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Abstract
This chapter aims to provide an overview of the foundations of texture processing for biomed-
ical image analysis. Its purpose is to define precisely what biomedical texture is, how is it
different from general texture information considered in computer vision, and what is the gen-
eral problem formulation to translate 2D and 3D textured patterns from biomedical images to
visually and biologically relevant measurements. First, a formal definition of biomedical tex-
ture information is proposed from both perceptual and mathematical point of views. Second,
a general problem formulation for biomedical texture analysis is introduced, considering that
any approach can be characterized as a set of local texture operators and regional aggre-
gation functions. The operators allow locally isolating desired texture information in terms of

c� Elsevier Ltd.
All rights reserved. 7



i
i

“main˙BTA” — 2017/10/4 — 18:47 — page 8 — #8 i
i

i
i

i
i

8 Biomedical Texture Analysis

spatial scales and directions of a texture image. The type of desirable operator invariances
are discussed, and are found to be different from photographic image analysis. Scalar-
valued texture measurements are obtained by aggregating operator’s response maps over
regions of interest.

Keywords: Quantitative image analysis, spatial stochastic process, texton, heterogeneity,
texture analysis.

1. Introduction
Everybody agrees that nobody agrees on the definition of texture information. Ac-
cording to the Oxford Dictionaries1 texture is defined as “the feel, appearance, or con-
sistency of a surface or a substance”. The context in which the word texture is used
is fundamental to attach unambiguous semantics to its meaning. It has been widely
used in extremely diverse domains to qualify the properties of images, food, materials
and even music. In the context of food and sometimes material sciences, character-
izing texture information often involves measuring the response of the matter subject
to forces such as shearing, cutting, compressing and chewing [63, 6]. Starting from
the early developmental months of newborn babies, tactile perception of textured sur-
faces is an important stage of the human brain development [59]. It is an essential step
to be successfully acquainted with the physical properties physical properties of the
surrounding environment [39]. To some extent, estimating the properties and diver-
sity of the latter without having to touch every surface can be e�ciently carried out
through vision. Human vision learns to recognize texture patterns through extensive
experimentation confronting visual and tactile perception of textured surfaces [71].
This provides hints on why human visual texture recognition performs much beyond
the use of low level descriptive terms such as coarse, edgy, directional, repetitive, and
random.

In the context of biomedical imaging, texture information relates to the micro- and
macro- structural properties of biomedical tissue. Radiologists, pathologists and bi-
ologists are trained to establish links between visual image patterns and underlying
cellular and molecular content of tissue samples [67]. Unfortunately, very large vari-
ations of this complex mapping occur, resulting in image interpretation errors with
potentially undesirable consequences [56, 68, 3]. These variations are partly due to
the diversity of human biology and anatomy as well as image acquisition protocols
and reconstruction, compounded by observer training. Important e↵orts were initi-

1https://en.oxforddictionaries.com/definition/texture, as of 10 October 2016.
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Fundamentals of Texture Processing for Biomedical Image Analysis 9

ated by medical imaging associations to construct unified terminologies and grading
scores in the context of radiology and histopathology, aiming to limit variations in im-
age interpretation and reporting [36, 37, 17, 24]. However, in the particular context
of biomedical texture information, the terms used (e.g., heterogeneous enhancement,
hypervascular [17]) are often as inadequate as low level descriptive terms of gen-
eral textures (e.g., coarse, edgy) while the perception of human observers is much
richer (see Sections 4.1 and 4.2 of Chapter 9). When considering three-dimensional
architectures of biomedical tissue, human observers have limited intuition of these 3D
solid textures, because they cannot be fully visualized [16]. Only virtual navigation in
Multi-Planar Rendering (MPR) and semi-transparent visualizations are made available
by computer graphics and allow observing 2D projections.

Computer-based quantitative image texture analysis has a tremendous potential to
reduce image interpretation errors and can make better use of the image content by
yielding exhaustive, comprehensive and reproducible analysis of imaging features in
two and three-dimensions [2, 35, 62]. Nevertheless, besides the lack of a clear defi-
nition of biomedical texture information, several challenges remain, such as: the lack
of an appropriate framework for multi-scale, multi-spectral analysis in 2D and 3D;
validation; and, translation to routine clinical applications. The goal of this book is to
illustrate the importance of these aspects and to propose concrete solutions for opti-
mal biomedical texture analysis. This chapter will first propose a definition of texture
in the particular context of biomedical imaging (Section 2). Second, a general theo-
retic framework for Biomedical Texture Analysis (BTA) will be proposed in Section 3.
The latter is designed to best leverage the specific properties of biomedical textures.
Di↵erences with the classical texture analysis paradigm in computer vision will be
highlighted. Important aspects of texture operator and aggregation function design
will be further discussed and illustrated through several concrete examples in Chap-
ter 2. It will also recapitulate key aspects of biomedical texture processes and analysis,
with an aim of raising awareness of limitations of popular texture operators used in the
biomedical literature while providing directions to design the next generation of BTA
approaches. Chapter 3 will use the comparison axes established in Chapters 1 and 2 to
compare most popular modern biomedical texture analysis approaches. With the pur-
pose of guiding neophyte or experienced users, a simple checklist is proposed to assess
the relevance of a the BTA approach in a particular medical or biological applicative
context.

2. Biomedical texture processes
This section proposes an extensive definition of biomedical texture information under
biological, medical, physical, statistical and mathematical viewpoints.
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10 Biomedical Texture Analysis

smooth rough

Figure 1.1: The two simulated tumors have identical distribution of the pixel’s val-
ues and cannot be di↵erentiated using intensity image measures only. They di↵er in
the spatial relationships between the pixels, which is specifically captured by image
texture analysis.

2.1. Image intensity versus image texture
Low-level quantitative image analysis (i.e., pixel-level2) can be separated into two
main categories: intensity and texture. Image intensity relates to the statistical distri-
bution of the pixel values inside a defined Region Of Interest (ROI). The pixel values
can be either normalized across images (e.g., Hounsfield Units (HU) in X-ray Com-
puted Tomography (CT), Standardized Uptake Values (SUV) in Positron Emission
Tomography (PET)), or unnormalized (e.g., Hematoxylin and Eosin (H&E) stains in
histopathology, Magnetic Resonance Imaging (MRI)). Classic quantitative measures
of image intensity are the four statistical moments of the pixel values’ distribution
(mean, variance, skewness and kurtosis). Other measures are specific to the consid-
ered imaging modality (e.g., SUV max or Total Lesion Glycolysis (TLG) in PET) [49].
The latter are extremely useful to characterize the image content, but cannot measure
the spatial relationships between pixel values (see Fig. 1.1). A qualitative keyword
such as tumor heterogeneity is ambiguous because it is unclear if the heterogeneity

2The word pixel is used to design both 2D and 3D (voxels) image samples.
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concerns pixel values (intensity) or their spatial organization (texture). It is though
commonly used to describe the visual aspect of tumors in radiological images with
ambivalent meaning [33, 12, 48].

The spatial relationships (i.e., the transitions) between pixel values are precisely
what texture information is encoding. Haidekker defined texture as “a systematic local
variation of image values” [26]. Petrou stated that “the most important characteristic
of texture is that it is scale dependent” and that “di↵erent types of texture are visible
at di↵erent scales” [51]. This highlights the importance of the variation speed or
slope or oscillation between pixel values, which will be di↵erent in smooth versus
rough textures (see Fig. 1.1 left and right). This first notion of texture scale relates
to the spatial frequencies in the image. The higher the spatial frequency, the finer the
scale of the transition between proximate pixel values. A second important notion is
the direction of the transition. These two notions of spatial scale and direction are
fundamental for visual texture discrimination (see Fig. 1.2) [64].

Blakemore et al. provided initial evidence that the human visual system possesses
neurons that are selectively sensitive to directional spatial frequencies [5], which has
been widely confirmed later on [45]. Most approaches proposed for computerized
texture analysis are leveraging these two properties either explicitely (e.g., Gray-Level
Co-occurrence Matrices (GLCM) [27], Gray-Level Run Length Matrices (GLRLM) [22],
Gray-Level Size Zone Matrices (GLSZM) [66], directional filterbanks and wavelets [7],
Histogram of Oriented Gradients (HOG) [40], Local Binary Patterns (LBP) [47], Scat-
tering Transforms (ST) [8, 60]) or implicitely (e.g., Convolutional Neural Networks
(CNN) [34, 57], Dictionary Learning (DL) [23, 42, 28]).

A natural mathematical tool to study directional spatial frequency components in
D-dimensional signals and images is the Fourier transform and is defined in Eq. (1.1).
It is straightforward to see that the Fourier transform for ! = 0 computes the mean of
the function, which is not considered as texture information since it relates the mean
intensity of the pixels in the image. For ||!|| > 0, the modulus of the Fourier transform
quantifies the magnitude of the transitions, where ||!|| is inversely proportional to the
scale and the orientation of the vector! defines the direction of the spatial frequencies.
The correspondence between texture images fi(x) and their Fourier transforms f̂i(!)
is illustrated in Fig. 1.2.

Another important notion of texture information relates to the order of the transi-
tion between the pixel values (i.e., the order of directional image derivatives). For in-
stance, first-order (gradient) transitions will characterize step-like transitions, whereas
second-order transitions (Hessian) describe local image curvature. For instance, mod-
eling these two types can identify various types of transitions either at the margin or
inside a tumor region [17, 10].
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Figure 1.2: Importance of image scales and directions to unequivocally describe tex-
ture functions f (x). The latter are e�ciently represented by the modulus of their dual
Fourier representation f̂ (!) in terms of their directional frequency components. ! = 0
corresponds to the centers of the images of the bottom row. f1 and f2 have identical
directional information but di↵er in image scales. f1, f3, and f4 have identical spatial
frequencies along x1, but di↵er in their frequency components along x2.

2.2. Notations and sampling
Throughout this section, images are defined on an unbounded continuum. This is
motivated by the fact that many physical phenomena are intrinsically continuous and
results in analog signals. Also, important mathematical operations arising in texture
analysis, including geometric transformations (e.g., shifts, rotations, scalings) and ran-
dom processes, are better defined in the continuous domain without boundaries. For
instance, a discrete rotation is defined as the approximation of its continuous domain
counterpart. Moreover, stationary random processes (see Section 2.3.1) are implicitly
defined over an unbounded domain, since any shifted process should be well-defined.
The design of algorithms then calls for the discretization of continuous images, to-
gether with their restrictions on bounded domains.

An image is modeled as a D-dimensional function of the variable x = (x1, . . . , xD) 2
RD, taking values f (x) 2 R. The Fourier transform of an integrable f (x) is noted
f̂ (!) 2 C and is defined as

f (x)
F

 ! f̂ (!) =
Z

RD
f (x) e�jh!,xidx, (1.1)

where h·, ·i denotes the scalar product.
As we said, in practice, images and their Fourier transforms have to be sampled

and restricted to bounded domains. We introduce now the notations that goes together
with these operations. In what follows, however, we rely mostly on the continuous
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Figure 1.3: Image sampling of 3D texture functions (left: continuous f (x), right: dis-
cretized f (⇠)). Most 3D bioimaging protocols have equal axial sampling steps, which
di↵er from the depth sampling step (�⇠1 = �⇠2 , �⇠3). This results in rectangular
voxels.

domain formulation. A D-dimensional discretized image function f of restricted do-
mains is noted as f (⇠) 2 R. Pixel positions ⇠ = (⇠1, . . . , ⇠D) are indexed by the vec-
tor k = (k1, . . . , kD), the sampling steps �⇠1, . . . ,�⇠D, and the dimension-wise o↵sets
c1, . . . , cD as

0
BBBBBBBBBB@

⇠1
...
⇠D

1
CCCCCCCCCCA
=

0
BBBBBBBBBB@

�⇠1 · k1
...

�⇠D · kD

1
CCCCCCCCCCA
�

0
BBBBBBBBBB@

c1
...

cD

1
CCCCCCCCCCA
, (1.2)

with ki 2 {1, . . . ,Ki}. The domain F ⇢ RD of f is F1 ⇥ · · · ⇥ FD with Fi = �⇠i · {1, . . . ,Ki} �

ci. Image sampling of 3D texture functions is illustrated in Fig. 1.3. The sampling
steps are most often varying between patients and dimensions. This needs to be taken
into account when designing texture operators and is further discussed in Section 3.2.

The discrete Fourier transform of f (⇠) is noted f̂ (⌫) 2 C and is defined as

f (⇠)
F

 ! f̂ (⌫) =
X

⇠2F
f (⇠) e�jh⌫,⇠i, (1.3)

with ⌫ = (⌫1, . . . , ⌫D) 2 ⌦ in the discrete Fourier domain. In the context of discrete
texture functions, the realization of the texture process is defined on the sampling
grid determined by the sampling step �xi. Therefore, the sharpest possible transi-
tion can only be measured on a minimal physical distance corresponding to �xi. As
a consequence, the maximum spatial frequency measurable along the image axes is
�⌫i = 1/�xi. The domain ⌫ ⇢ RD of f̂ is ⌦1 ⇥ · · · ⇥⌦D with ⌦i = {1, . . . ,Ki}/�xi (see
Fig. 1.4). The number of elements in ⌦ is the same as in F: |⌦| = |F|.

The discretization implies that sampled images are approximations of continuous
images. Moreover, for the sake of simplicity, although the domains F of image func-
tions are defined as bounded, the potential issues raising at the frontiers are not dis-
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Figure 1.4: Sampled texture function f (⇠), ⇠ 2 F, and its corresponding Fourier plane
f̂ (⌫), ⌫ 2 ⌦. The number of elements in⌦ is the same as in F: |⌦| = |F|. The sampling
steps {�⇠1,�⇠2} of the spatial domain are inversely proportional to the sampling steps
{�⌫1,�⌫2} of the Fourier domain: �⌫i = 1/�⇠i. Note that 0 need not lie on the grid for
the spatial image domain F.

cussed here. An hypothesis that all processing operations are happening far away
from the domain boundaries will be made. This will be particularly important when
discussing the stationarity of texture processes in Section 2.3.1, as well as texture op-
erators and their application to image functions in Section 3.1.

2.3. Texture functions as realizations of texture processes
Biomedical texture patterns are produced by stochastic biological processes, where
randomness results from the diversity of human biology and tissue development. There-
fore, it is important to clarify that observed texture functions f (x) are realizations of
spatial stochastic texture processes of various kind [58]. We define stochastic texture
processes of RD as

{X(x), x 2 RD
},

where X(x) is the value at the position indexed by x 2 RD. The values of X(x) follow
a Probability Density Function (PDF) pX(x)(q), where q is the value of the pixel at
the position x. Classical examples of such processes are moving average Gaussian or
pointwise Poisson (see Fig. 1.5), for which the probability laws are well controlled.
However, biomedical texture processes (e.g., lung fibrosis in CT, see Fig. 1.5 right)
are much less studied and described in the literature, because we can only fit a PDF
from sets of observation containing large variations caused by di↵erences in anatomy
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3

m � R128�128 m � R32�32 m � R84�84

moving average Gaussian
|F| = 128 ⇥ 128

pointwise Poisson
|F| = 32 ⇥ 32

biomedical: lung fibrosis in CT
|F| = 84 ⇥ 84

Figure 1.5: Discretized texture processes X(⇠) of F ⇢ R2 (see Section 2.2 for a def-
inition of F). PDFs of moving average Gaussian and pointwise Poisson are known,
which is never the case for biomedical texture processes (e.g., lung fibrosis in CT).

of individuals and imaging protocols.

2.3.1. Texture stationarity
A spatial stochastic process X(x) is stationary in the strict sense if it has the same
probability law than all its shifted versions X(x � x0) for any shift x0 2 RD. As a
consequence, the PDF pX(x)(q) = pX(q) does not depend on the position x anymore.

A discretized stochastic process inherits the stationary property by restricting to
discretized shifts. The stationarity is not well-defined at the boundary of the finite
domain F of discrete bounded image, but is still meaningful when we are far from the
boundaries. For instance, let us consider a patch of dimension 3 ⇥ 3 sliding over the
domain F while being fully included in F (no boundary conditions required). For any
position of the patch and for each of its nine elements, the statistics of its pixels values
will follow the same probability law. In images, texture processes may be piecewise-
stationary in a well-defined ROI. Realizations of homo- and heteroscedastic (therefore
non-stationary) moving average Gaussian processes are shown in Fig. 1.6.

Since the PDFs are not known in the context of biomedical texture processes, strict
stationarity must be relaxed to rather assess the similarity between local PDFs. Even
more generally, the notion of spatial stationarity of natural texture processes must be
redefined in terms of visual perception and/or tissue biology. It is important to note
that the notions of spatial stationarity and texture classes are not tightly bound, since
natural texture classes can be constituted by distinct texture processes (see Fig. 1.7).
Likewise, biomedical texture classes may be defined based on anatomical or disease
levels and can include several cells and tissue types. The image analysis task when
the textures processes of interest are stationary relate to texture classification. Texture
segmentation of ROIs is considered when the processes are piecewise-stationary.
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Figure 1.6: Texture stationarity illustrated with homo- (left) and heteroscedastic (cen-
ter) moving average Gaussian processes. The central image contains the realizations
of two texture processes that are piecewise-stationary over the blue or the red region.
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Fig. 3: Top: Texture mosaics. Bottom: Our method using � = 0.14, 0.13, 0.12, and 0.8, respectively. Our method segments the
left and the right image almost perfectly. Even on the challenging central images, the major structures are segmented well.

ages2. We observe that the differently textured regions are
nicely separated.

5. CONCLUSION

We have presented a novel approach to the segmentation of
textured images. We used feature vectors based on the am-
plitude of monogenic curvelets. For the segmentation of the
high-dimensional feature images, we used a fast computa-
tional strategy for the Potts model. Tests carried out on syn-
thetic texture images as well as on real color images show the
potential of our approach.
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Figure 1.7: Relaxed spatial stationarity of natural texture processes defined in terms
of visual perception and/or tissue biology. Left: The Outex texture class “can-
vas039” [46] consists of two distinct visual patterns. Right: Brain glioblastoma mul-
tiforme in an axial slice of gadolinium-injected T1-MRI includes both an enhancing
region and a necrotic core defining distinct subregions. In these two examples, the
textures are containing two clear distinct patterns that can be considered homogeneous
although not stationary in the strict sense.

2.4. Primitives and textons
As opposed to stochastic approaches, more deterministic methods for texture recog-
nition consider that homogeneous classes are constituted by sets of fundamental ele-
mentary units (i.e., building blocks) called texture primitives [52]. Examples of such
texture classes are shown in Fig. 1.8. The bottom row of Fig. 1.8 highlights the impor-
tance of the geometric relationships between primitives, where f1 and f2 di↵er only in
terms of the density and geometric transformations (e.g., local rotations) of the same
primitive. Occlusions are observed in the upper left texture of Fig. 1.8.

Most biomedical texture patterns are of stochastic nature and are constituted by
primitives that are neither well-defined, nor known in advance (see Fig. 1.10). A more
general definition of fundamental texture micro-structures was proposed by Julesz in
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� �

��

�

�

f1 f2

Figure 1.8: Top: various textures and their corresponding primitives or textons. Bot-
tom: importance of the spatial organization (e.g., density, local geometric transforma-
tions, occlusions) of the primitives.

1981, who coined the word texton [32]. This was one of the earliest texture per-
ception studies of human vision, which laid down the fundamentals of preattentive
vision [30, 32, 31, 29, 4]. The concept of texture being e↵ortlessly or preattentively
discriminable, i.e., the spontaneous perception of texture variations without focused
attention, is illustrated in Fig. 1.9 (a), where the left side area is considered preat-
tentively discriminable while the right side is not and can only be distinguished after
careful visual analysis. Similarly, for Fig. 1.9 (b), the inner square is easily discerned
from the outer square. Julesz attributed this to the order of image statistics of tex-
ture patterns. Textures having equal second order statistics in the form of identical
joint distribution of grey level pairs, tend to not be preattentively discriminable. An
example of this focused attention is the case between the L-shaped background and
the T-shaped right region of Fig 1.9 (a). This is known as Julesz conjecture, which
he and his colleagues refuted afterwards using carefully constructed textures having
equal second order and di↵erent third and higher order statistics [29]. Nevertheless,
this conjecture gave a better understanding of texture perception which led to the pro-
posal of the texton theory. The theory states that texture discrimination is achieved
by its primitive or fundamental elements, named textons [32, 31] or sometimes called
texels (stands for texture elements) [27]. Several approaches were proposed to derive
collections of textons from texture images using texture operators [73, 69] (e.g., Gabor,
Laplacians of Gaussians, see Section 2.2 of Chapter 3), or directly from pixel values
spatial organization in local neighborhoods [23, 61, 42] (e.g., dictionary learning, see
Section 2.3 of Chapter 3)).

Understanding the types of primitives and textons, as well as their (local) spatial
organization in biomedical texture classes is of primary importance to e�ciently de-
sign BTA approaches and in particular texture operators. This is further discussed in
Section 3 as well as in Chapters 2 and 3.
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(a) (b)
Figure 1.9: An example of preattentive discrimination [15]. (a) texture composed of
two regions: left +-shaped textons are preattentively (i.e., e↵ortlessly) distinguishable
against L-shaped textons, while in the right the T-shaped textons needs focused atten-
tion (i.e., using long-term memory). (b) texture composed of line segments where the
di↵erence in orientations segregates preattentively the middle region from the outer
region.

2.5. Biomedical image modalities
When compared to the broad research field of computer vision, analyzing texture in
biomedical images can rely on highly specific properties of the latter. In particular,
most biomedical imaging modalities rely on controlled acquisition protocols allowing
the standardization of fundamental image properties such as pixel/voxel size and in-
tensity, as well as image orientation and sample/patient position [20]. The setting is
therefore fundamentally di↵erent from general computer vision based on photographic
imagery resulting from scene captures obtained with varying viewpoints. The proper-
ties of most common biomedical imaging protocols are listed in Table 1.1. Imaging
protocols with unknown or inaccurate physical size of pixels are rare but exist. Exam-
ples of the latter are scanned film-based X-ray radiographs (obsolete), digital photog-
raphy for dermatology and ophthalmology, and endoscopic videos (see Section 3 of
Chapter 11).
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tissue in HRCT data with optimized SVMs. Lung tissue texture classification
using co-occurence matrices, Gabor filters and Tamura texture features was in-
vestigated in [15]. The classification of regions of interest (ROIs) delineated by
the user consitutes the intial steps towards automatic detection of abnormal lung
tissue patterns in the whole HRCT volume.

2 Methods

The dataset used is part of an internal multimedia database of ILD cases con-
taining HRCT images with annotated ROIs created in the Talisman project1.
843 ROIs from healthy and five pathologic lung tissue patterns are selected for
training and testing the classifiers selecting classes with su�ciently high repre-
sentation (see Table 1).

The wavelet frame decompositions with dyadic and quincunx subsampling
are implemented in Java [11, 16] as well as optimization of SVMs. The basic
implementation of the SVMs is taken from the open source Java library Weka2.

Table 1. Visual aspect and distribution of the ROIs per class of lung tissue pattern.

visual
aspect

class healthy emphysema ground glass fibrosis micronodules macronodules

# of ROIs 113 93 148 312 155 22
# of patients 11 6 14 28 5 5

3 Results

3.1 Isotropic Polyharmonic B–Spline Wavelets

As mentioned in Section 1.1, isotropic analysis is preferable for lung texture
characterization. The Laplacian operator plays an important role in image pro-
cessing and is clearly isotropic. Indeed, � = �2

�x2
1

+ �2

�x2
2
, is rotationally invariant.

The polyharmonic B–spline wavelets implement a multiscale smoothed version
of the Laplacian [16]. This wavelet, at the first decomposition level, can be char-
acterized as

��(D�1x) = �
�
2 {�} (x), (1)

1 TALISMAN: Texture Analysis of Lung ImageS for Medical diagnostic AssistaNce,
http://www.sim.hcuge.ch/medgift/01 Talisman EN.htm

2 http://www.cs.waikato.ac.nz/ml/weka/

2-D lung tissue in CT images 
[Depeursinge2012a]

3-D normal and osteoporotic bone in    CT [Dumas2009]

healthy emphysema ground glass honeycombing micronodules

Isodensity visualization of 3D trabeculae bone microarchitecture.

Figure 1.10: 2D and 3D biomedical textures are mainly stochastic and do neither have
known nor well-defined primitives. Top: normal and altered 2D lung parenchyma
from interstitial lung diseases in axial high-resolution CT [14]. Bottom: 3D bone
microarchitecture of normal and osteoporotic trabeculae (blue) in micro CT [21].

3. Biomedical Texture Analysis (BTA)
In this section, a general theoretic framework for D-dimensional texture analysis is in-
troduced. The latter leverages the specific properties of biomedical texture processes
and functions defined in Section 2. A general formulation of texture operators and ag-
gregation functions is introduced in Section 3.1. Popular texture analysis approaches
are exemplified as particular cases of operators and aggregation functions. The im-
portance of inter-patient and inter-dimension scale normalization, as well as operator
robustness to rigid transformations is highlighted in Sections 3.2 and 3.3. Funda-
mental limitations, current approaches and future directions of multi-scale and multi-
directional image analysis are further discussed in Sections 3 and 4 of Chapter 2, re-
spectively. The operators and aggregation functions of most popular BTA approaches
are described and qualitatively compared in Chapter 3.
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Table 1.1: Typical specifications of common biomedical imaging modalities.

modality
signal

measured
dimensionality

image
dimensions

physical dimensions of
pixels/voxels image type

40⇥ digital
histopathology

light
absorption 2D color ⇡ 50, 0002 �x1,�x2: ⇡ 0.275µm. structural

digital
radiography

X-ray
absorption 2D grayscale ⇡ 20482 �x1,�x2: ⇡ 0.1mm. structural

MRI
nuclear

magnetic
resonance

3D grayscale ⇡ 5123
�x1,�x2: 0.5-1mm,

�x3: 0.5-5mm.
structural

CT
X-ray

absorption 3D grayscale ⇡ 5123
�x1,�x2: 0.5-1mm,

�x3: 0.5-5mm.
structural

3–D US
acoustic
reflection 3D grayscale ⇡ 2563 �x1,�x2,�x3: 0.5-1mm. structural

µCT
X-ray

absorption 3D grayscale ⇡ 5123 �x1,�x2,�x3: ⇡ 1µm. structural

PET
�-rays emitted
indirectly by a

radiotracer
3D grayscale ⇡ 2563 �x1,�x2,�x3: 2-5mm. functional

OCT
optical

scattering 3D grayscale ⇡ 10242
⇥ 256 �x1,�x2,�x3: < 10µm. structural

3.1. Texture operators and aggregation functions
Without any loss of generality, we propose to consider that every D-dimensional tex-
ture analysis approach can be characterized by a set of N local operators Gn and
their corresponding spatial supports Gn ⇢ RD, assumed to be bounded. The value
Gn{ f }(x0) 2 R corresponds to the application of the operator Gn to the image f at lo-
cation x0. Gn is local in the sense that Gn{ f }(x0) only depends on the values of f on
the shifted spatial support Gn + x0 (see Fig. 1.11 for an illustration in 2D).

The operator Gn is typically applied to the input texture function f (x) by sliding
the spatial support of its function over all positions x0 in RD. This yields response
maps3 hn(x0) as

hn(x0) = Gn{ f }(x0). (1.4)

The structure of the output space of the operator will depend on the desired properties
and invariances of operators [53]. The operator Gn can be linear (e.g., linear filter) or
non-linear (e.g., max, linear filter combined with a rectifier in CNNs, GLCMs, LBPs).
Accordingly, the response maps hn can highlight desired properties of the input tex-
ture function (e.g., spatial scales corresponding to a well defined frequency band, im-

3They are commonly called feature maps in CNNs.
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· x0

G1,n + x0,1

G2,n + x0,2
Gn + x0

MR2

Figure 1.11: At a fixed position x0, texture functions f (x) are analyzed by local tex-
ture operators Gn with spatial supports Gn = G1,n ⇥ · · · ⇥GD,n, where Gn ⇢ RD. When
applied to all positions x0 2 RD, Gn yields response maps hn(x0) = Gn{ f }(x0), which
can be aggregated over a ROI M ⇢ RD to obtain a scalar-valued texture feature ⌘n.

age gradients along x1, co-occurrences, local binary patterns or circular frequencies).
Examples of response maps are shown in Figures 1.12 and 1.13. The properties of
popular texture operators are discussed and compared in Chapter 3. In the particular
case of linear operators, the application of the operator Gn to the image function f (x)
at a given position is a scalar product between f (x) and a function gn(x) with support
Gn (see Eq. 3.2 of Chapter 3). Applying a linear operator Gn to the input texture func-
tion f (x) by sliding the spatial support of its function over all positions x0 is called
convolution (see Eq. 3.1 of Chapter 3). Convolutional texture operators are discussed
in Section 2 of Chapter 3.

In order to extract collections of scalar measurements ⌘ = (⌘1, . . . , ⌘N) from N re-
sponse maps hn(x), an aggregation function is required to gather and summarize the
operators’ responses over a defined ROI domain M ⇢ RD (see Fig. 1.11). The values
of the vector ⌘ define coordinates of a texture instance in the feature space RN . In-
tegrative aggregation functions are commonly used to extract estimations of features
statistics (e.g., counts, means, covariances). For instance, the mean can estimate the
average responses of a given operator over M as

⌘ =

0
BBBBBBBBBB@

⌘1
...
⌘N

1
CCCCCCCCCCA
=

1
|M|

Z

M

⇣
hn(x)

⌘
n=1,...,N

dx, (1.5)

where |M| =
R

M dx is the area4 covered by M. Aggregation functions are not limited
to integral operations. For example, max

x2M

⇣
hn(x)

⌘
is an aggregation function used in

deep CNNs for the max-pooling of feature maps (see Section 2.4.1 of Chapter 4). It is

4or volume, hypervolume when D > 2.
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worth noting that the aggregation operation can itself be seen as an operator applied to
the feature maps hn(x). However, it di↵ers from the definition introduced in Eq. (1.4)
as it relies on irregular spatial supports defined by M, which are not slid over the entire
image domain.

Examples of simple convolutional texture operators, response maps and aggrega-
tion functions are shown in Fig. 1.12 (multi-scale circularly symmetric operators) and
Fig. 1.13 (directional operators). Both figures show that specific operator design allow
highlighting desirable or discriminatory texture properties (e.g., scale, directionality).
However, it appears clearly in Fig. 1.10 that the properties of biomedical textures are
very subtle and have big intra-class variations. To some extent, the latter type of vari-
ation is due to local rigid transformations of the structures (e.g., a local rotation of a
vessel or bronchus following the anatomy of lung lobes). In order to limit the impact
of these variations on the performance of BTA algorithms, we will define more pre-
cisely the kind of texture transformations that can be expected, as well as strategies to
make BTA approaches more robust to them. In particular, the characteristics of texture
normalization and operator invariances is introduced in Sections 3.2 and 3.3, respec-
tively. Operator invariances are further discussed in Chapter 7. The management of
intra- and inter-class complexity observed in the hyperspaces spanned by aggregated
responses of the operators (texture features ⌘) is developed in Chapter 6.

Designing sets of texture operators that are able to accurately identify tissue type,
function, genomics or response to treatment while accounting for intra-class variation
is a very challenging task. How to design such operators? In the rare case where
class-specific texture primitives are known, the ideal set of operators would be detec-
tors of those primitives (e.g., detectors of crosses, coins, or collagen junctions for the
textures shown in Fig. 1.8), where aggregation functions would count the occurrences
of the primitives to quantify their density. Knowing texture primitives is rare in prac-
tice and more general approaches for operator design are required. The most general
strategy for operator design relies on understanding and/or characterizing the whole
span of possible texture functions and, within this span, identifying most important
combinations of image scales and directions with discriminative capabilities for each
considered tissue class in the specific BTA task in hand. This can be done by exhaus-
tively parceling the Fourier domain by groups of spatial frequencies and their direc-
tions (see Section 2.1 and Section 2.2 of Chapter 3). However, the exhaustive analysis
of spatial scales and directions is computationally expensive for discrete texture func-
tions f (⇠) with densely sampled domains F1 ⇥ · · · ⇥ FD and choices are required (see
Chapter 2). Making such choices has been studied in the literature by following essen-
tially two opposing strategies: feature handcrafting versus feature learning. Feature
handcrafting requires defining strong assumptions on expected discriminative types
of image scales, directions and transitions. Classical examples of handcrafted tex-
ture operators are circularly/spherically symmetric or directional Gabor wavelets [1],
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Figure 1.12: 2D texture functions f1 and f2 (synthetic tumors) are analyzed with a
collection of convolutional circularly symmetric texture operators {G1,G2,G3} with
functions {g1, g2, g3}. The latter are 2D Laplacians of Gaussians (LoG, see Section 2.1
of Chapter 3) at di↵erent scales and have di↵erent spatial supports G1,n ⇥G2,n. The
resulting response maps h fi

n are revealing distinct properties of both the core and the
margin of the tumors. In particular, h f2

1 (x) highlights the core texture of f2. This
is verified when averaging the response maps5 over the core region Mcore to obtain
scalar measurements ⌘n, where ⌘ f1

1 < ⌘
f2
1 . Likewise, h f2

1 (x) highlights the margin of the
tumor in f2, where ⌘ f1

1 < ⌘
f2
1 . The texture scales captured by g2 and g3 are too large

and do not discriminate well between f1 and f2, neither for the core nor for the margin
of the tumors.

5The average of the absolute values of hfi
n (x) is computed since LoGs are band-pass functions in the

Fourier domain and have zero mean.
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malizing the operators’ outputs over the instances. Rotation–
covariant LBPs are obtained by using “uniform” circular pixels
sequences that are rotation–invariant [39]. Rotation–covariant
SIFT (i.e., RIFT [31]) measures HOG orientations relatively
to the local dominant gradient orientation. However, the ex-
traction of both uniform sequences and HOG are exhaustive
and do not specifically model discriminative patterns. They
also require arbitrary choices of the radius of the circular
neighborhoods. Rotation covariance using steerable filters has
also been proposed [8, 12]. In previous work, we locally
aligned the first template of steerable Riesz wavelets to obtain
rotation–covariant texture features [8]. Such a template models
N th–order directional derivatives and has a strong angular
selectivity. A limitation of this approach is that this template
does not model the local organization of the directions as it
only seeks the one prevailing.

Several researchers proposed to learn filters from data, aim-
ing at modeling local organizations of scales and directions [9,
17, 40, 44, 46, 48, 54], but few of them are coupled with a
rotation–covariant framework. In this work, we propose iter-
ative rotation–covariant texture learning using steerable Riesz
wavelets as an effective way of exploiting local organizations
of scales and directions of visual patterns. In a first step,
optimally discriminative texture signatures (i.e., in the sense of
structural risk minimization [59]) are built from the data. N th
order Riesz filterbanks constitute texture dictionaries, from
which the richness and angular selectivity is controlled by
the order N of the transform. Optimal linear combinations
of the multiscale Riesz templates are obtained using support
vector machines (SVM) for a given one–versus–all (OVA)
classification task, which does not make assumptions on scales
and directions. Class–wise texture signatures are obtained,
allowing for visual assessment of the learned texture patterns.
In a second step, the orientations of the learned signatures
are locally oriented to maximize their response, which can be
obtained analytically as a linear combination of the initial co-
efficients. Starting from the coefficients of the locally oriented
signatures, the whole procedure is repeated iteratively until
convergence of the texture signatures.

II. MATERIAL AND METHODS

Our approach for iterative rotation–covariant texture learn-
ing using steerable Riesz wavelets is described in this section.
The Riesz transform and associated filterbanks are explained
in Section II-B. The iterative texture learning framework and
the validation scheme used to evaluate it are described in
Sections II-C–II-D and II-F–II-G respectively.

A. Notations
A generic d–dimensional signal f indexed by the

continuous–domain space variable x = (x1, . . . , xd) � Rd

is considered. The d–dimensional Fourier transform of f is
noted as:

f(x)
F�� f̂(�) =

�

Rd

f(x)e�j��,x�dx1 . . . dxd,

with � = (�1, . . . , �d) � Rd.

N = 1 G � R(0,1) G � R(1,0)

N = 2 G � R(0,2) G � R(1,1) G � R(2,0)

N = 3 G � R(0,3) G � R(1,2) G � R(2,1) G � R(3,0)

Fig. 1. Templates corresponding to the Riesz kernels convolved with a
Gaussian smoother for N=1,2,3.

B. Steerable Riesz filterbanks
The Riesz transform is a multidimensional extension of the

Hilbert transform, which maps any function f(x) to its har-
monic conjugate and is a very powerful tool for mathematical
manipulations of periodic signals [52]. For a 2–D signal f(x),
the N +1 components of the N th–order Riesz transform RN

are defined as:

RN {f} (x) =

�

�������

R(0,N) {f} (x)
...

R(n,N�n) {f} (x)
...

R(N,0) {f} (x)

�

�������
, (1)

with n = 0, 1, . . . , N . A singular kernel R(n,N�n) {f} (x) is
defined in the Fourier domain as:

R(n,N�n) {f} (x)
F�� ¤�R(n,N�n) {f}(�),

where

¤�R(n,N�n) {f}(�) =

�
N

n!(N � n)!

(�j�1)n(�j�2)N�n

||�||N f̂(�),

(2)

with �1,2 corresponding to the frequencies along the two im-
age axes x1,2. The multiplication with j�1,2 in the numerator
corresponds to partial derivatives of f and the division by
the norm of � in the denominator makes that only phase
information is retained. Therefore, RN yields allpass1 filter-
banks with directional (singular) kernels R(n,N�n) [56]. The
Riesz transform commutes with translation, scaling or rota-
tion. The orientation of the Riesz components is determined
by the partial derivatives in Eq. (2). The first–order Riesz
transform corresponds to a phase–only gradient. The higher–
order versions as specified in (2) are obtained by regrouping
the 2N Riesz filters into N +1 components by commutativity
of convolution (e.g., �2/�x�y is equivalent to �2/�y�x). The
Riesz kernels R(n,N�n) convolved with Gaussian kernels for
N=1,2,3 are depicted in Fig. 1.

The Riesz filterbanks are steerable [15, 56], which means
that the local response of each component R(n,N�n) of an
image f(x) rotated by an arbitrary angle � can be derived

1Except for the DC component.
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The Riesz filterbanks are steerable [15, 56], which means
that the local response of each component R(n,N�n) of an
image f(x) rotated by an arbitrary angle � can be derived

1Except for the DC component.

f (x)

h f
1 (x)

h f
2 (x)

g1(x)

g2(x)

Figure 1.13: Directional response maps of scaled gradient operators along horizontal
and vertical axes.

GLCMs [27], HOG [40], LBPs [47], and the ST [8]. Examples of such choices are
depicted in Fig. 1.14. Making these choices (i.e., feature handcrafting) raises two is-
sues: How much information is missed or mixed in between two sampled directions or
frequency bands? And, among the chosen image scales and directions, which ones are
useful for texture discrimination? To address both issues, feature learning approaches
relying on either supervised or unsupervised machine learning have recently been pro-
posed to identify context-specific intended texture properties from data. Unsupervised
approaches do not require labeled data to design image features and characterize im-
age textons. Notable examples are Principal Component Analysis (PCA) [70], Bags
of Visual Words (BoVW) [61] and unsupervised DL [23]. However, although the
learned texture operators are data-driven, nothing guarantees that the latter are useful
for discriminating a desired texture class from the background or from other types.
To overcome this limitation, supervised feature learning approaches can design image
features based on a set of labeled data and learning rules. Noteworthy examples are
supervised DL [42], learned wavelets [14, 15, 54], and deep CNNs [43, 34]. They are
presented in Section 2.3 of Chapter 3. Deep CNNs for texture analysis are thoroughly
discussed in Chapters 4, 9 and 10.

The importance of image normalization and operator invariances has already been
mentioned in the previous sections and warrants further clarification. They are dis-
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of order �1/2 (an isotropic smoothing operator) of f : Rf =
����1/2f . Let’s indeed recall the Fourier-domain definition of
these operators: � F�� j� and ��1/2 F�� ||�||�1. Unlike the
usual gradient �, the Riesz transform is self-reversible

�R�Rf(�) =
(j�)�(j�)

||�||2 f̂(�) = f̂(�).

This allows us to define a self-invertible wavelet frame of L2(R3)
(tight frame). We however see that there exists a singularity for the
frequency (0, 0, 0). This issue will be fixed later, thanks to the van-
ishing moments of the primary wavelet transform.

2.2. Steerability

The interpretation of the Riesz transform as being a directional
derivative filterbank makes its steerability easy to understand: it
behaves similarly to a steerable gradient filterbank, with the added
crucial property of perfect reconstruction. We parameterize any ro-
tation in 3D with a real and unique 3 by 3 matrix U which is unitary
(UT U = I). Let us consider the Fourier transform of the impulse
response of the Riesz transform after a rotation by U as

�R{�}(Ux)(�) = �j
U�

||U�|| = U

�
�j

�
||�||

�
= U �R{�}(x)(�),

with � the Dirac distribution. The rotated Riesz transform of f there-
fore corresponds to the multiplication by U of the non-rotated Riesz
coefficients

RUf(x) = URf(x), (2)

which demonstrates the 3D steerability of the Riesz transform.

2.3. Riesz-Wavelet Pyramid

One crucial property of the Riesz transform is its ability to map any
frame of L2(R3) (in particular wavelet frames) into L2(R3) since it
preserves the inner product of L2(R3) [3, 4]. Following the previous
Riesz-wavelet constructions [3, 4], we propose to apply the 3D Riesz
transform to the coefficients of a wavelet pyramid to build a steerable
wavelet transform in 3D.

2.3.1. Primary Wavelet pyramid

A primary isotropic wavelet pyramid is required in order to pre-
serve the relevance of the directional analysis performed by the Riesz
transform. Moreover, the bandlimitedness of the wavelet bands must
be enforced to ensure the isotropy of the primary wavelet together
with the possibility of down-sampling [1, 8]. A conventional or-
thogonal and separable wavelet transform fulfills none of these con-
ditions. In [3], a 2D spline-based wavelet transform was used as
the primary transform. However, while low-order spline wavelets
are fast to compute, they are not truly isotropic. We thus propose
instead a 3D non-separable wavelet with an isotropic wavelet func-
tion, as done in 2D in [2]. To achieve bandlimitedness of the wavelet
bands it is more convenient to design the wavelet transform directly
in the 3D Fourier domain. Moreover, the isotropy constraint im-
poses a purely radial wavelet function (i.e., it depends on ||�|| and
not on the individual frequency components �i in the Fourier do-
main). Among all possible wavelet functions, two are of particular
interest: the Shannon’s wavelet

�̂sha(�) =

�
1, �

2 � ||�|| � �
0, otherwise

Fig. 1. Frequency tiling with the Shannon’s wavelet. Each wavelet
scale is obtained by a bandpass filter of support [�/2k+1, �/2k]. The
space-domain subsampling operations, which restrict the frequency
plane to the support of each wavelet function, are shown with boxes.

� �

(a) Filterbank implementation of the isotropic wavelet transform. A cas-
cade of low-pass filters (Li(�)) and high-pass filters (H0(�) and B(�))
is applied. The filterbank is self-reversible.

(b) Self-reversible Riesz-wavelet filterbank.

Fig. 2. The Riesz-wavelet transform filterbank implementation.

and the Simoncelli’s wavelet used for the 2D steerable pyramid

�̂sim(�) =

�
cos

�
�
2 log2

�
2||�||

�

��
, �

4 < ||�|| � �

0, otherwise.

The Shannon’s wavelet function is a radial step function which corre-
sponds to the frequency-domain tiling shown in Fig. 1. This wavelet
transform decomposes the signal spectrum with isotropic and non-
overlapping tiles. Using the Simoncelli’s wavelet function would re-
sult in a smooth frequency partitioning with overlapping tiles, which
is less prone to reconstruction artifacts after coefficient processing.
The decomposition shown in Figure 1 can be efficiently achieved
by a succession of filtering and downsampling operations, the high-
pass coefficient remaining non-subsampled to alleviate aliasing, as
opposed to the orthogonal wavelet transform. The wavelet decom-
position cascade is illustrated in Figure 2(a).

2.3.2. Riesz-Wavelet Pyramid

We build a Riesz-wavelet frame by applying the Riesz transform to
each scale of the isotropic pyramid defined by the wavelet function
and its dual {�, �̃}. The continuous version of the Riesz-wavelet
transform prior subsampling is

qk(x) = R{�k � f}(x)

2133

||�k||=1 (�k1=1,�k2=0) ||�k||=2 (�k1=2,�k2=0) ||�k||=2
p

2 (�k1=2,�k2=2)

k1

k2

⌫1

⌫2

ĝsha,i

⇡⇡
2i

⌦

Figure 1.14: Popular choices of image scales and directions for handcrafted texture
operator design. Top: popular 2D and 3D regular sampling of image directions along
image axes and diagonals used in GLCMs, RLE, and HOG [16]. Bottom left: 2D sam-
pling of image scales and directions for computing GLCMs. Bottom right: systematic
sampling of the Fourier domain ⌦ into dyadic bands i with 2D Shannon circularly
symmetric wavelets ĝsha,i

�
||⌫||

�
[9, 50].

cussed in Sections 3.2 and 3.3.

3.2. Normalization
Image normalization ensures optimal comparisons across data acquisition methods
and texture instances. The normalization of pixel values (intensity) is recommended
for imaging modalities that do not correspond to absolute physical quantities. Various
advanced strategies have been proposed to normalize values and are often modality-
specific (e.g., MRI [11], histopathology [41]). Examples of pixel value normalization
can be found in Section 2.1 of Chapter 10, and Section 2.4 of Chapter 11. The normal-
ization of image sampling steps �⇠d (d = 1, . . . ,D) across subjects and dimensions is
crucial to ensure accurate comparisons between scales and directions, which is illus-
trated in Fig. 1.15. Image resampling6 with identical sampling steps both across image
series and image dimensions can be used to normalize image scales and directions.
Resampling can be carried out either on the image itself, or on the texture operator.
In both cases, care must be taken on the transfer function of the resampling strategy,
which can have an important influence on texture properties [65]. Examples of image

6Classic resampling strategies can be used (e.g., nearest neighbor, multilinear, multicubic).
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F1 F2 ⌦2⌦1

 !
F

�⇡ 0 ⇡

0

�⇡

f̂1(⌫)f1(⇠)

�⇠1 = �⇠2 = 0.4mm

 !
F

�⇡ 0 ⇡

0

�⇡

f̂2(⌫)f2(⇠)

�⇠1 = �⇠2 = 1.6mm

GLCM operator

||�k||=1 (�k1=1,�k2=0 )
�k1�⇠1=0.4mm
�k1�⇠1=1.6mm

�⇠1�⇠2

�⇠3

�⇠
0

1�⇠
0

2
�⇠
0

3

Figure 1.15: Importance of image sampling normalization across image series and im-
age dimensions. Top row: sampling steps {�⇠1,�⇠2} are four times smaller in the left
image than in the center one. This results in a dilated distribution of spatial frequen-
cies in [�⇡, ⇡] in the Fourier domain (the moduli of f̂i(⌫) are displayed), because the
normalized Nyquist frequencies ⇡ are not obtained with the same normalization. It
is worth noting that |F1| = 42

· |F2|. Likewise, a GLCM operator parameterized by a
horizontal displacement of one pixel (||�k||=1) corresponds to a physical displacement
of either 0.4mm or 1.6mm. Image resampling with a fixed step defined in physical di-
mensions (e.g., �⇠1=�⇠2=0.4mm) is required to normalize scales across image series.
Bottom row: image resampling across dimensions {�⇠1,�⇠2,�⇠3}) {�⇠01,�⇠

0

2,�⇠
0

3}

to obtain cubic voxels and to ensure an isotropic description of image directions.

resampling for spatial normalization can be found in Section 2.4.1 of Chapter 12, as
well as in Sections 4.2.2 and 5.2 of Chapter 4.

3.3. Invariances
An operator or a measurement is invariant if its response is insensitive to the trans-
formation of the input image. When the output of the operator is a↵ected by the
transformation in the same way the input is, we say that it is equivariant.

Invariances of the final texture measures ⌘ are required to provide robust recogni-
tion of all intra-class variants, while preserving inter-class variations (see also Chap-
ter 6 for a machine learning perspective of the problem). Whereas the sources of
intra-class variations can be extremely diverse in the context of biomedical tissue
(e.g., imaging protocol, subject age, genetics, history), an important subcategory is
related to geometric transformations of the tissue architecture. Examples of the e↵ect
of such transformations on texture functions are depicted in Fig. 1.16. Assumptions
on types of geometric transformations expected in biomedical images are di↵erent
from those expected in photographic images, because the well-controlled acquisition
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protocols have little viewpoint variations and allow to control the physical size of pix-
els (see Section 2.5). As a consequence, while robustness of the texture measures
to a�ne transformations (e.g., translation, rotation, scaling) are desired for analyzing
photographic images, measures that are robust to a smaller group called Euclidean or
rigid transformations (translation and rotation) are recommended for biomedical im-
age analysis (see Chapter 7). Scale, itself, is a powerful discriminative property in
biomedical image analysis.

To better understand the types of geometric invariance that are desirable in the
context of a particular image analysis task at hand, we must disentangle invariances of
the operator’s output (i.e., at the level of the response maps hn(x) = Gn{ f }(x) ) and the
ones of the final texture measures ⌘.

3.3.1. Invariance and equivariance of operators
We will first discuss the desired invariances of texture operators to design BTA ap-
proaches that are robust to rigid transformations. Let us consider a general group of
geometric transformations A which can be used for e.g., translation, rotation, scaling,
rigid, or a�ne. In a strict sense, a texture operator Gn that is invariant to the group A
observes

Gn{ f }( · ) = Gn
�
A{ f }

 
( · ) 8 f , 8A 2 A, (1.6)

whereA is a geometric transformation operator implementing a concrete transforma-
tion of the group A (e.g., a 2D translation by the vector (1, 1) ). Eq. (1.6) imposes
an extremely strong requirement that would severely limit the ability of operators to
extract any useful texture information. For instance if A is a translation operator as
T { f }( · ) = f ( · � x0), enforcing Gn to be invariant to T means that the response map
hn(x) (see Eq. 1.4) will not change under the e↵ect of T . Therefore, the spatial po-
sitions of the texture “events” will be lost when such a translation-invariant operator
is used. This operator will be useless for texture segmentation and di�cult to use for
texture classification. To preserve the ability of operators to characterize local texture
properties, the operators must be equivariant to rigid transformations [44], which im-
plies that if the input image f (x) is translated and rotated, the response map hn(x) must
undergo the same rigid transformation. This means that Gn must commute withA as

A
�
Gn{ f }

 
( · ) = Gn

�
A{ f }

 
( · ) 8 f , 8A 2 A. (1.7)

For some geometric transformations, the origin plays a crucial role. This is the case
for rotations and scalings, for which the origin is a fixed point (A{ f }(0) = f (0) for
any function f ). On images, the position of the origin is arbitrary. For instance,
we are not only interested to know the e↵ect of rotations around the origin, but also
on rotations centred around any location x0. For an operator A, we denote by Ax0

its shifted version that is centered around x0 instead of 0. Mathematically, we have
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Ax0 = Tx0AT�x0 . We therefore refine the notion of equivariance as follows. We say
that a texture operator is locally equivariant to the group of transformation A if it
commutes with any transformationAx0 for anyA 2 A and any x0 2 RD; that is,

Ax0

�
Gn{ f }

 
( · ) = Gn

�
Ax0{ f }

 
( · ) 8 f , 8A 2 A, 8x0 2 R

D. (1.8)

We remark that the texture operators introduced in Section 3.1 are precisely the one
that are equivariant to translations, due to the sliding property. This has an important
consequence: if the texture operator is equivariant to another group of transformations
for which the origin plays a central role (such as scalings or rotation), then it is also
locally equivariant in the sense of Eq. (1.8).

Strict equivariance is a di�cult requirement to achieve in the practical design of
operators. Therefore, the equivariance constraint can be approximated to allow robust-
ness of texture measurements to (local) rigid transformations. The desirable approx-
imated operator invariances/equivariances to global/local geometric transformations
are also depending on the image analysis task at hand. This is illustrated in Fig. 1.17
where the requirements substantially di↵er for detecting cars in photographic imagery
and for detecting collagen junctions in lung CT. The former requires operator local
equivariance to scaling transformations (all cars must be detected regardless of their
distance to the viewpoint) and equivariance to translations (important for localizing
the positions of the cars), while no equivariance to rotations (important to rule out
objects that look like cars but are e.g., upside down). Detecting collagen junctions in
lung CT requires operator local equivariance to rotations (all junctions must be de-
tected in spite of their local orientation), equivariance to translations (important for
localizing the junctions) but no equivariance to scaling (important to rule out objects
that look like junctions but are physically too big or small to be a junction). Since the
texture primitives (or textons, see Section 2.4) can have arbitrary local orientations in
most biomedical images (see Figures 1.8 and 1.9), it is mostly interesting to design
operators that are equivariant to local rotations [53] (see Section 4.1 of Chapter 2).

3.3.2. Invariances of texture measurements
Invariance of texture measurements to geometric transformations are further obtained
through the aggregation function. Most of aggregation functions (e.g., integral/summation,
max) are adding invariance of the texture measurements over the ROI M in the sense
of Eq. (1.6). This is reasonable under the condition that the texture processes are con-
sidered stationary (in the relaxed sense, see Section 2.3.1) over M. For instance, How-
ever, special care must be taken when choosing M to avoid undesirable and destructive
side e↵ects of aggregation. This is discussed in Sections 3.2 and 4 of Chapter 2.
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Fig. 10. (a) A digitized histopathology image of Grade 4 CaP and different graph-based representations of tissue architecture via Delaunay Triangulation, Voronoi
Diagram, and Minimum Spanning tree.

Fig. 11. Digitized histological image at successively higher scales (magnifica-
tions) yields incrementally more discriminatory information in order to detect
suspicious regions.

or resolution. For instance at low or coarse scales color or tex-
ture cues are commonly used and at medium scales architec-
tural arrangement of individual histological structures (glands
and nuclei) start to become resolvable. It is only at higher res-
olutions that morphology of specific histological structures can
be discerned.

In [93], [94], a multiresolution approach has been used for the
classification of high-resolution whole-slide histopathology im-
ages. The proposed multiresolution approach mimics the eval-
uation of a pathologist such that image analysis starts from the
lowest resolution, which corresponds to the lower magnification
levels in a microscope and uses the higher resolution represen-
tations for the regions requiring more detailed information for
a classification decision. To achieve this, images were decom-
posed into multiresolution representations using the Gaussian
pyramid approach [95]. This is followed by color space con-
version and feature construction followed by feature extraction
and feature selection at each resolution level. Once the classifier
is confident enough at a particular resolution level, the system
assigns a classification label (e.g., stroma-rich, stroma-poor or
undifferentiated, poorly differentiating, differentiating) to the
image tile. The resulting classification map from all image tiles
forms the final classification map. The classification of a whole-
slide image is achieved by dividing into smaller image tiles and
processing each image tile independently in parallel on a cluster
of computer nodes.

As an example, refer to Fig. 11, showing a hierarchical
cascaded scheme for detecting suspicious areas on digitized
prostate histopathology slides as presented in [96].

Fig. 12 shows the results of a hierarchical classifier for detec-
tion of prostate cancer from digitized histopathology. Fig. 12(a)

Fig. 12. Results from the hierarchical machine learning classifier. (a) Original
image with the tumor region (ground truth) in black contour, (b) results at scale
1, (c) results at scale 2, and (d) results at scale 3. Note that only areas determined
as suspicious at lower scales are considered for further analysis at higher scales.

shows the original image with tumor outlined in black. The next
three columns show the classifier results at increasing analysis
scales. Pixels classified as “nontumor” at a lower magnification
(scale) are discarded at the subsequent higher scale, reducing
the number of pixels needed for analysis at higher scales. Ad-
ditionally, the presence of more discriminating information at
higher scales allows the classifier to better distinguish between
tumor and nontumor pixels.

At lower resolutions of histological imagery, textural analysis
is commonly used to capture tissue architecture, i.e., the overall
pattern of glands, stroma and organ organization. For each digi-
tized histological image several hundred corresponding feature
scenes can be generated. Texture feature values are assigned
to every pixel in the corresponding image. 3-D statistical, gra-
dient, and Gabor filters can be extracted in order to analyze
the scale, orientation, and anisotropic information of the re-
gion of interest. Filter operators are applied in order to extract
features within local neighborhoods centered at every spatial
location. At medium resolution, architectural arrangement of
nuclei within each cancer grade can be described via several
graph-based algorithms. At higher resolutions, nuclei and the
margin and boundary appearance of ductal and glandular struc-
tures have proved to be of discriminatory importance. Many of
these features are summarized in Tables I and II.

D. Feature Selection, Dimensionality Reduction,
and Manifold Learning

1) Feature Selection: While humans have innate abilities to
process and understand imagery, they do not tend to excel at

Figure 1.16: Typical geometric transformations of textures encountered in photo-
graphic imagery [38] (left) versus biomedical images [25] (right). In most cases,
biomedical textures are observed in images with known pixel sizes. As a consequence,
texture measures that are robust to translations and rotations (rigid transformations)
but sensitive to changes in image scale will yield optimal descriptors. As opposed to
photographic image analysis, it is not desirable to enforce any form of scale invariance
which truly entails the risk of regrouping patterns of di↵erent nature.
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� �

��

�

�

f1 f2

Figure 1.8 Top: various textures and their corresponding primitives or textons. Bottom: impor-
tance of the spatial organization (e.g., density, local geometric transformations, occlusions) of
the primitives.

(a) (b)
Figure 1.9 An example of preattentive discrimination [15]. (a) texture composed of two regions:
left X-shaped textons are preattentively (i.e., effortlessly) distinguishable against L-shaped tex-
tons, while in the right the T -shaped textons needs focused attention (i.e., using long-term mem-
ory). (b) texture composed of line segments where the difference in orientations segregates
preattentively the middle region from the outer region.

tance to e�ciently design BTA approaches and in particular texture operators, which
is further discussed and detailed in Section 3 as well as in Chapters 2 and 3.

2.5. Biomedical image modalities
When compared to the broad research field of computer vision, analyzing texture in
biomedical images can rely on highly specific properties of the latter. In particular,
most biomedical imaging modalities rely on controlled acquisition protocols allow-

Figure 1.17: The requirements in terms of geometric invariance/equivariance of image
analysis methods substantially di↵er depending on the image analysis task at hand.
Left: detecting cars in photographic imagery7 versus right: detecting collagen junc-
tions in lung CT [18].

7https://www.youtube.com/watch?v=xVwsr9p3irA, as of March 7 2017.

3.3.3. Non-geometric invariances
Similarly to the general categories of feature design mentioned in Section 3.1, de-
signing texture operators that are invariant or equivariant to certain geometric trans-
formations can be considered as handcrafted because it involves prior knowledge of
biomedical texture variants. However, more subtle intra-class variations are caused
by the diversity of e.g., biology, anatomy, subject age [19]. In this context, texture
operators can be trained using machine learning to respond invariantly to subtle intra-
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class variation of the data. Deep CNNs have recently shown to perform very well
on learning cascades of non-linear operators and aggregation functions8 minimizing
intra-class variations and maximizing inter-class separability [8, 43]. However, they
solely rely on class representations available in the training set, i.e., the collection of
texture instances (realizations) with ground truth (labels) available. The latter are di�-
cult to acquire in practice for biomedical images, and data augmentation has been used
to include geometric handcrafted invariances to deep CNNs [57] (see Section 2.3.4 of
Chapter 3). Transfer learning has also been proposed to reuse deep networks trained
on very large and publicly available databases (e.g., ImageNet [13]) for other image
recognition tasks [55, 72] (see Section 4.3.3 of Chapter 4). In this particular context,
using networks that were trained with images acquired with digital cameras (Ima-
geNet) on biomedical images carries the risk of introducing undesired operator ro-
bustness to image scale for instance, discarding a strong discriminative property.

4. Conclusions
In this chapter, we present the foundations of texture processing for biomedical image
analysis. We begin with a generic definition for the type of textures encompassing
those observed in biomedical imaging (Section 2). We clarify the di↵erence between
intensity and texture in ROIs, where the former relies on the statistical distribution of
pixel values, and the latter is characterized by the spatial transitions between the pixel
values (see Fig. 1.1). The direction, scale and order of these spatial transitions were
found to be fundamental properties of biomedical texture and are naturally described
in the Fourier domain. From a mathematical point of view, we defined biomedical
texture functions as realizations of intricate and non-stationary stochastic processes.
When compared to general photographic image analysis, the acquisition devices and
protocols in biomedical imaging yield data with well controlled and standardized fun-
damental properties such as pixel size and intensity, as well as image orientation and
sample/patient position. Texture analysis challenges are therefore specific to the do-
main of biomedical imaging and requires adequate methods for obtaining optimal re-
sults.

Second, we introduced a general problem formulation for BTA in Section 3. It es-
sentially consisted of considering that any biomedical texture analysis approach can be
characterized by a series of local texture operators and regional aggregation functions.
Operators can be handcrafted to highlight desired properties of the input texture func-
tion such as spatial scales in a well defined frequency band, image gradients along hor-
izontal directions, co-occurrences, local binary patterns or circular frequencies. They

8The forward function of image operators results from the composition of linear and slightly non-linear
operations (e.g., rectified linear unit, ReLU).
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can also be learned from data to yield optimal texture representation for reconstruc-
tion or discrimination. Image normalization and operator invariance/equivariance to
rigid transformations were found to be fundamental for BTA. Aggregation functions
are required to summarize the responses of operators over ROIs. It allows obtain-
ing collections of scalar-valued texture measurements that can be used as quantitative
imaging biomarkers. The latter can be further combined with other -omics and patient
data to allow precision and personalized medicine by predicting diagnosis, treatment
response, as well as to enable biomedical discovery (see Chapter 8).

The challenges of multi-scale and multi-directional biomedical texture analysis are
further developed in Chapter 2. A qualitative comparison of popular approaches in
terms of the proposed general problem formulation introduced in this chapter is dis-
cussed in Chapter 3.
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54. Gwénolé Quellec, Mathieu Lamard, Pierre Marie Josselin, Guy Cazuguel, Béatrice Cochener, and
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