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Abstract
This chapter clarifies the important aspects of biomedical texture analysis under the general
framework introduced in Chapter 1. It was proposed that any approach can be character-
ized as the combination of local texture operators and regional aggregation functions. The
type of scale and directional information that can or cannot be modeled by categories of
texture processing methods is revealed through theoretic analyses and experimental valida-
tions. Several key aspects are found to be commonly overlooked in the literature and are
highlighted. First, we demonstrate the risk of using regions of interest for aggregation that
are regrouping tissue types of different natures. Second, a detailed study of the type of
directional information important for biomedical texture characterization suggests that fun-
damental properties lie in the local organization of image directions. In addition, it was found
that most approaches cannot efficiently characterize the latter, and even fewer can do it

c� Elsevier Ltd.
All rights reserved. 37
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38 Biomedical Texture Analysis

with invariance to local rotations. We conclude by deriving novel comparison axes to evalu-
ate the relevance of biomedical texture analysis methods in a specific medical or biological
applicative context.

Keywords: Texton, moving frames, uncertainty principle, texture analysis.

1. Introduction
The diversity of existing Biomedical Texture Analysis (BTA) approaches illustrates
the various properties required in di↵erent applicative contexts [14, 39]. Desired BTA
properties are e.g., ease of use, interpretability, low computational cost, and most im-
portantly high discriminatory performance and specificity. The latter is strongly de-
pendent on the nature of the texture information required for a specific task in hand.
The purpose of this work is to dissect the wide range of BTA properties to provide a
set of comparison dimensions between approaches. A formal definition of biomedi-
cal texture information was proposed in Section 2 of Chapter 1. The latter was found
to be characterized by the type of spatial transitions and dependencies between pixel
values. In particular, it was demonstrated that the scales (i.e., speed of variation or fre-
quency) and directions of the spatial transitions are fundamental properties of biomed-
ical texture functions. In Section 3.1 of Chapter 1, a general problem formulation
for biomedical texture analysis was introduced, considering that any approach can be
characterized as a set of texture operators and aggregation functions. The operators
allow locally isolating desired texture information in terms of spatial scales and di-
rections of a texture image. The application of the operators over all positions of the
image yields translation-equivariant feature maps containing every local responses of
the latter. Scalar-valued texture measurements are obtained by aggregating feature
maps over regions of interest.

In this chapter, clarifications are provided on possible design choices in terms of
spatial scales and directions for operators and aggregation functions. An excellent de-
scription of the problem can be found in [48], which concerns medical image analysis
in general. Our aim is to discuss the particularities of multi-scale and multi-directional
analysis for biomedical texture characterization. A focus is made on linear opera-
tors. However, although the theoretic concepts presented are only valid for the latter,
they should also provide intuition for designing nonlinear operators wherever possible.
Multiple examples and toy problems will be provided to illustrate the concepts intro-
duced. Among these, the uncertainty principle, a theoretic limitation of the trade-o↵
between operator scale and locality is first recalled to provide guidelines for optimal
design of operator scales. The influence of the size and shape of the region of interest
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used for aggregation on texture classification and segmentation is demonstrated. The
latter motivates the creation of digital tissue atlases of organs or tumors, providing
powerful models of digital phenotypes. In Section 3.3 of Chapter 1 and in Chapter 7,
the importance of approaches that are robust to rigid transformations (translation and
rotation) was emphasized. In the second part of this chapter (Section 4), clarifications
are made on directional information types that are important for biomedical texture
analysis. In particular, the Local Organization of Image Directions (LOID: how direc-
tional structures intersect) are found to be fundamental. Characterizing the latter with
invariance to local rotations raises several challenges. In this context, operators that are
insensitive to image directions (called circularly/spherically symmetric) are compared
to their directional counterparts. The destructive e↵ect of aggregation on the ability of
directional operators to characterize the LOIDs is demonstrated and motivates the use
of Moving Frame (MF) texture representations. The latter consist of locally adapting
a coordinate frame (e.g., a set of non-collinear operators) based on an alignment crite-
ria that is consistent1 for all positions in the texture image. We provide evidence that
MF representations allow detailed characterizations of the LOIDs with invariance to
rigid transformation. A quantitative performance comparison of circularly symmetric,
directional and MF texture representations for 2D texture classification is presented
in Section 4.4. Finally, most important aspects of operator and aggregation function
design are summarized under the form of a checklist matrix in Section 5.

2. Notations
Additional notations are introduced based on the notations initially defined in Sec-
tion 2.2 of Chapter 1. To further analyze the relationship between scales and direc-
tions, let us consider the definition of texture functions in 2D polar coordinates as

f (r, ✓)
F

 ! f̂ (⇢,#)

r 2 R+, ✓ 2 [0, 2⇡) ⇢ 2 R+, # 2 [0, 2⇡)

x =
 
x1
x2

!
= r

 
cos ✓
sin ✓

!
! =

 
!1
!2

!
= ⇢

 
cos#
sin#

!

1A simple and reliable alignment criteria is to orient all operators at each image position with the direction
that maximizes the local image gradient.
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and in 3D spherical coordinates as

f (r, ✓, �)
F

 ! f̂ (⇢,#,')
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Polar and spherical representations allow separating the angular part (i.e., image direc-
tions) from the radial part (i.e., spatial frequencies related to image scales) [55]. For
simplifying the notations, all coordinate domains are considered continuous in this
chapter. Their discretized versions can be obtained following the notions introduced
in Section 2.2 of Chapter 1.

3. Multi-scale image analysis
The need for multi-scale image analysis is motivated throughout various chapters of
this book (e.g., Section 3 of Chapter 1) as well as Chapters 4, 5 and 7. In this section,
we will define more precisely the important aspects of multi-scale texture operator and
aggregation function design. In particular, the discussion on which scales are optimal
for biomedical texture measurements hinges on two important facets:
• How to optimally define the spatial support(s) Gn = G1,n ⇥ · · · ⇥GD,n and the radial

responses of the operator(s) Gn ?
• What is the best size and shape of the region of interest M for aggregation ?
These two aspects are illustrated in Fig. 2.1 and detailed in the following subsec-
tions 3.1 and 3.2.

3.1. Spatial versus spectral coverage of linear operators:
The uncertainty principle

Linear texture operators are expected to be band-pass functions, which means that
the covered spatial frequencies are in a range defined by ⇢min > 0 and ⇢max < ⇡ in
the Fourier domain. Band-pass operators are commonly used as operators for texture
analysis because their geometric behavior, isotropy or directionality can be well con-
trolled. Because they do not include the zero frequency ⇢ = ||!|| = 0, their are only
sensitive to transitions between pixel values (i.e., texture) and not to the average re-
gional intensity. In between 0 and ⇡, the uncertainty principle allows defining rules
to design texture operators with optimal spectrum coverage [⇢min, ⇢max] (see Eq. 2.1).
Ideal texture operators would be accurately localized both in spatial and Fourier do-
mains. On the one hand, well localized operators in the spatial domain allow identi-
fying precise local texture properties without including surrounding image structures.
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Figure 2.1: Aspects of multi-scale texture operator and aggregation function de-
sign [17]. How to optimally define the sizes |G1| > |G2| > · · · > |GN | and the radial
responses of a collection of operators Gn ? What is the best position, size and shape of
the region of interest M for aggregation ?

On the other hand, optimally localized operators in the Fourier domain can precisely
characterize narrow frequency bands without mixing with other neighboring spectral
components. Unfortunately, having both properties together is not possible and sub-
ject to a theoretic limitation called the uncertainty principle [40]. Intuitively, the latter
can be understood as follows: it is impossible to measure rich texture information
from gray-level transitions between a few pixels only. Likewise, measuring all tran-
sitions from a large number of pixels yields detailed texture information, but requires
large image neighborhoods. More precisely, the relationship between the spatial sup-
port G = G1 ⇥ · · · ⇥GD and the spectral support � = �1 ⇥ · · · ⇥ �D of a linear texture
operator is

DY

d=1

G2
d �

2
d �

1
4D . (2.1)

This trade-o↵ is illustrated in Fig. 2.2 for 2D circularly symmetric Gaussian opera-
tors gn(x). Therefore, an operator with an accurate spatial localization (i.e., narrow
support) yields poor spectrum estimates. This has a direct implication in practice, and
can be critical when the texture processes are multi-spectral and highly non-stationary.
The spatial support of the operator needs to be large enough to accurately characterize
the frequency components of the intricate texture process, and can potentially be larger
than the studied texture region. This is illustrated in Fig. 2.3 for the characterization of
local ground glass and reticular regions in lung CT. In addition, controlling the profile
of the operators (i.e., the decay slope at their boundaries) is important to avoid exten-
sive ringing e↵ects in their dual representation resulting in poorly localized analysis
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Figure 2.2: Uncertainty principle: the function of a linear operator gn(x) (2D circularly
symmetric low-pass Gaussian in this example) cannot be well localized both in spatial
and Fourier domains. The theoretic limit observes G2
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(see Fig. 2.4) [15]. Finding the optimal trade-o↵ between the accurate definitions of
operator supports in space and in Fourier requires identifying spatial frequencies that
are important for the texture segregation task in hand. The lowest discriminative fre-
quency will determine the smallest operator size needed to di↵erentiate between the
various texture classes (see Fig. 2.5). The latter is not straightforward in most cases
and machine learning can be used to determine discriminative scales [30].

3.2. Region of interest and response map aggregation
Another critical aspect of scale definition in biomedical texture analysis concerns the
design of the ROI for aggregating the operators’ response maps (see Fig. 2.1). The
fundamental underlying question is: how large must be the ROI M ? Addressing this
issue requires considering once more the spectral complexity and spatial stationarity
of the considered texture processes. On the one hand, M should be large enough to
capture the discriminative statistics of the operators’ responses. On the other hand,
using large M covering several contiguous interleaving non-stationary processes will
mix the statistics of the latter and result in meaningless texture measures, even when
using appropriate texture operators.

Two examples are developed to illustrate the impact of the size of M on texture
classification and segmentation (see Figures 2.6 and 2.7). For both examples, simple
circularly symmetric band-pass and multi-scale operators are used. They are based on
two consecutive dyadic iterations of Simoncelli wavelet frames [41] gn(x). The 2D
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Figure 2.3: Challenges of operator design for complex and non-stationary biomedi-
cal texture processes. Top row (peripheral ground glass opacities in chest CT): large
influence of proximal objects when the support of operators is larger than the region
of interest. The lung boundary has an increasingly important impact in the peripheral
region, which can be observed on the response maps hn(x) of increasingly large LoG
linear operators with functions gn(x) [15]. Bottom row (reticular and normal lung
parenchyma in CT): on the left image, a small-sized Gaussian filter g1 (� = 3.2mm)
is precisely located in the reticular pattern but yields a poor characterization of the
spectral content inside its support. Conversely, the right image shows a large Gaussian
filter g2 (� = 38.4mm) allowing an accurate estimation of spatial frequencies, but its
spatial support encroaches upon normal parenchyma and mixes properties from the
two distinct texture classes.
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Figure 2.5: A texture operator characterizing spatial frequencies along x1 in [!1,min, ⇡)
is enough to discriminate f1 from f2. Finding this lower bound allow defining texture
operators with narrow spatial supports that are optimally localized.

version is defined in Fourier in polar coordinates (⇢,#) as

ĝ1(⇢) =
(

cos
⇣
⇡
2 log2

⇣ 2⇢
⇡

⌘⌘
for ⇡4 < ⇢  ⇡,

0 otherwise.

ĝ2(⇢) =
(

cos
⇣
⇡
2 log2

⇣ 4⇢
⇡

⌘⌘
for ⇡8 < ⇢ 

⇡
2 ,

0 otherwise.

(2.2)

Because it is circularly symmetric, this operator depends on the radial coordinate ⇢
only and is qualitatively similar to 2D LoGs. It is applied to a texture function f with
convolution (i.e., equivalent to a multiplication in the Fourier domain) as ĥn(⇢,#) = ĝn(⇢) · f̂ (⇢,#).

A first example is detailed in Fig. 2.6 and demonstrates the negative impact of av-
eraging feature maps over large ROIs including texture functions from distinct spatial
processes. This is a critical issue when texture analysis is used to characterize the
structural properties of tumors because requires defining smaller ROIs based on dis-
tinct tumor habitats [25] (e.g., ground glass versus solid tumor components in lung
adenocarcinoma [19]). When the component textures are too expensive to delineate
(e.g., tumor habitats in 3D imaging) or when they are not known in advance, unsu-
pervised texture segmentation approaches can be used to reveal the diversity of pat-
terns contained in a given ROI. Examples of such methods are superpixels [1], graph
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Figure 2.6: Influence of the size and localization of the region of interest M for ag-
gregating the feature maps using the average. Bottom center: each region Mi is repre-
sented by a point (e.g., “+”) in a feature space spanned by feature averages

�
⌘1,i, ⌘2,i

�
.

Whereas red and green regions are well separated and regrouped in the feature space,
averaging the feature maps over the entire image (blue region) yields texture features
that do not correspond to anything visually (see the blue diamond in the feature space).
Likewise, averaging texture properties over entire tumor regions including distinct
habitats will provide quantitative texture measures that do not correspond to anything
biologically [25, 10].

cuts [6], or the Pott’s model [47]. An advantage of the Pott’s model is its ability to
handle multiple feature maps for segmenting the subregions and therefore can easily
run on the registered outputs of several operators. The aggregation function has itself
a strong influence on the specificity of the texture measures. In [10], Cirujeda et al.
showed that measurements based on the covariances of the operator’s responses pro-
vided a better characterization of texture properties in multi-component tumors when
compared to the average, thanks to their ability to quantify the point-wise co-activation
of the operators.

In a second example, the influence of the size of circular patch-based ROIs on
supervised texture segmentation is investigated (see Fig. 2.7). Linear Support Vec-
tor Machines (SVM) are trained from overlapping ROIs extracted from two unro-
tated instances of classes f1(x): “canvas002” and f2(x): “canvas003” of the Outex
database [37]. The responses of circularly symmetric Simoncelli wavelet frames (see
Eq. 2.2) are averaged over the circular ROIs to provide texture measures ⌘ = (⌘1, ⌘2).
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Every block is represented in the two-dimensional feature space yielded by span(⌘).
In the latter, SVMs learn a separating hyperplane wSVM + b, which is further used to
classify overlapping patches from a test image composed of rotated instances of f1 and
f2. The corresponding decision values of the test patches (i.e., h⌘,wSVMi + b) as well
as the predicted local labels (i.e., sgn

�
h⌘,wSVMi + b

�
) are shown for three di↵erent

patch radii. The evolution of the segmentation error with radii varying in [0, 128] is
shown in Fig. 2.7 top right, highlighting the importance of the size of the aggregation
region M. When M is too small (radius = 8), the local average of the feature maps is
poorly estimated, which yields noisy feature estimates ⌘ (error = 0.24). At the other
extreme, very large regions M (radius = 128) yield accurate estimates of the features,
but are not well localized spatially. This results in important errors at the boundaries
between f1 and f2 (error = 0.23). In between these two extremes, finding adequate
sizes seems not critical and allows satisfactory segmentation results with a minimum
error of 0.045 for a radius of 90. However, a radius of 30 allows obtaining an excellent
trade-o↵ between locality and average estimation (error = 0.051). To summarize, a
simple rule of thumb to observe is to use ROIs that are no larger than enough to ac-
curately estimate discriminative statistics of the operators’ responses over stationary
areas defined in terms of human perception or tissue biology.

In most cases, it is not realistic to assume that the texture properties are homoge-
neous (i.e., stationary) over entire organs or tumors, which was mostly overlooked in
the literature. An interesting approach is to divide organs into subregions for which it
is reasonable to consider that the responses of texture operators are stationary in the
relaxed sense. This provides the exciting opportunity to construct tissue atlases from
texture information in biomedical images. They can be used to create disease-specific
digital phenotypes, which already showed to constitute powerful models for predict-
ing disease diagnosis, treatment response and/or patient prognosis in the context of
interstitial lung diseases [12, 20] (see Fig. 2.8) and cancer [19, 50].

4. Multi-directional image analysis
As already introduced in Section 2.1 of Chapter 1, the notion of direction in texture is
fundamental and complementary to the notion of scale (see Fig. 1.2 of Chapter 1). An
important question is then: which image directions are important for deriving texture
measurements and allowing adequate texture segregation? Fig. 2.9 shows textures and
their Fourier modulus. For one of them, f1(x), directionality seems not obvious be-
cause the texture contains little structure and is highly stochastic. For the other, f2(x),
dominant directions are clearly visible, creating oriented grid patterns and correspond-
ing peaks in the Fourier domain. Moreover, it appears that texture directionality is
defined for a particular position and scale (i.e., spatial frequency). These aspects of
texture directionality are developed in the next subsections 4.1, 4.2 and 4.3.
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the maximum of the score provided by the SVMs. A maximum area
under the ROC curve (AUC) of 0.81 was obtained with the regional
Riesz attributes, which suggests that prediction was correct for more
than 4 of 5 patients. The performance of HU and GLCM attributes
was close to random (0.54 and 0.6 for HU and GLCMs, respectively).
On the other hand, predictive SVM models based on the responses of
the Riesz filters, averaged over the entire lungs, had an AUC of 0.72.

Our system's performance was also compared with the interpreta-
tions of 2 fellowship-trained cardiothoracic fellows, each having 1 year
of experience. Interobserver agreement was assessed with the Cohen
κ statistics30 and the percentage of agreement (ie, number of times the
2 observer agreed). The comparisons are detailed in Tables 3 and 4.
The operating points of the 2 independent observers are reported in
Figure 4 (top right). A detailed analysis of the 6 cases that were mis-
classified by our system is shown in Table 5 with representative CT
images, including predictions from the computer and the 2 fellows com-
pared with the consensus classification. The system predicted 2 classic
UIP cases as atypical UIP and 3 atypical UIP cases as classic UIP. A com-
prehensive analysis of all 33 cases is illustrated in the Supplemental
Table, Supplemental Digital Content 1, http://links.lww.com/RLI/A189.

Overall, 7 incorrect predictions were made by the fellows and 6 incor-
rect predictions by the computer. The fellows and the computer made
only 2 common errors (cases 1 and 13).

DISCUSSION
We developed a novel computational method for the automated

classification of classic versus atypical UIP based on regional volumet-
ric texture analysis. This constitutes, to the best of our knowledge, a first
attempt to automatically differentiate the UIP subtypes with computa-
tional methods. An SVM classifier yielded a score that predicts if the
UIP is classic or atypical. The classifier was based on a group of attri-
butes that characterize the radiological phenotype of the lung paren-
chyma, specifically the morphological properties (ie, texture) of the
parenchyma. Because diffuse lung diseases can vary in the distribution
and severity of abnormalities throughout the lungs, we extracted our
quantiative image features from 36 anatomical regions of the lung. To
our knowledge, adding this spatial characterization to the computational
model is also innovative, and it is particularly relevant for assessing
diffuse lung disease.

FIGURE 3. The 36 subregions of the lungs localized the prototype regional distributions of the texture properties. Figure 3 can be viewed online in color
at www.investigativeradiology.com.

FIGURE 4. The ROC analysis of the system's performance. Classic UIP is the positive class. Left, Comparison of various feature groups using the digital
lung tissue atlas. Three-dimensional Riesz wavelets provide a superior AUC of 0.81. Right, Importance of the anatomical atlas when comparedwith an
approach based on the global tissue properties and comparison of the computer's and cardiothoracic fellows' performance. Bottom, Probability density
functions of the computer score for classic (red) and atypical UIP (blue) based on regional Riesz texture analysis and the computer's operating point
highlighted in the upper right subfigure. Atypical UIP is associated with a negative score, which implies that positive scores predict classic UIPs with high
specificity. Figure 4 can be viewed online in color at www.investigativeradiology.com.

Depeursinge et al Investigative Radiology • Volume 00, Number 00, Month 2015

4 www.investigativeradiology.com © 2014 Wolters Kluwer Health, Inc. All rights reserved.
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Figure 2.8: Digital phenotypes for interstitial lung diseases. Left: due to the pres-
ence of thicker bronchovascular structures in the region Ma that is close to the me-
diastinium, the texture properties of normal and altered parenchymal tissue cannot be
considered similar as the ones in the peripheral region Mb. Right: therefore, it is rel-
evant to divide lungs into regions for which it is reasonable to consider that texture
properties are homogeneous and create tissue atlases to derive digital phenotypes for
interstitial lung diseases [12, 20].
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Figure 2.9: Examples of texture functions with weak (i.e., f1(x)) versus strong (i.e.,
f2(x)) directionality. The modulus of the Fourier representation of f2(x) shows that
there are clear directional spatial frequencies, standing out as bright spots in | f̂2(!)|.
This also demonstrates that image directionality is defined for a particular scale (i.e.,
spatial frequency).
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3. Results

3.1. Selection of the geometric parameter to determine
muscle fiber size

Abnormal distribution of the muscle fiber size in muscle
cross-sections is a hallmark of the pathological changes in
dystrophic muscles. Indeed, mdx skeletal muscles show an
abnormal proportion of small and largemuscle fibers that can

be illustrated by the construction of size-distribution
histograms (Fig. 1). Specifically, small-calibre and large-
calibre fibers are more abundant in dystrophic muscle than in
age- and sex-matched control muscle. These differences in
muscle fiber size distribution can also be quantified by
sampling a large number ofmuscle fiber sizes and calculating
a variance coefficient. For sections of the TAmuscles shown
in Fig. 1, the variance coefficient for thewt-muscle is 258 and
for the mdx-muscle the variance coefficient is 388.

Fig. 1. (A) Fluorescence microscopy pictures of cross-sections of the tibialis anterior (TA) muscle of a 7-week-old wild-type (left panels) and mdx-mouse

(right panels) at two different magnifications. The muscle sections were stained with WGA-Alexa and DAPI to show muscle fiber boundaries and nuclei.

Note that the variability of fiber sizes in wild-type muscle is smaller than the variability in dystrophic muscle. (B) Bar histograms representing the size
distribution of the muscle fibers illustrated in (A). The muscle fibers were grouped in size classes of 10 mm and the number of fibers in each class was plotted

(nZ609 fibers of cross-sectioned wt-muscle; nZ508 fibers of cross-sectioned mdx-muscle). Note the increased proportion of muscle fibers with diameters of

less than 20 mm and above 70 mm in TA muscle from mdx-mouse compared to the corresponding wt-muscle.
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Fig. 3. Visual aspects of the most common lung tissue patterns in HRCT of patients with ILDs. (a) Healthy; (b) emphysema; (c) ground glass; (d) fibrosis; (e) micronodules; (f)
consolidation.

1.1.3. Interpretation of HRCT image series
Interpreting HRCT images of the chest represents a challenge

even for trained chest radiologists and lung specialists [22,23]. The
three-dimensional form requires significant reading time, effort,
and experience for a correct interpretation [27]. Most often, the
interpretation process is carried out by comparing a case with simi-
lar images in textbooks such as [23] or with similar cases in personal
image collections, which are most often organized by pathology. To
do so, the radiologists must have a guess of the suspected disease
present in the image and may miss the true pathology shown. In
certain medical services (e.g., emergency radiology service), radiol-
ogists have recourse to a large diversity of imaging modalities such

as conventional projection radiography, CT, MRI, functional imag-
ing (functional MRI (fMRI), positron emission tomography (PET)),
and ultrasound applied to different organs such as the brain, colon,
breast, chest, liver, kidney and the vascular and skeletal systems.
They have to provide the first radiological report with ideas on the
diagnosis quickly. This may result in errors by omission or con-
fusion of diverse pathologic lung tissue types [28]. Moreover, the
context is fundamental for correct interpretation: healthy tissue,
for example, may have different visual aspects depending on the
age or the smoking history of the patient and ground glass find-
ings are non-specific without complementary clinical parameters
[29].

a. b. c.

d. e. f.

Figure 2.10: Importance of the Local Organization of Image Directions (LOID) in
natural and biomedical textures (i.e., how directional structures intersect). a. Photo-
graph of creased paper. b. Photomicrograph of hypertrophic cardiomyopathy [26].
c. Chest CT angiography. d. Photograph of meandroid coral. e. Fluorescence mi-
croscopy cross-sectional photograph of the tibialis anterior muscle of a mouse [7]. d.
Honeycombing fibrosis in lung CT [18].

4.1. The Local Organization of Image Directions (LOID)
Thinking even further, it appears that most biomedical and natural textures have clear
directional structures or primitives, but the latter are not necessarily consistent over
large regions M. Most often the opposite happens where directional structures are
defined locally (see Fig. 2.10). More precisely, an important aspect of directionality in
natural and biomedical textures is the Local Organization of Image Directions (LOID),
i.e., how directional structures intersect (see Fig. 2.11). The LOIDs were already men-
tioned in the literature as being central in preattentive texture segregation [4] as well as
computerized texture analysis [3, 16] (see Section 2.4 of Chapter 1). They relate to the
primitives or textons of biomedical texture (i.e., the essential “stitches” of the tissue),
which often have random local orientations. The various forms of these tissue stitches
are even richer in 3D, where the potential complexity of the primitives follows a cu-
bic growth. The number of possible discrete image directions grows as (2r + 1)3

� 1
in 3D versus (2r + 1)2

� 1 in 2D [14]. Therefore, defining texture operators that are
able to characterize the LOIDs in a locally rotation-invariant fashion are required to
accurately analyze biomedical texture. Advanced methods to meet these challenging
requirements are further developed in Section 4.3.
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Figure 2.11: Importance of the LOIDs in preattentive texture segregation [4] (see Sec-
tion 2.4 of Chapter 1). The LOIDs can be distinguished by counting the number of
endpoints of the primitives (top row).

4.2. Directional sensitivity of texture operators
It is convenient to consider two distinct categories of operators in terms of directional
characterization: directionally sensitive versus insensitive. In the particular case of
linear operators, directionally insensitive operators are called circularly/spherically
symmetric operators and their functions do not depend on the angular coordinate(s):

gn(r)
F

 ! ĝn(⇢). (2.3)

Examples of such operators in 2D and 3D are Gaussian filters, LoGs and circularly
symmetric wavelets [41, 53] (see Fig. 2.12). Examples of non-linear directionally
insensitive operators are max or median filters. Directional operators constitute a vast
category where operator functions depend on all polar/spherical coordinates. They
include Fourier basis functions, circular and spherical harmonics [51, 56], directional
filters and wavelets (e.g., Gabor [5], Riesz [52], Simoncelli’s steerable pyramid [45],
curvelets [8]), Histogram of Oriented Gradients, HOG [34, 35, 32], GLCMs [29],
LBPs [38], GLRLMs [23, 57], CNNs [43], DL [24, 36], and others.

By construction, directionally insensitive operators are locally rotation-invariant,
but insensitive to image directions. Texture measures obtained from this category of
operators are therefore invariant to local rotations transformations. However, they can
hardly di↵erentiate between +-shaped, L-shaped or blob-shaped texture primitives
(see Fig. 2.13 bottom left). Therefore, they cannot characterize the LOIDs and can
only be used to distinguish between biomedical tissue types with manifest di↵erences
in image scales. Directional counterparts are sensitive to image directions, but may
not be locally rotation-invariant even in an approximate sense. They are able to iden-
tify the LOIDs only when they have all the same orientation, which is very unlikely
in biomedical textures (see Fig. 2.10). Moreover, the characterization of the LOIDs
can be challenging even when the latter are all aligned to each other. In fact, the
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aggregation function plays itself an important role when unidirectional operators2 are
jointly used to characterize the LOIDs [16]. When separately integrated, the responses
of unidirectional individual operators are not local anymore and their joint responses
become only sensitive to the global amount of image directions in the region M. For
instance, the joint responses of image gradients

Gd{ f }(x0) =
@ f
@xd

(x0), d = 1, 2, (2.4)

are not able to discriminate between the two textures classes f1(x) and f2(x) shown
in Figure 2.13 when integrated over the full image domain M. This loss of infor-
mation is detailed by Sifre et al. in terms of separable group invariants [44]. When
integrated separately, the responses of unidirectional operators become invariant to a
larger family of roto-translations where di↵erent orientations are translated by di↵er-
ent values. For instance, it can be observed in Fig. 2.13 that f2 can be obtained from f1
by vertically translating horizontal bars only and horizontally translating vertical bars
only.

Further refinements are required to allow for a true locally rotation-invariant char-
acterization of the LOIDs. Several approaches were proposed to increase the local
rotation-invariance of directional operators. GLCMs and GLRLMs are made approx-
imately insensitive to directions either by averaging feature measures or by summing
the counts over all directions of the operators [49] (e.g., co-occurrences along x1 or x2
are mixed). Likewise, rotation-based data augmentation in CNNs and DL improves
invariance to local rotations [27]. Unfortunately, these processes reduce the ability
of operators to characterize the LOIDs by making them insensitive to image direc-
tions. More advanced approaches were developed to allow enhanced locally rotation-
invariant characterization of the LOIDs and are described in Section 4.3.

4.3. Locally rotation-invariant operators and moving frames
representations

It was observed in Section 4.2 that simple texture operators are either locally rotation-
invariant and directionally insensitive or able to characterize the LOIDs (directionally
sensitive), but regrouping both properties is not straightforward. A variety of tex-
ture analysis approaches have been proposed to tackle this challenge. Those include
the Maximum Response 8 (MR8) filterbank [54], rotation-invariant LBPs [2, 38] and
extensions [28, 33], discrete and continous HOGs (e.g., used in the Scale-Invariant
Feature Transform, SIFT and in the Rotation-Invariant Feature Transform, RIFT) [35,
32, 31], as well as oriented [58] and steerable [13, 16, 21] filters and wavelets that
were also included in recent CNNs [27, 44]. All the aforementioned approaches rely

2Unidirectional operators are “seeing” only one direction.
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Regional Lung Texture Analysis
The prototype regional distributions of the morphological tissue

properties of classic versus atypical UIPs were learned using support
vector machines (SVMs). The SVM is a supervised machine learning
algorithm that can learn the complex relationship between a group of
variables (ie, the vector vl) and the presence or absence of a class from
an ensemble of examples called the training set.28 Once the SVMmodel
has been built from the example cases, it can predict the class of an un-
seen case with a confidence score (called computer score thereinafter).
The group of variables feeding SVMs consisted of the responses (ie,
energies) of the multiscale Riesz filters in each of the 36 anatomical re-
gions of the lungs (Fig. 3). The size of the vector vl regrouping the re-
sponses of the 6 Riesz filters at 4 scales from the 36 regions was
equal to 864.

To compare Riesz wavelets with other features that could capture
the radiological phenotype of diffuse lung disease, 2 different feature
groupswere extracted for each region to provide a baseline performance:
15 histogram bins of the gray levels in the extended lung window
[−1000; 600] Hounsfield units (HU) and 3D gray-level co-occurrence
matrices (GLCM).29 Statistical measures from GLCMs are popular tex-
ture attributes that were used by several studies in the literature to

characterize the morphological properties of lung tissue associated with
interstitial lung diseases.16,17,20,21 They consist in counting the co-
occurrence of voxels with identical gray level values that are separated
by a distance d, which results in a co-occurrence matrix. Eleven statistics
were extracted from these matrices29 as texture attributes. The choices
ofd and the number of gray levels were optimized by considering values
in {−3; 3} and {8, 16, 32}, respectively. The size of the vector of attri-
butes vlwas 540 for the gray-level histogram attributes (calledHU there-
inafter) and 396 for the GLCM attributes.

RESULTS
A leave-one-patient-out cross-validation evaluation was used to

estimate the performance of the proposed approach. The leave-one-
patient-out cross-validation consisted of using all patients but 1 to train
the SVM model and to measure the prediction performance on the re-
maining test patient. The prediction performance was then averaged
over all possible combinations of training and test patients. Receiver
operating characteristic (ROC) curves of the system's performance in
classifying between classic and atypical UIP are shown in Figure 4 for
different feature groups and their combinations. The ROC curves were
obtained by varying the decision threshold between the minimum and

TABLE 2. Localization of the Lung Masks

⊥ Vertical ⊥ Axial ⊥ Coronal ⊥ Sagittal

Apical, central, basal Peripheral, middle, axial Left, right Anterior, posterior

The lungs are split perpendicularly to 4 axes.25

Images can be viewed online in color at www.investigativeradiology.com.

FIGURE 2. Second-order Riesz filters characterizing edges along the main image directions X, Y, Z and 3 diagonals XY, XZ, and YZ. Figure 2 can be viewed
online in color at www.investigativeradiology.com.
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Figure 2.12: Directionally sensitive versus insensitive texture operators. Top row:
linear circularly symmetric operators that are not sensitive to image directions and
therefore locally rotation-invariant. Middle rows: linear directionally sensitive opera-
tors. Bottom row: non-linear directionally sensitive operators. Directional operators
are sensitive to image directions but not locally rotation-invariant by construction.

on the same strategy: using operators Gn that are (approximately) locally rotation-
equivariant over their own support Gn and then to align the operators to achieve local
rotation-invariance.

Locally rotation-invariant characterization of the LOIDs can be e�ciently carried
out using Moving Frames (MF) representations [3, 16]. The key idea of MFs is to
locally adapt a coordinate frame directly to image contours instead of using fixed ex-
trinsic coordinates for all image locations (see Figure 2.14). The two necessary and
su�cient requirements to define MFs are (i) using a set of N � D non-collinear tex-
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Figure 2.13: f1(x) and f2(x) only di↵er in terms of the LOIDs (i.e., +-shaped ver-
sus L-shaped). Bottom row: one circle in each feature representation corresponds to
one realization (i.e., full image) of fi, where feature maps are averaged over the entire
image. Bottom left: feature vectors ⌘i obtained from the responses of circularly sym-
metric operators (two consecutive dyadic scales of Simoncelli wavelets, see Eq. 2.2)
provide poor distinction between the two classes. Bottom center and right: even when
the LOIDs are all aligned to each other, the joint responses of directional operators
(e.g., image gradients along xd, co-occurrences along xd) can hardly discriminate be-
tween f1 and f2 when integrated over the full image domain M.

ture operators and, (ii) having a consistent criteria to define the local orientation of
the frame bundle (e.g., using the tangent as the first unit vector of the frame). In 2D,
orthonormal MFs are defined as

e1,x0 = cos ✓x0 · e1 + sin ✓x0 · e2, (2.5)
e2,x0 = cos(✓x0 + ⇡/2) · e1 + sin(✓x0 + ⇡/2) · e2, (2.6)

where {e1, e2} is the canonical basis for R2, {e1,x0 , e2,x0} is a local moving frame bundle
for the position x0, and ✓x0 its orientation relatively to {e1, e2}. Image representations
obtained from MFs are robust to rigid transformations [22] (proof in [16]). They are
invariant to local rotations and equivariant to translations. Moreover, deriving the lo-
cal orientation of the frame tends to preserve the joint information between positions
and orientations even when the operators are integrated (e.g., averaged) over an image
domain M. Suitable local orientation measures for defining a consistent MF align-
ment criterion ✓x0 are e.g., simple pixel di↵erences of a Gaussian-smoothed response
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e1

e2

original image field of dominant directions (gradient) moving frames (tangent bundles)

e2,x0
e1,x0 e2,x0

e1,x0

✓x0

Figure 2.14: Construction of MFs in a histopathological image of dense connective
tissue (left). Right: MFs are based on local directions ✓x0 maximizing the gradient
magnitude (center).

map [35] (see Eq. 3.7 of Chapter 3), or the Gaussian-smoothed Hessian-based structure
tensor, which can be interpreted as a localized covariance matrix of the gradient [42]
(2D [46], 3D [9]). The construction of 2D MFs based on directions maximizing the
gradient is illustrated in Fig. 2.14. It can be observed in Fig. 2.15 that when compared
to using global coordinates (see Fig. 2.13), texture measures obtained from identi-
cal operators (e.g., image gradients) but expressed in MFs can provide very detailed
characterizations of the LOIDs.

It is important to note that image representations based on locally rotation-invariant
operators Gn are not preserving image layouts (i.e., large-scale organization of im-
age structure) larger than their spatial supports G1,n ⇥ · · · ⇥GD,n. They cannot be
used alone to characterize natural images with well-defined global layouts such as
in ImageNet [11]. They are best suited for discriminating textured patterns with well-
pronounced local directional structures, which is the case for most biomedical tissue
architectures. Tuning the support of the operators and/or using hybrid approaches
based on both local and global image transforms can be required to achieve optimal
texture discrimination.

4.4. Directionally insensitive, sensitive, and moving frames
representations for texture classification: a quantitative
performance comparison

In order to reveal the di↵erences in terms of texture discrimination performance be-
tween directionally insensitive, sensitive, and MF representations, a quantitative com-
parison is proposed in this section.

The Outex database of 2D natural textures with highly controlled imaging condi-
tions [37] is chosen to compare between the various representations. The Outex TC 10
test suite is used, because it has similar properties to biomedical images: it contains
no significant changes in terms of image scale and illumination. The texture classes
contain strongly directional patterns. Moreover, the validation scheme allows train-
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Figure 2.15: Using gradient-based MF representations to discriminate texture classes
that only di↵er in terms of their LOIDs. Because, the MF bundle {e1,x0 , e2,x0} is locally
aligned with the direction ✓x0 maximizing the gradient at each position x0, the energies
of gradients along e2,x0 are null except at the center of +-shaped primitives. The MF
representation yields a linearly separable feature representation of f1 and f2, while
the same unidirectional texture operator pair (i.e., orthogonal image gradients) used in
global coordinates could not distinguish between the two (see Fig. 2.13). Bottom row:
the flip side of the coin is that MF representation cannot di↵erentiate textures that only
di↵er in terms of the orientations of their primitives (e.g., f1 versus f̃1).

ing on unrotated images only, but the testing set contains rotated instances only. This
allows evaluating two important properties of the texture representations: rotation-
invariance and their ability to characterize directional patterns. The classes are very
pure though, where little intra-class variations are present, which di↵ers from most
biomedical texture analysis problems. Outex TC 10 contains 24 classes, which are
depicted in Fig. 2.16. It has a total of 4320 (24 · 20 · 9) non-overlapping 128 ⇥ 128
image instances. The training set consists of the 480 (24 · 20) unrotated images and
the remaining 3840 (24 · 20 · 8) images from 8 di↵erent orientations are constituting
the test set.

Riesz wavelet frames are used as texture operators, because variations in their de-
sign allow implementing all three representation types that we want to compare [13].
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The latter are detailed in Section 2.2 of Chapter 3. Qualitatively, Riesz wavelet frames
correspond to multi-scale directional image derivatives and evaluate not only the mag-
nitude, but also the type of transitions between image pixels (i.e., derivative order such
as the gradient, Hessian). Moreover, Riesz wavelets are steerable, which means that it
is relatively inexpensive to locally align every texture operators in order to obtain rich
MF representations. Four iterations of Simoncelli’s circularly symmetric wavelets (see
Eq. 2.2) are used to define the spatial supports of Riesz-based image derivatives. In
order to obtain MF representations, the angle ✓x0 maximizing the response of the first
element of the filterbank G�,L,0{ f }(x0) is used to define the MF alignment criteria at
each position x0 (see e.g., Eq. 3.14 of Chapter 3). A collection of texture measurements
⌘ is obtained by averaging the energies of the responses of each operator over the full
128 ⇥ 128 support M of the texture instances. Simple one-versus-all SVM models
using Gaussian kernels are used to learn decision boundaries in the space spanned by
⌘ for texture classification.

The performance comparison for various orders L of the Riesz transform is shown
in Fig. 2.16. The performance of directionally sensitive unaligned Riesz wavelets ap-
pears to be clearly inferior to both directionally insensitive and MF representations.
This can be explained by their lack of rotation invariance, where rotations of the tex-
ture instances swaps the responses between filters and results in noisy and di↵use class
representations in the feature space. Directionally insensitive representations (i.e., us-
ing circularly symmetric Simoncelli wavelets only where Riesz order L = 0) benefit
from their invariance to local rotations and achieve an honorable classification accu-
racy of 87.5% with a very simple approach and low computational complexity. Best
results are obtained by MF representations with an accuracy of 97.42% for L = 4,
which highlights the importance of the LOIDs in texture analysis. However, when
compared to directionally insensitive operators, MFs involve a much higher computa-
tional cost to locally estimate ✓x0 and align the Riesz frame accordingly. Therefore, the
success of MF representations will depend on how important the LOIDs are to charac-
terize the considered biomedical texture classes, which will set the threshold to invest
the extra computational cost required. Other techniques relating to tissue underlying
physiology and allowing rotational invariance are discussed in Chapters 3, 5 and 7.

5. Discussions and conclusions
This chapter explained the essential theoretic foundations and practical consequences
of texture operator and aggregation function design in terms of image scales and orien-
tations. A set of comparison dimensions was introduced, which can be used to evaluate
the relevance of a particular BTA approach or design for a given biomedical applica-
tion. The most important aspects are recalled in a checklist matrix (see Fig. 2.17).
The expression of operators and texture functions in polar and spherical coordinates
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1) canvas001 2) canvas002 3) canvas003 4) canvas005 5) canvas006 6) canvas009 7) canvas011 8) canvas021

9) canvas022 10) canvas023 11) canvas025 12) canvas026 13) canvas031 14) canvas032 15) canvas033 16) canvas035

17) canvas038 18) canvas039 19) tile005 20) tile006 21) carpet002 22) carpet004 23) carpet005 24) carpet009

Fig. 5. 128 � 128 blocks from the 24 texture classes of the Outex database.

1) canvas 2) cloth 3) cotton 4) grass 5) leather 6) matting 7) paper 8) pigskin

9) raffia 10) rattan 11) reptile 12) sand 13) straw 14) weave 15) wood 16) wool

Fig. 6. 16 Brodatz texture classes of the Contrib TC 00000 test suite.

180 � 180 images from rotation angles 20�, 70�, 90�, 120�,
135� and 150� of the other seven Brodatz images for each
class. The total number of images in the test set is 672.

G. Experimental setup
OVA SVM models using Gaussian kernels as K(xi, xj) =

exp(�||xi�xj ||2
2�2

k
) are used both to learn texture signatures and

to classify the texture instances in the final feature space
obtained after k iterations. A number of scales J = 6
was used to cover the whole spectrum of the 128 � 128
subimages in Outex and J = 3 for covering the spectrum of
16 � 16 subimages in Contrib TC 00000. The angle matrix
that maximizes the response of the texture signature at the
smallest scale �1(x) (see Eq. (11)) is used to steer Riesz
templates from all scales. The dimensionality of the initial
feature space is J(N + 1). Every texture signature �N

c,K is
computed using the texture instances from the training set.
The coefficients from all instances are rotated to locally align
each signature �N

c,K and are concatenated to constitute the final
feature space. The dimensionality of the final feature space is
J � (N + 1) � Nc. OVA SVM models are trained in this
final feature space using the training instances. The remaining
test instances obtained are used to evaluate the generalization
performance. All data processing was performed using MAT-
LAB R2012b (8.0.0.783) 64–bit (glnxa64), The MathWorks

Inc., 2012. The computational complexity is dominated by the
local orientation of �N

c in Eq. 11, which consists of finding the
roots of the polynomials defined by the steering matrix A�.
It is therefore NP–hard (Non–deterministic Polynomial–time
hard), where the order of the polynomials is controlled by the
order of the Riesz transform N .

III. RESULTS

The performance of our approach is demonstrated with
the Outex and the Brodatz databases. The performance of
texture classification is first investigated in Section III-A.
The evolution and the convergence of the texture signatures
�N

c,k through iterations k = 1, . . . , 10 is then studied in
Section III-B for the Outex TC 00010 test suite.

A. Rotation–covariant texture classification

The rotation–covariant properties of our approach are eval-
uated using Outex TC 00010, Outex TC 00012 and Con-
trib TC 00000 test suites. The classification performance
of the proposed approach after the initial iteration (k=1)
is compared with two other approaches that are based on
multiscale Riesz filterbanks. As a baseline, the classification
performance using the energy of the coefficients of the initial
Riesz templates was evaluated. Since the cardinality of the
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Figure 2.16: Quantitative comparison of directionally insensitive, sensitive, and MF
representations for texture classification. Whereas MF representations achieve best
performance, directionally insensitive texture operators allow close classification ac-
curacies with a much lower computational complexity. Finally, unaligned directionally
sensitive Riesz filters perform poorly because they lack rotation-invariance.

allowed to clearly separate scale from directional considerations.
Section 3 detailed the importance and consequences of appropriate choices of scale

for operators and region of interest (see Sections 3.1 and 3.2, respectively). The uncer-
tainty principle, a fundamental theoretic limitation was recalled to make the relation
between operator locality in space and frequency explicit (see Eq. 2.1 and Fig. 2.2).
As a rule of thumb, the operators should be kept as small as possible in the spatial
domain to allow local texture analysis. However, they should be su�ciently large to
allow for an adequate and accurate characterization of texture frequency components
(see Figures 2.3 bottom row and 2.5). The importance of using operators with smooth
profiles was highlighted to obtain an optimal trade-o↵ between localization in the spa-
tial and Fourier domains [48] (see Fig. 2.4). In addition, operator smoothness allows
limiting the e↵ect of proximal objects surrounding the region of interest for texture
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analysis, which was illustrated in Fig. 2.3 (top row). The influence of the design and
shape of the aggregation region was detailed in Section 3.2. In particular, the haz-
ard of using large ROIs encompassing multiple non-stationary texture processes for
aggregation with integrative aggregation functions was highlighted. The latter will
mix texture properties of distinct tissues, yielding texture measurement that are not
corresponding to anything visually or biologically (see Fig. 2.6). This was found to
be widely overlooked in the literature and motivated the use of alternate aggrega-
tion functions (e.g., covariances [10]) as well as defining digital tissue atlases of tu-
mors or organs containing collections of regions for which it is reasonable to consider
that texture properties are homogeneous. The latter provides the exciting opportunity
to construct disease-specific digital phenotypes, which already showed to constitute
powerful models for predicting disease diagnosis, treatment response and/or patient
prognosis [12, 20, 19, 50] (see Fig. 2.8).

The second part of the chapter, Section 4, studied the type of directional informa-
tion that is relevant for BTA. It was found that directional structures are defined locally
but are not necessarily consistent over large regions. More precisely, a fundamental
aspect of texture directionality is how directional structure intersect, which we called
the Local Organization of Image Directions (LOID, see Section 4.1). The latter re-
late to the essential stitches of biomedical tissue, as well as to the texture primitives
and texton theory discussed in Sections 2.4 of Chapter 1 and 2.3 of Chapter 3. Two
adversarial categories of operators were analyzed in Section 4.2: directionally insen-
sitive versus sensitive (see Fig. 2.12). Designing texture operators that are able to
accurately characterize the LOIDs with robustness to rigid transformation was found
to be challenging. One the one hand, directionally insensitive operators are invariant
to rotations but are insensitive to image directions. On the other hand, directionally
sensitive operators can sense directions but are not invariant to rotations. In addition,
the e↵ect of aggregation using integrative functions kills the ability of unidirectional
operators to characterize the LOIDs even when the latter are all aligned to each other.
In Section 4.3, we provided evidence that using Moving Frame (MF) texture repre-
sentations consisting of locally aligning sets of non-collinear operators (see Eq. 2.5
and Fig. 2.14), allowed robust recognition of the LOIDs with invariance to rigid trans-
formations. A quantitative comparison of the classification performance of texture
classes with pronounced directional patterns and non-rigid transformations confirmed
the superiority of MF representations, but at the expense of a high computational com-
plexity when compared to much simpler directionally insensitive representations (see
Section 4.4).

Overall, this chapter introduced a new set of comparison dimensions between BTA
methods that is specific to biomedical imaging. The latter is further used in Chap-
ter 3 to perform a systematic qualitative comparison of most popular BTA methods,
which constitutes a user guide to assess the relevance of each approach for a particular
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with the mean signal value. By using just 
two sequences, a contrast-enhanced T1 
sequence and a fluid-attenuated inver-
sion-recovery sequence, we can define 
four habitats: high or low postgadolini-
um T1 divided into high or low fluid-at-
tenuated inversion recovery. When these 
voxel habitats are projected into the tu-
mor volume, we find they cluster into 
spatially distinct regions. These habitats 
can be evaluated both in terms of their 
relative contributions to the total tumor 
volume and in terms of their interactions 
with each other, based on the imaging 
characteristics at the interfaces between 
regions. Similar spatially explicit analysis 
can be performed with CT scans (Fig 5).

Analysis of spatial patterns in 
cross-sectional images will ultimately re-
quire methods that bridge spatial scales 
from microns to millimeters. One possi-
ble method is a general class of numeric 
tools that is already widely used in ter-
restrial and marine ecology research to 
link species occurrence or abundance 
with environmental parameters. Species 
distribution models (48–51) are used to 
gain ecologic and evolutionary insights 
and to predict distributions of species or 
morphs across landscapes, sometimes 
extrapolating in space and time. They 
can easily be used to link the environ-
mental selection forces in MR imaging-
defined habitats to the evolutionary dy-
namics of cancer cells.

Summary

Imaging can have an enormous role in 
the development and implementation of 
patient-specific therapies in cancer. The 
achievement of this goal will require new 
methods that expand and ultimately re-
place the current subjective qualitative 
assessments of tumor characteristics. 
The need for quantitative imaging has 
been clearly recognized by the National 
Cancer Institute and has resulted in for-
mation of the Quantitative Imaging Net-
work. A critical objective of this imaging 
consortium is to use objective, repro-
ducible, and quantitative feature metrics 
extracted from clinical images to develop 
patient-specific imaging-based prog-
nostic models and personalized cancer 
therapies.

rise to local-regional phenotypic adap-
tations. Phenotypic alterations can re-
sult from epigenetic, genetic, or chro-
mosomal rearrangements, and these in 
turn will affect prognosis and response 
to therapy. Changes in habitats or the 
relative abundance of specific ecologic 
communities over time and in response 
to therapy may be a valuable metric with 
which to measure treatment efficacy and 
emergence of resistant populations.

Emerging Strategies for Tumor Habitat 
Characterization

A method for converting images to spa-
tially explicit tumor habitats is shown in 
Figure 4. Here, three-dimensional MR 
imaging data sets from a glioblastoma 
are segmented. Each voxel in the tumor 
is defined by a scale that includes its 
image intensity in different sequences. 
In this case, the imaging sets are from 
(a) a contrast-enhanced T1 sequence, 
(b) a fast spin-echo T2 sequence, and 
(c) a fluid-attenuated inversion-recov-
ery (or FLAIR) sequence. Voxels in 
each sequence can be defined as high 
or low based on their value compared 

microenvironment can be rewarded by 
increased proliferation. This evolution-
ary dynamic may contribute to distinct 
differences between the tumor edges 
and the tumor cores, which frequently 
can be seen at analysis of cross-sec-
tional images (Fig 5).

Interpretation of the subsegmenta-
tion of tumors will require computa-
tional models to understand and predict 
the complex nonlinear dynamics that 
lead to heterogeneous combinations 
of radiographic features. We have ex-
ploited ecologic methods and models to 
investigate regional variations in cancer 
environmental and cellular properties 
that lead to specific imaging character-
istics. Conceptually, this approach as-
sumes that regional variations in tumors 
can be viewed as a coalition of distinct 
ecologic communities or habitats of cells 
in which the environment is governed, 
at least to first order, by variations in 
vascular density and blood flow. The 
environmental conditions that result 
from alterations in blood flow, such as 
hypoxia, acidosis, immune response, 
growth factors, and glucose, represent 
evolutionary selection forces that give 

Figure 4

Figure 4: Left: Contrast-enhanced T1 image from subject TCGA-02-0034 in The Cancer Genome 
Atlas–Glioblastoma Multiforme repository of MR volumes of glioblastoma multiforme cases. Right: Spatial 
distribution of MR imaging–defined habitats within the tumor. The blue region (low T1 postgadolinium, low 
fluid-attenuated inversion recovery) is particularly notable because it presumably represents a habitat with 
low blood flow but high cell density, indicating a population presumably adapted to hypoxic acidic conditions.
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quire methods that bridge spatial scales 
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link species occurrence or abundance 
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and to predict distributions of species or 
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tion of tumors will require computa-
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lead to heterogeneous combinations 
of radiographic features. We have ex-
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istics. Conceptually, this approach as-
sumes that regional variations in tumors 
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in which the environment is governed, 
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vascular density and blood flow. The 
environmental conditions that result 
from alterations in blood flow, such as 
hypoxia, acidosis, immune response, 
growth factors, and glucose, represent 
evolutionary selection forces that give 
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Figure 4: Left: Contrast-enhanced T1 image from subject TCGA-02-0034 in The Cancer Genome 
Atlas–Glioblastoma Multiforme repository of MR volumes of glioblastoma multiforme cases. Right: Spatial 
distribution of MR imaging–defined habitats within the tumor. The blue region (low T1 postgadolinium, low 
fluid-attenuated inversion recovery) is particularly notable because it presumably represents a habitat with 
low blood flow but high cell density, indicating a population presumably adapted to hypoxic acidic conditions.
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distribution of MR imaging–defined habitats within the tumor. The blue region (low T1 postgadolinium, low 
fluid-attenuated inversion recovery) is particularly notable because it presumably represents a habitat with 
low blood flow but high cell density, indicating a population presumably adapted to hypoxic acidic conditions.
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Figure 1.3 Image sampling of 3D texture functions (left: continuous f (x), left: discrete f (k)).
Most 3D bioimaging protocols have equal axial sampling steps, which differ from the depth
sampling step (i.e., �x1 = �x2 , �x3). This results in rectangular voxels.
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F

Figure 1.4 Sampled texture function f (k), k 2 Z2, �x1 = �x2, and its corresponding Fourier plane
f̂ (!), ! 2 R2. f̂ (!) cannot be measured when !1 > ⇡ and !2 > ⇡. ⇡ is the highest spatial fre-
quency measurable along the image axes k1,2, and it corresponds to transition rate between two
contiguous pixels.

ized Nyquist frequency and is denoted as ⇡ (see Fig. 1.4).

2.3. Texture functions as realizations of texture processes
Biomedical texture patterns results from stochastic biological processes, where ran-
domness results from the diversity of human biology and tissue development. There-
fore, it is important to clarify that observed texture functions f (x) are realizations of
spatial stochastic texture processes of various kind [51]. We define stochastic texture
processes of RD as

{Xm,m 2 RM1⇥···⇥MD},

where Xm, is the value at the position indexed by m. The values of Xm follow one
or several probability density function (PDF) fXm(q). Classical examples of such pro-
cesses are moving average Gaussian or pointwise Poisson (see Fig. 1.5), for which the
PDF is well defined. However, biomedical texture processes (e.g., lung fibrosis in CT,
see Fig. 1.5 right) are much less studied and described in the literature, because we
can only infer the PDF from sets of observation containing large variations caused by

averaging operators’ responses

importance of the LOIDs
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Fig. 5. 128 � 128 blocks from the 24 texture classes of the Outex database.
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Fig. 6. 16 Brodatz texture classes of the Contrib TC 00000 test suite.

180 � 180 images from rotation angles 20�, 70�, 90�, 120�,
135� and 150� of the other seven Brodatz images for each
class. The total number of images in the test set is 672.

G. Experimental setup
OVA SVM models using Gaussian kernels as K(xi, xj) =

exp(�||xi�xj ||2
2�2

k
) are used both to learn texture signatures and

to classify the texture instances in the final feature space
obtained after k iterations. A number of scales J = 6
was used to cover the whole spectrum of the 128 � 128
subimages in Outex and J = 3 for covering the spectrum of
16 � 16 subimages in Contrib TC 00000. The angle matrix
that maximizes the response of the texture signature at the
smallest scale �1(x) (see Eq. (11)) is used to steer Riesz
templates from all scales. The dimensionality of the initial
feature space is J(N + 1). Every texture signature �N

c,K is
computed using the texture instances from the training set.
The coefficients from all instances are rotated to locally align
each signature �N

c,K and are concatenated to constitute the final
feature space. The dimensionality of the final feature space is
J � (N + 1) � Nc. OVA SVM models are trained in this
final feature space using the training instances. The remaining
test instances obtained are used to evaluate the generalization
performance. All data processing was performed using MAT-
LAB R2012b (8.0.0.783) 64–bit (glnxa64), The MathWorks

Inc., 2012. The computational complexity is dominated by the
local orientation of �N

c in Eq. 11, which consists of finding the
roots of the polynomials defined by the steering matrix A�.
It is therefore NP–hard (Non–deterministic Polynomial–time
hard), where the order of the polynomials is controlled by the
order of the Riesz transform N .

III. RESULTS

The performance of our approach is demonstrated with
the Outex and the Brodatz databases. The performance of
texture classification is first investigated in Section III-A.
The evolution and the convergence of the texture signatures
�N

c,k through iterations k = 1, . . . , 10 is then studied in
Section III-B for the Outex TC 00010 test suite.

A. Rotation–covariant texture classification

The rotation–covariant properties of our approach are eval-
uated using Outex TC 00010, Outex TC 00012 and Con-
trib TC 00000 test suites. The classification performance
of the proposed approach after the initial iteration (k=1)
is compared with two other approaches that are based on
multiscale Riesz filterbanks. As a baseline, the classification
performance using the energy of the coefficients of the initial
Riesz templates was evaluated. Since the cardinality of the
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Figure 2.16 Quantitative comparison of isotropic, directional and MF representations for texture
classification. Whereas MF representations achieve best performance, isotropic texture opera-
tors allow close classification accuracies with a much lower computational complexity. Finally,
unaligned directional Riesz filters perform poorly because they lack rotation-invariance.

ture space. Isotropic representations (i.e., using Simoncelli wavelets only where Riesz
order L = 0) benefit from their invariance to rotation and achieve an honorable classi-
fication accuracy of 87.5% with a very simple approach and low computational com-
plexity. Best results are obtained by MF representations with an accuracy of 97.42%
for L = 4, which highlights the importance of the LOIDs in texture analysis. However,
when compared to isotropic operators, MFs involve a much higher computational cost
to locally estimate ✓m and align the Riesz frame accordingly. Therefore, the success of
MF representations will depend on how important the LOIDs are to characterize the
considered biomedical texture classes, which will set the threshold to invest the extra
computational cost required.
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regions M1, M2, M3 feature space distinct tumor habitats in lung CT

Figure 2.6: Influence of the size and localization of the region of interest M for ag-
gregating the feature maps using the average. Bottom center: each region Mi is repre-
sented by a point (e.g., “+”) in a feature space spanned by feature averages

�
⌘1,i, ⌘2,i

�
.

Whereas red and green regions are well separated and regrouped in the feature space,
averaging the feature maps over the entire image (blue region) yields texture features
that do not correspond to anything visually (see the blue diamond in the feature space).
Likewise, averaging texture properties over entire tumor regions including distinct
habitats will provide quantitative texture measures that do not correspond to anything
biologically [25, 10].

terns contained in a given ROI. Examples of such methods are superpixels [1], graph
cuts [6], or the Pott’s model [47]. An advantage of the Pott’s model is its ability to
handle multiple feature maps for segmenting the subregions and therefore can easily
run on the registered outputs of several operators. The aggregation function has itself
a strong influence on the specificity of the texture measures. In [10], Cirujeda et al.
showed that measurements based on the covariances of the operator’s responses pro-
vided a better characterization of texture properties in multi-component tumors when
compared to the average, thanks to their ability to quantify the point-wise co-activation
of the operators.

In a second example, the influence of the size of circular patch-based ROIs on
supervised texture segmentation is investigated (see Fig. 2.7). Linear Support Vec-
tor Machines (SVM) are trained from overlapping ROIs extracted from two unro-
tated instances of classes f1(x): “canvas002” and f2(x): “canvas003” of the Outex
database [37]. The responses of circularly symmetric Simoncelli wavelet frames (see
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· x0

G1,n + x0,1

G2,n + x0,2
Gn + x0

MR2

Figure 1.11: At a fixed position x0, texture functions f (x) are analyzed by local tex-
ture operators Gn with spatial supports Gn = G1,n ⇥ · · · ⇥GD,n, where Gn ⇢ RD. When
applied to all positions x0 2 RD, Gn yields response maps hn(x0) = Gn{ f }(x0), which
can be aggregated over a ROI M ⇢ RD to obtain a scalar-valued texture feature ⌘n.

age gradients along x1, co-occurrences, local binary patterns or circular frequencies).
Examples of response maps are shown in Figures 1.12 and 1.13. The properties of
popular texture operators are discussed and compared in Chapter 3. In the particular
case of linear operators, the application of the operator Gn to the image function f (x)
at a given position is a scalar product between f (x) and a function gn(x) with support
Gn (see Eq. 3.1 of Chapter 3). Applying a linear operator Gn to the input texture func-
tion f (x) by sliding the spatial support of its function over all positions x0 is called
convolution (see Eq. 3.2 of Chapter 3). Convolutional texture operators are discussed
in Section 2 of Chapter 3.

In order to extract collections of scalar measurements ⌘ = (⌘1, . . . , ⌘N) from N re-
sponse maps hn(x), an aggregation function is required to gather and summarize the
operators’ responses over a defined ROI domain M ⇢ RD (see Fig. 1.11). The values
of the vector ⌘ define coordinates of a texture instance in the feature space RN . In-
tegrative aggregation functions are commonly used to extract estimations of features
statistics (e.g., counts, means, covariances). For instance, the mean can estimate the
average responses of a given operator over M as

⌘ =

0
BBBBBBBBBB@

⌘1
...
⌘N

1
CCCCCCCCCCA
=

1
|M|

Z

M

⇣
hn(x)

⌘
n=1,...,N

dx, (1.5)

where |M| =
R

M dx is the area4 covered by M. Aggregation functions are not limited
to integral operations. For example, max

x2M

⇣
hn(x)

⌘
is an aggregation function used in

deep CNNs for the max-pooling of feature maps (see Section ?? of Chapter ??). It is

4or volume, hypervolume when D > 2.

Figure 2.17: Checklist matrix of essential theoretic foundations and practical conse-
quences in terms of choices of scales and directions for texture operator and aggrega-
tion function design.

medical or biological task in hand.
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16. Adrien Depeursinge, Zsuzsanna Püspöki, John-Paul Ward, and Michael Unser. Steerable wavelet
machines (SWM): Learning moving frames for texture classification. IEEE Transactions on Image
Processing, 26(4):1626–1636, 2017.

17. Adrien Depeursinge, Dimitri Van De Ville, Alexandra Platon, Antoine Geissbuhler, Pierre-Alexandre
Poletti, and Henning Müller. Near–a�ne–invariant texture learning for lung tissue analysis using
isotropic wavelet frames. IEEE Transactions on Information Technology in BioMedicine, 16(4):665–
675, July 2012.

18. Adrien Depeursinge, Alejandro Vargas, Alexandra Platon, Antoine Geissbuhler, Pierre-Alexandre
Poletti, and Henning Müller. Building a Reference Multimedia Database for Interstitial Lung Dis-
eases. Computerized Medical Imaging and Graphics, 36(3):227–238, apr 2012.

19. Adrien Depeursinge, Masahiro Yanagawa, Ann N Leung, and Daniel L Rubin. Predicting Adeno-
carcinoma Recurrence Using Computational Texture Models of Nodule Components in Lung CT.
Medical Physics, 42:2054–2063, 2015.

20. Yashin Dicente Cid, Henning Müller, Alexandra Platon, Jean-Paul Janssens, Lador Frédéric, Pierre-
Alexandre Poletti, and Adrien Depeursinge. A Lung Graph-Model for Pulmonary Hypertension and
Pulmonary Embolism Detection on DECT images. In MICCAI Workshop on Medical Computer
Vision: Algorithms for Big Data, MICCAI-MCV, 2016.

21. Yashin Dicente Cid, Henning Müller, Alexandra Platon, Pierre-Alexandre Poletti, and Adrien De-
peursinge. Locally-Oriented Wavelet Transforms for 3-D Solid Texture Classification. IEEE Trans-
actions on Image Processing, submitted.

22. Olivier D Faugeras. Cartan’s Moving Frame Method and Its Application to the Geometry and Evo-
lution of Curves in the Euclidean, A�ne and Projective Planes. Technical report, Institut National de
Recherche en Informatique et en Automatique (INRIA), 1993.

23. Mary M Galloway. Texture analysis using gray level run lengths. Computer Graphics and Image
Processing, 4(2):172–179, 1975.

24. Mehrdad J Gangeh, Ali Ghodsi, and Mohamed S Kamel. Dictionary Learning in Texture Classifica-



i
i

“main˙BTA” — 2017/10/4 — 18:47 — page 61 — #61 i
i

i
i

i
i

BIBLIOGRAPHY 61

tion. In Proceedings of the 8th international conference on Image analysis and recognition - Volume
Part I, pages 335–343, 2011.

25. Robert A Gatenby, Olya Grove, and Robert J Gillies. Quantitative Imaging in Cancer Evolution and
Ecology. Radiology, 269(1):8–14, 2013.

26. Paolo Gattuso, Vijaya B Reddy, Odile David, Daniel J Spitz, and Meryl H Haber. Di↵erential diag-
nosis in surgical pathology. Elsevier Health Sciences, 2009.

27. Diego Marcos Gonzalez, Michele Volpi, and Devis Tuia. Learning rotation invariant convolutional
filters for texture classification. CoRR, abs/1604.0, 2016.

28. Zhenhua Guo, Lei Zhang, and David Zhang. A Completed Modeling of Local Binary Pattern Op-
erator for Texture Classification. IEEE Transactions on Image Processing, 19(6):1657–1663, jun
2010.

29. Robert M Haralick. Statistical and Structural Approaches to Texture. Proceedings of the IEEE,
67(5):786–804, may 1979.

30. Anil K Jain and Kalle Karu. Learning texture discrimination masks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(2):195–205, feb 1996.

31. Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. A Sparse Texture Representation Using Local
A�ne Regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1265–1278,
aug 2005.

32. Kun Liu, Henrik Skibbe, Thorsten Schmidt, Thomas Blein, Klaus Palme, Thomas Brox, and Olaf
Ronneberger. Rotation-Invariant HOG Descriptors Using Fourier Analysis in Polar and Spherical
Coordinates. International Journal of Computer Vision, 106(3):342–364, 2014.

33. L Liu, S Lao, P W Fieguth, Y Guo, X Wang, and M Pietikinen. Median Robust Extended Local Binary
Pattern for Texture Classification. IEEE Transactions on Image Processing, 25(3):1368–1381, mar
2016.

34. D G Lowe. Object recognition from local scale invariant features. In Proceedings of the International
Conference of Computer Vision, Corfu, Greece, sep 1999.

35. David G Lowe. Distinctive Image Features from Scale–Invariant Keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

36. Julien Mairal, Francis Bach, J Ponce, Guillermo Sapiro, and Andrew Zisserman. Supervised dictio-
nary learning. Advances in Neural Information Processing Systems, pages 1033–1040, 2008.
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