures. Second, a detailed study of the type of
directional information important for biomedical texture characterization suggests that fun-
damental properties lie in the local organization of image directions. In addition, it was found
that most approaches cannot efficiently characterize the latter, and even fewer can do it
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with invariance to local rotations. We conclude by deriving novel comparison axes to evalu-
ate the relevance of biomedical texture analysis methods in a specific medical or biological
applicative context.

Keywords: Texton, moving frames, uncertainty principle, texture analysis.

1. Introduction

The diversity of existing Biomedical Texture Analysis (BTA) approaches illustrates
the various properties required in different applicative contexts [14, 39]. Desired BTA
properties are e.g., ease of use, interpretability, low computational cost, and most im-
portantly high discriminatory performance and specificity. The latter is strongly de-
pendent on the nature of the texture information required for a specific task in hand.
The purpose of this work is to dissect the wide range of BTA properties to provide a
set of comparison dimensions between approaches. A formal definition of biomedi-
cal texture information was proposed in Section 2 of Chapter 1. The latter was found
to be characterized by the type of spatial transitions and dependencies between pixel
values. In particular, it was demonstrated that the scales (i.e., speed of variation or fre-
quency) and directions of the spatial transitions are fundamental properties of biomed-
ical texture functions. In Section 3.1 of Chapter 1, a general problem formulation
for biomedical texture analysis was introduced, considering that any approach can be
characterized as a set of texture operators and aggregation functions. The operators
allow locally isolating desired texture information in terms of spatial scales and di-
rections of a texture image. The application of the operators over all positions of the
image yields translation-equivariant feature maps containing every local responses of
the latter. Scalar-valued texture measurements are obtained by aggregating feature
maps over regions of interest.

In this chapter, clarifications are provided on possible design choices in terms of
spatial scales and directions for operators and aggregation functions. An excellent de-
scription of the problem can be found in [48], which concerns medical image analysis
in general. Our aim is to discuss the particularities of multi-scale and multi-directional
analysis for biomedical texture characterization. A focus is made on linear opera-
tors. However, although the theoretic concepts presented are only valid for the latter,
they should also provide intuition for designing nonlinear operators wherever possible.
Multiple examples and toy problems will be provided to illustrate the concepts intro-
duced. Among these, the uncertainty principle, a theoretic limitation of the trade-off
between operator scale and locality is first recalled to provide guidelines for optimal
design of operator scales. The influence of the size and shape of the region of interest
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used for aggregation on texture classification and segmentation is demonstrated. The
latter motivates the creation of digital tissue atlases of organs or tumors, providing
powerful models of digital phenotypes. In Section 3.3 of Chapter 1 and in Chapter 7,
the importance of approaches that are robust to rigid transformations (translation and
rotation) was emphasized. In the second part of this chapter (Section 4), clarifications
are made on directional information types that are important for biomedical texture
analysis. In particular, the Local Organization of Image Directions (LOID: how direc-
tional structures intersect) are found to be fundamental. Characterizing the latter with
invariance to local rotations raises several challenges. In this context, operators that are
insensitive to image directions (called circularly/spherically symmetric) are compared
to their directional counterparts. The destructive effect of aggregation on the ability of
directional operators to characterize the LOIDs is demonstrated and motivates the use
of Moving Frame (MF) texture representations. The latter consist of locally adapting
a coordinate frame (e.g., a set of non-collinear operators) based on an alignment crite-
ria that is consistent! for all positions in the texture image. We provide evidence that
MF representations allow detailed characterizations of the LOIDs with invariance to
rigid transformation. A quantitative performance comparison of circularly symmetric,
directional and MF texture representations for 2D texture classification is presented
in Section 4.4. Finally, most important aspects of operator and aggregation function
design are summarized under the form of a checklist matrix in Section 5.

2. Notations

Additional notations are introduced based on the notations initially defined in Sec-
tion 2.2 of Chapter 1. To further analyze the relationship between scales and direc-
tions, let us consider the definition of texture functions in 2D polar coordinates as

F o
f(r,0) «— flp, )
reR*, 0 €[0,2n) p €R", 9 €[0,2n)
_[x1) _ ([cos@ _[wr1) _ [cos}
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'A simple and reliable alignment criteria is to orient all operators at each image position with the direction
that maximizes the local image gradient.
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and in 3D spherical coordinates as
F A
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Polar and spherical representations allow separating the angular part (i.e., image direc-
tions) from the radial part (i.e., spatial frequencies related to image scales) [55]. For
simplifying the notations, all coordinate domains are considered continuous in this
chapter. Their discretized versions can be obtained following the notions introduced
in Section 2.2 of Chapter 1.

3. Multi-scale image analysis

The need for multi-scale image analysis is motivated throughout various chapters of

this book (e.g., Section 3 of Chapter 1) as well as Chapters 4, 5 and 7. In this section,

we will define more precisely the important aspects of multi-scale texture operator and

aggregation function design. In particular, the discussion on which scales are optimal

for biomedical texture measurements hinges on two important facets:

e How to optimally define the spatial support(s) G, = Gy, X - - - X Gp,, and the radial
responses of the operator(s) G, ?

e What is the best size and shape of the region of interest M for aggregation ?

These two aspects are illustrated in Fig. 2.1 and detailed in the following subsec-

tions 3.1 and 3.2.

3.1. Spatial versus spectral coverage of linear operators:
The uncertainty principle

Linear texture operators are expected to be band-pass functions, which means that
the covered spatial frequencies are in a range defined by ppnin > 0 and ppax < 7 in
the Fourier domain. Band-pass operators are commonly used as operators for texture
analysis because their geometric behavior, isotropy or directionality can be well con-
trolled. Because they do not include the zero frequency p = ||w|| = 0, their are only
sensitive to transitions between pixel values (i.e., texture) and not to the average re-
gional intensity. In between O and n, the uncertainty principle allows defining rules
to design texture operators with optimal spectrum coverage [Omin, Omax] (see Eq. 2.1).
Ideal texture operators would be accurately localized both in spatial and Fourier do-
mains. On the one hand, well localized operators in the spatial domain allow identi-
fying precise local texture properties without including surrounding image structures.
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Figure 2.1: Aspects of multi-scale texture operator and aggregation function de-
sign [17]. How to optimally define the sizes |G| > |G;| > --- > |Gy| and the radial
responses of a collection of operators G, ? What is the best position, size and shape of

the region of interest M for aggregation ?

On the other hand, optimally localized operators in the Fourier domain can precisely
characterize narrow frequency bands without mixing with other neighboring spectral
components. Unfortunately, having both properties together is not possible and sub-
ject to a theoretic limitation called the uncertainty principle [40]. Intuitively, the latter
can be understood as follows: it is impossible to measure rich texture information
from gray-level transitions between a few pixels only. Likewise, measuring all tran-
sitions from a large number of pixels yields detailed texture information, but requires
large image neighborhoods. More precisely, the relationship between the spatial sup-
port G = G| X --- X Gp and the spectral support I' = I'} X --- X I'p of a linear texture
operator is

D
]_[Gf,rf, > 5 @2.1)
d=1

This trade-off is illustrated in Fig. 2.2 for 2D circularly symmetric Gaussian opera-

tors g,(x). Therefore, an operator with an accurate spatial localization (i.e., narrow

support) yields poor spectrum estimates. This has a direct implication in practice, and
can be critical when the texture processes are multi-spectral and highly non-stationary.

The spatial support of the operator needs to be large enough to accurately characterize

the frequency components of the intricate texture process, and can potentially be larger

than the studied texture region. This is illustrated in Fig. 2.3 for the characterization of
local ground glass and reticular regions in lung CT. In addition, controlling the profile
of the operators (i.e., the decay slope at their boundaries) is important to avoid exten-
sive ringing effects in their dual representation resulting in poorly localized analysis

41
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Figure 2.2: Uncertainty principle: the function of a linear operator g,(x) (2D circularly

symmetric low-pass Gaussian in this example) cannot be well localized both in spatial

and Fourier domains. The theoretic limit observes G2 Iy 2 G2 I % > 116
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(see Fig. 2.4) [15]. Finding the optimal trade-off between the accurate definitions of
operator supports in space and in Fourier requires identifying spatial frequencies that
are important for the texture segregation task in hand. The lowest discriminative fre-
quency will determine the smallest operator size needed to differentiate between the
various texture classes (see Fig. 2.5). The latter is not straightforward in most cases
and machine learning can be used to determine discriminative scales [30].

3.2. Region of interest and response map aggregation

Another critical aspect of scale definition in biomedical texture analysis concerns the
design of the ROI for aggregating the operators’ response maps (see Fig. 2.1). The
fundamental underlying question is: how large must be the ROI M ? Addressing this
issue requires considering once more the spectral complexity and spatial stationarity
of the considered texture processes. On the one hand, M should be large enough to
capture the discriminative statistics of the operators’ responses. On the other hand,
using large M covering several contiguous interleaving non-stationary processes will
mix the statistics of the latter and result in meaningless texture measures, even when
using appropriate texture operators.

Two examples are developed to illustrate the impact of the size of M on texture
classification and segmentation (see Figures 2.6 and 2.7). For both examples, simple
circularly symmetric band-pass and multi-scale operators are used. They are based on
two consecutive dyadic iterations of Simoncelli wavelet frames [41] g,(x). The 2D
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Figure 2.3: Challenges of operator design for complex and non-stationary biomedi-
cal texture processes. Top row (peripheral ground glass opacities in chest CT): large
influence of proximal objects when the support of operators is larger than the region
of interest. The lung boundary has an increasingly important impact in the peripheral
region, which can be observed on the response maps /,(x) of increasingly large LoG
linear operators with functions g,(x) [15]. Bottom row (reticular and normal lung
parenchyma in CT): on the left image, a small-sized Gaussian filter g; (o0 = 3.2mm)
is precisely located in the reticular pattern but yields a poor characterization of the
spectral content inside its support. Conversely, the right image shows a large Gaussian
filter g, (00 = 38.4mm) allowing an accurate estimation of spatial frequencies, but its
spatial support encroaches upon normal parenchyma and mixes properties from the
two distinct texture classes.

g1(x) 81(w) 82(x) &(w) 83(x) &)
X 0 o] 7 X 0 o] w X 0 o] 7

well-defined spatial support

ill-defined spectral support
Figure 2.4: Importance of the decay of linear operators on spatial versus spectral sup-
port (1D). Smooth operators avoid ringing effects in the dual representation.
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Figure 2.5: A texture operator characterizing spatial frequencies along x; in [} min, 7)
is enough to discriminate f; from f,. Finding this lower bound allow defining texture
operators with narrow spatial supports that are optimally localized.

version is defined in Fourier in polar coordinates (p, ) as

n 2p 7

b= { o (310m () o £ <p<n
0 otherwise.
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Because it is circularly symmetric, this operator depends on the radial coordinate p
only and is qualitatively similar to 2D LoGs. It is applied to a texture function f with
convolution (i.e., equivalent to a multiplication in the Fourier domain) as ha(p,9) = 2.(0) - F(p, D).
A first example is detailed in Fig. 2.6 and demonstrates the negative impact of av-
eraging feature maps over large ROIs including texture functions from distinct spatial
processes. This is a critical issue when texture analysis is used to characterize the
structural properties of tumors because requires defining smaller ROIs based on dis-
tinct tumor habitats [25] (e.g., ground glass versus solid tumor components in lung
adenocarcinoma [19]). When the component textures are too expensive to delineate
(e.g., tumor habitats in 3D imaging) or when they are not known in advance, unsu-
pervised texture segmentation approaches can be used to reveal the diversity of pat-
terns contained in a given ROIL. Examples of such methods are superpixels [1], graph
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Figure 2.6: Influence of the size and localization of the region of interest M for ag-
gregating the feature maps using the average. Bottom center: each region M; is repre-
sented by a point (e.g., “+”) in a feature space spanned by feature averages (71, 172.i)-
Whereas red and green regions are well separated and regrouped in the feature space,
averaging the feature maps over the entire image (blue region) yields texture features
that do not correspond to anything visually (see the blue diamond in the feature space).
Likewise, averaging texture properties over entire tumor regions including distinct
habitats will provide quantitative texture measures that do not correspond to anything
biologically [25, 10].

12,i

cuts [6], or the Pott’s model [47]. An advantage of the Pott’s model is its ability to
handle multiple feature maps for segmenting the subregions and therefore can easily
run on the registered outputs of several operators. The aggregation function has itself
a strong influence on the specificity of the texture measures. In [10], Cirujeda et al.
showed that measurements based on the covariances of the operator’s responses pro-
vided a better characterization of texture properties in multi-component tumors when
compared to the average, thanks to their ability to quantify the point-wise co-activation
of the operators.

In a second example, the influence of the size of circular patch-based ROIs on
supervised texture segmentation is investigated (see Fig. 2.7). Linear Support Vec-
tor Machines (SVM) are trained from overlapping ROIs extracted from two unro-
tated instances of classes fi(x): “canvas002” and f>(x): “canvas003” of the Outex
database [37]. The responses of circularly symmetric Simoncelli wavelet frames (see
Eq. 2.2) are averaged over the circular ROIs to provide texture measures 5 = (17, 172).

45
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Every block is represented in the two-dimensional feature space yielded by span(sn).
In the latter, SVMs learn a separating hyperplane wgyy + b, which is further used to
classify overlapping patches from a test image composed of rotated instances of f; and
f>. The corresponding decision values of the test patches (i.e., (g, wsym) + ) as well
as the predicted local labels (i.e., sgn ({1, wsvm) + b)) are shown for three different
patch radii. The evolution of the segmentation error with radii varying in [0, 128] is
shown in Fig. 2.7 top right, highlighting the importance of the size of the aggregation
region M. When M is too small (radius = 8), the local average of the feature maps is
poorly estimated, which yields noisy feature estimates i (error = 0.24). At the other
extreme, very large regions M (radius = 128) yield accurate estimates of the features,
but are not well localized spatially. This results in important errors at the boundaries
between f; and f, (error = 0.23). In between these two extremes, finding adequate
sizes seems not critical and allows satisfactory segmentation results with a minimum
error of 0.045 for a radius of 90. However, a radius of 30 allows obtaining an excellent
trade-off between locality and average estimation (error = 0.051). To summarize, a
simple rule of thumb to observe is to use ROIs that are no larger than enough to ac-
curately estimate discriminative statistics of the operators’ responses over stationary
areas defined in terms of human perception or tissue biology.

In most cases, it is not realistic to assume that the texture properties are homoge-
neous (i.e., stationary) over entire organs or tumors, which was mostly overlooked in
the literature. An interesting approach is to divide organs into subregions for which it
is reasonable to consider that the responses of texture operators are stationary in the
relaxed sense. This provides the exciting opportunity to construct tissue atlases from
texture information in biomedical images. They can be used to create disease-specific
digital phenotypes, which already showed to constitute powerful models for predict-
ing disease diagnosis, treatment response and/or patient prognosis in the context of
interstitial lung diseases [12, 20] (see Fig. 2.8) and cancer [19, 50].

4. Multi-directional image analysis

As already introduced in Section 2.1 of Chapter 1, the notion of direction in texture is
fundamental and complementary to the notion of scale (see Fig. 1.2 of Chapter 1). An
important question is then: which image directions are important for deriving texture
measurements and allowing adequate texture segregation? Fig. 2.9 shows textures and
their Fourier modulus. For one of them, fi(x), directionality seems not obvious be-
cause the texture contains little structure and is highly stochastic. For the other, f>(x),
dominant directions are clearly visible, creating oriented grid patterns and correspond-
ing peaks in the Fourier domain. Moreover, it appears that texture directionality is
defined for a particular position and scale (i.e., spatial frequency). These aspects of
texture directionality are developed in the next subsections 4.1, 4.2 and 4.3.
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Figure 2.7: Influence of the size of circular patch ROIs on supervised texture segmen-
tation.
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Figure 2.8: Digital phenotypes for interstitial lung diseases. Left: due to the pres-
ence of thicker bronchovascular structures in the region M, that is close to the me-
diastinium, the texture properties of normal and altered parenchymal tissue cannot be
considered similar as the ones in the peripheral region M,,. Right: therefore, it is rel-
evant to divide lungs into regions for which it is reasonable to consider that texture
properties are homogeneous and create tissue atlases to derive digital phenotypes for
interstitial lung diseases [12, 20].

Ifi (@)

Figure 2.9: Examples of texture functions with weak (i.e., fi(x)) versus strong (i.e.,
Jf2(x)) directionality. The modulus of the Fourier representation of f>(x) shows that
there are clear directional spatial frequencies, standing out as bright spots in |f>(w)|.
This also demonstrates that image directionality is defined for a particular scale (i.e.,
spatial frequency).
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Flgure 2.10: Importance of the Local Organization of Image Directions (LOID) in
natural and biomedical textures (i.e., how directional structures intersect). a. Photo-
graph of creased paper. b. Photomicrograph of hypertrophic cardiomyopathy [26].
c. Chest CT angiography. d. Photograph of meandroid coral. e. Fluorescence mi-
croscopy cross-sectional photograph of the tibialis anterior muscle of a mouse [7]. d.
Honeycombing fibrosis in lung CT [18].

4.1. The Local Organization of Image Directions (LOID)

Thinking even further, it appears that most biomedical and natural textures have clear
directional structures or primitives, but the latter are not necessarily consistent over
large regions M. Most often the opposite happens where directional structures are
defined locally (see Fig. 2.10). More precisely, an important aspect of directionality in
natural and biomedical textures is the Local Organization of Image Directions (LOID),
i.e., how directional structures intersect (see Fig. 2.11). The LOIDs were already men-
tioned in the literature as being central in preattentive texture segregation [4] as well as
computerized texture analysis [3, 16] (see Section 2.4 of Chapter 1). They relate to the
primitives or textons of biomedical texture (i.e., the essential “stitches” of the tissue),
which often have random local orientations. The various forms of these tissue stitches
are even richer in 3D, where the potential complexity of the primitives follows a cu-
bic growth. The number of possible discrete image directions grows as (2r + 1)3 — 1
in 3D versus (2r + 1)? — 1 in 2D [14]. Therefore, defining texture operators that are
able to characterize the LOIDs in a locally rotation-invariant fashion are required to
accurately analyze biomedical texture. Advanced methods to meet these challenging
requirements are further developed in Section 4.3.
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Figure 2.11: Importance of the LOIDs in preattentive texture segregation [4] (see Sec-
tion 2.4 of Chapter 1). The LOIDs can be distinguished by counting the number of
endpoints of the primitives (top row).

4.2. Directional sensitivity of texture operators

It is convenient to consider two distinct categories of operators in terms of directional
characterization: directionally sensitive versus insensitive. In the particular case of
linear operators, directionally insensitive operators are called circularly/spherically
symmetric operators and their functions do not depend on the angular coordinate(s):

2u(r) < 2u(p). 2.3)

Examples of such operators in 2D and 3D are Gaussian filters, LoGs and circularly
symmetric wavelets [41, 53] (see Fig. 2.12). Examples of non-linear directionally
insensitive operators are max or median filters. Directional operators constitute a vast
category where operator functions depend on all polar/spherical coordinates. They
include Fourier basis functions, circular and spherical harmonics [51, 56], directional
filters and wavelets (e.g., Gabor [5], Riesz [52], Simoncelli’s steerable pyramid [45],
curvelets [8]), Histogram of Oriented Gradients, HOG [34, 35, 32], GLCMs [29],
LBPs [38], GLRLMs [23, 57], CNNs [43], DL [24, 36], and others.

By construction, directionally insensitive operators are locally rotation-invariant,
but insensitive to image directions. Texture measures obtained from this category of
operators are therefore invariant to local rotations transformations. However, they can
hardly differentiate between +-shaped, L-shaped or blob-shaped texture primitives
(see Fig. 2.13 bottom left). Therefore, they cannot characterize the LOIDs and can
only be used to distinguish between biomedical tissue types with manifest differences
in image scales. Directional counterparts are sensitive to image directions, but may
not be locally rotation-invariant even in an approximate sense. They are able to iden-
tify the LOIDs only when they have all the same orientation, which is very unlikely
in biomedical textures (see Fig. 2.10). Moreover, the characterization of the LOIDs
can be challenging even when the latter are all aligned to each other. In fact, the
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aggregation function plays itself an important role when unidirectional operators® are
jointly used to characterize the LOIDs [16]. When separately integrated, the responses
of unidirectional individual operators are not local anymore and their joint responses
become only sensitive to the global amount of image directions in the region M. For
instance, the joint responses of image gradients

0
Galf}(xo) = —af (x0), d=1,2, (2.4)
Xd

are not able to discriminate between the two textures classes fi(x) and f>(x) shown
in Figure 2.13 when integrated over the full image domain M. This loss of infor-
mation is detailed by Sifre et al. in terms of separable group invariants [44]. When
integrated separately, the responses of unidirectional operators become invariant to a
larger family of roto-translations where different orientations are translated by differ-
ent values. For instance, it can be observed in Fig. 2.13 that f, can be obtained from f;
by vertically translating horizontal bars only and horizontally translating vertical bars
only.

Further refinements are required to allow for a true locally rotation-invariant char-
acterization of the LOIDs. Several approaches were proposed to increase the local
rotation-invariance of directional operators. GLCMs and GLRLMs are made approx-
imately insensitive to directions either by averaging feature measures or by summing
the counts over all directions of the operators [49] (e.g., co-occurrences along x; or x
are mixed). Likewise, rotation-based data augmentation in CNNs and DL improves
invariance to local rotations [27]. Unfortunately, these processes reduce the ability
of operators to characterize the LOIDs by making them insensitive to image direc-
tions. More advanced approaches were developed to allow enhanced locally rotation-
invariant characterization of the LOIDs and are described in Section 4.3.

4.3. Locally rotation-invariant operators and moving frames
representations

It was observed in Section 4.2 that simple texture operators are either locally rotation-
invariant and directionally insensitive or able to characterize the LOIDs (directionally
sensitive), but regrouping both properties is not straightforward. A variety of tex-
ture analysis approaches have been proposed to tackle this challenge. Those include
the Maximum Response 8 (MRS8) filterbank [54], rotation-invariant LBPs [2, 38] and
extensions [28, 33], discrete and continous HOGs (e.g., used in the Scale-Invariant
Feature Transform, SIFT and in the Rotation-Invariant Feature Transform, RIFT) [35,
32, 31], as well as oriented [58] and steerable [13, 16, 21] filters and wavelets that
were also included in recent CNNs [27, 44]. All the aforementioned approaches rely

2Unidirectional operators are “seeing” only one direction.
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2D and 3D Gaussian derivative filters (e.g., real Riesz wavelets [52])
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Figure 2.12: Directionally sensitive versus insensitive texture operators. Top row:
linear circularly symmetric operators that are not sensitive to image directions and
therefore locally rotation-invariant. Middle rows: linear directionally sensitive opera-
tors. Bottom row: non-linear directionally sensitive operators. Directional operators
are sensitive to image directions but not locally rotation-invariant by construction.

on the same strategy: using operators G, that are (approximately) locally rotation-
equivariant over their own support G, and then to align the operators to achieve local
rotation-invariance.

Locally rotation-invariant characterization of the LOIDs can be efficiently carried
out using Moving Frames (MF) representations [3, 16]. The key idea of MFs is to
locally adapt a coordinate frame directly to image contours instead of using fixed ex-
trinsic coordinates for all image locations (see Figure 2.14). The two necessary and
sufficient requirements to define MFs are (i) using a set of N > D non-collinear tex-
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Figure 2.13: fi(x) and f>(x) only differ in terms of the LOIDs (i.e., +-shaped ver-
sus L-shaped). Bottom row: one circle in each feature representation corresponds to
one realization (i.e., full image) of f;, where feature maps are averaged over the entire
image. Bottom left: feature vectors 5; obtained from the responses of circularly sym-
metric operators (two consecutive dyadic scales of Simoncelli wavelets, see Eq. 2.2)
provide poor distinction between the two classes. Bottom center and right: even when
the LOIDs are all aligned to each other, the joint responses of directional operators
(e.g., image gradients along x,, co-occurrences along x;) can hardly discriminate be-
tween fi and f> when integrated over the full image domain M.

ture operators and, (ii) having a consistent criteria to define the local orientation of
the frame bundle (e.g., using the tangent as the first unit vector of the frame). In 2D,
orthonormal MFs are defined as

(2.5)
(2.6)

€| x, = COSby, - € +sinby, - ey,
cos(by, + /2) - €1 + sin(fy, + 1/2) - ey,

eZ,X()

where {e;, e,} is the canonical basis for R?, {€1.x,> €2} 1s a local moving frame bundle
for the position x, and 6,, its orientation relatively to {e;, e;}. Image representations
obtained from MFs are robust to rigid transformations [22] (proof in [16]). They are
invariant to local rotations and equivariant to translations. Moreover, deriving the lo-
cal orientation of the frame tends to preserve the joint information between positions
and orientations even when the operators are integrated (e.g., averaged) over an image
domain M. Suitable local orientation measures for defining a consistent MF align-
ment criterion 6y, are e.g., simple pixel differences of a Gaussian-smoothed response
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original image field of dominant directions (gradient) movin-gv frames (Tangem bur_ldles)

Figure 2.14: Construction of MFs in a histopathological image of dense connective
tissue (left). Right: MFs are based on local directions 6y, maximizing the gradient
magnitude (center).

map [35] (see Eq. 3.7 of Chapter 3), or the Gaussian-smoothed Hessian-based structure
tensor, which can be interpreted as a localized covariance matrix of the gradient [42]
(2D [46], 3D [9]). The construction of 2D MFs based on directions maximizing the
gradient is illustrated in Fig. 2.14. It can be observed in Fig. 2.15 that when compared
to using global coordinates (see Fig. 2.13), texture measures obtained from identi-
cal operators (e.g., image gradients) but expressed in MFs can provide very detailed
characterizations of the LOIDs.

It is important to note that image representations based on locally rotation-invariant
operators G, are not preserving image layouts (i.e., large-scale organization of im-
age structure) larger than their spatial supports Gy, X --- X Gp,. They cannot be
used alone to characterize natural images with well-defined global layouts such as
in ImageNet [11]. They are best suited for discriminating textured patterns with well-
pronounced local directional structures, which is the case for most biomedical tissue
architectures. Tuning the support of the operators and/or using hybrid approaches
based on both local and global image transforms can be required to achieve optimal
texture discrimination.

4.4. Directionally insensitive, sensitive, and moving frames
representations for texture classification: a quantitative
performance comparison

In order to reveal the differences in terms of texture discrimination performance be-

tween directionally insensitive, sensitive, and MF representations, a quantitative com-

parison is proposed in this section.

The Outex database of 2D natural textures with highly controlled imaging condi-
tions [37] is chosen to compare between the various representations. The Outex_TC_10
test suite is used, because it has similar properties to biomedical images: it contains
no significant changes in terms of image scale and illumination. The texture classes
contain strongly directional patterns. Moreover, the validation scheme allows train-
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Figure 2.15: Using gradient-based MF representations to discriminate texture classes
that only differ in terms of their LOIDs. Because, the MF bundle {e; x,, €, x,} is locally
aligned with the direction 6,, maximizing the gradient at each position x, the energies
of gradients along e, ,, are null except at the center of +-shaped primitives. The MF
representation yields a linearly separable feature representation of f; and f,, while
the same unidirectional texture operator pair (i.e., orthogonal image gradients) used in
global coordinates could not distinguish between the two (see Fig. 2.13). Bottom row:
the flip side of the coin is that MF representation cannot differentiate textures that only
differ in terms of the orientations of their primitives (e.g., fi versus f;).

ing on unrotated images only, but the testing set contains rotated instances only. This
allows evaluating two important properties of the texture representations: rotation-
invariance and their ability to characterize directional patterns. The classes are very
pure though, where little intra-class variations are present, which differs from most
biomedical texture analysis problems. Outex_TC_10 contains 24 classes, which are
depicted in Fig. 2.16. It has a total of 4320 (24 - 20 - 9) non-overlapping 128 x 128
image instances. The training set consists of the 480 (24 - 20) unrotated images and
the remaining 3840 (24 - 20 - 8) images from 8 different orientations are constituting
the test set.

Riesz wavelet frames are used as texture operators, because variations in their de-
sign allow implementing all three representation types that we want to compare [13].
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The latter are detailed in Section 2.2 of Chapter 3. Qualitatively, Riesz wavelet frames
correspond to multi-scale directional image derivatives and evaluate not only the mag-
nitude, but also the type of transitions between image pixels (i.e., derivative order such
as the gradient, Hessian). Moreover, Riesz wavelets are steerable, which means that it
is relatively inexpensive to locally align every texture operators in order to obtain rich
MEF representations. Four iterations of Simoncelli’s circularly symmetric wavelets (see
Eq. 2.2) are used to define the spatial supports of Riesz-based image derivatives. In
order to obtain MF representations, the angle 6, maximizing the response of the first
element of the filterbank G o{f}(xo) is used to define the MF alignment criteria at
each position x (see e.g., Eq. 3.14 of Chapter 3). A collection of texture measurements
77 is obtained by averaging the energies of the responses of each operator over the full
128 x 128 support M of the texture instances. Simple one-versus-all SVM models
using Gaussian kernels are used to learn decision boundaries in the space spanned by
7 for texture classification.

The performance comparison for various orders L of the Riesz transform is shown
in Fig. 2.16. The performance of directionally sensitive unaligned Riesz wavelets ap-
pears to be clearly inferior to both directionally insensitive and MF representations.
This can be explained by their lack of rotation invariance, where rotations of the tex-
ture instances swaps the responses between filters and results in noisy and diffuse class
representations in the feature space. Directionally insensitive representations (i.e., us-
ing circularly symmetric Simoncelli wavelets only where Riesz order L = 0) benefit
from their invariance to local rotations and achieve an honorable classification accu-
racy of 87.5% with a very simple approach and low computational complexity. Best
results are obtained by MF representations with an accuracy of 97.42% for L = 4,
which highlights the importance of the LOIDs in texture analysis. However, when
compared to directionally insensitive operators, MFs involve a much higher computa-
tional cost to locally estimate 6y, and align the Riesz frame accordingly. Therefore, the
success of MF representations will depend on how important the LOIDs are to charac-
terize the considered biomedical texture classes, which will set the threshold to invest
the extra computational cost required. Other techniques relating to tissue underlying
physiology and allowing rotational invariance are discussed in Chapters 3, 5 and 7.

5. Discussions and conclusions

This chapter explained the essential theoretic foundations and practical consequences
of texture operator and aggregation function design in terms of image scales and orien-
tations. A set of comparison dimensions was introduced, which can be used to evaluate
the relevance of a particular BTA approach or design for a given biomedical applica-
tion. The most important aspects are recalled in a checklist matrix (see Fig. 2.17).
The expression of operators and texture functions in polar and spherical coordinates
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Figure 2.16: Quantitative comparison of directionally insensitive, sensitive, and MF
representations for texture classification. Whereas MF representations achieve best
performance, directionally insensitive texture operators allow close classification ac-
curacies with a much lower computational complexity. Finally, unaligned directionally
sensitive Riesz filters perform poorly because they lack rotation-invariance.

allowed to clearly separate scale from directional considerations.

Section 3 detailed the importance and consequences of appropriate choices of scale
for operators and region of interest (see Sections 3.1 and 3.2, respectively). The uncer-
tainty principle, a fundamental theoretic limitation was recalled to make the relation
between operator locality in space and frequency explicit (see Eq. 2.1 and Fig. 2.2).
As a rule of thumb, the operators should be kept as small as possible in the spatial
domain to allow local texture analysis. However, they should be sufficiently large to
allow for an adequate and accurate characterization of texture frequency components
(see Figures 2.3 bottom row and 2.5). The importance of using operators with smooth
profiles was highlighted to obtain an optimal trade-off between localization in the spa-
tial and Fourier domains [48] (see Fig. 2.4). In addition, operator smoothness allows
limiting the effect of proximal objects surrounding the region of interest for texture
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analysis, which was illustrated in Fig. 2.3 (top row). The influence of the design and
shape of the aggregation region was detailed in Section 3.2. In particular, the haz-
ard of using large ROIs encompassing multiple non-stationary texture processes for
aggregation with integrative aggregation functions was highlighted. The latter will
mix texture properties of distinct tissues, yielding texture measurement that are not
corresponding to anything visually or biologically (see Fig. 2.6). This was found to
be widely overlooked in the literature and motivated the use of alternate aggrega-
tion functions (e.g., covariances [10]) as well as defining digital tissue atlases of tu-
mors or organs containing collections of regions for which it is reasonable to consider
that texture properties are homogeneous. The latter provides the exciting opportunity
to construct disease-specific digital phenotypes, which already showed to constitute
powerful models for predicting disease diagnosis, treatment response and/or patient
prognosis [12, 20, 19, 50] (see Fig. 2.8).

The second part of the chapter, Section 4, studied the type of directional informa-
tion that is relevant for BTA. It was found that directional structures are defined locally
but are not necessarily consistent over large regions. More precisely, a fundamental
aspect of texture directionality is how directional structure intersect, which we called
the Local Organization of Image Directions (LOID, see Section 4.1). The latter re-
late to the essential stitches of biomedical tissue, as well as to the texture primitives
and texton theory discussed in Sections 2.4 of Chapter 1 and 2.3 of Chapter 3. Two
adversarial categories of operators were analyzed in Section 4.2: directionally insen-
sitive versus sensitive (see Fig. 2.12). Designing texture operators that are able to
accurately characterize the LOIDs with robustness to rigid transformation was found
to be challenging. One the one hand, directionally insensitive operators are invariant
to rotations but are insensitive to image directions. On the other hand, directionally
sensitive operators can sense directions but are not invariant to rotations. In addition,
the effect of aggregation using integrative functions Kkills the ability of unidirectional
operators to characterize the LOIDs even when the latter are all aligned to each other.
In Section 4.3, we provided evidence that using Moving Frame (MF) texture repre-
sentations consisting of locally aligning sets of non-collinear operators (see Eq. 2.5
and Fig. 2.14), allowed robust recognition of the LOIDs with invariance to rigid trans-
formations. A quantitative comparison of the classification performance of texture
classes with pronounced directional patterns and non-rigid transformations confirmed
the superiority of MF representations, but at the expense of a high computational com-
plexity when compared to much simpler directionally insensitive representations (see
Section 4.4).

Overall, this chapter introduced a new set of comparison dimensions between BTA
methods that is specific to biomedical imaging. The latter is further used in Chap-
ter 3 to perform a systematic qualitative comparison of most popular BTA methods,
which constitutes a user guide to assess the relevance of each approach for a particular
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medical or biological task in hand.
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