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Abstract. Training deep convolutional neural network for classification
in medical tasks is often difficult due to the lack of annotated data sam-
ples. Deep convolutional networks (CNN) has been successfully used as
an automatic detection tool to support the grading of diabetic retinopa-
thy and macular edema. Nevertheless, the manual annotation of exu-
dates in eye fundus images used to classify the grade of the DR is very
time consuming and repetitive for clinical personnel. Active learning al-
gorithms seek to reduce the labeling effort in training machine learning
models. This work presents a label-efficient CNN model using the ex-
pected gradient length, an active learning algorithm to select the most
informative patches and images, converging earlier and to a better local
optimum than the usual SGD (Stochastic Gradient Descent) strategy.
Our method also generates useful masks for prediction and segments
regions of interest.

1 Introduction

Diabetes Mellitus is one of the leading causes of death according to statistics
of the World Health Organization.1 Diabetic Retinopathy (DR) is a condition
caused by prolonged diabetes, causing blindness in persons at a relatively young
age (20-69 years). The problem is that most persons have no symptoms and
suffer the disease without a timely diagnosis. Because the retina is vulnerable
to microvascular changes of diabetes and because diabetic retinopathy is the
most common complication of diabetes, eye fundus imaging is considered a non-
invasive and painless route to screen and monitor DR [6, 12].

In the earliest stage of DR, small areas of inflammation called exudates ap-
pear in the retinal blood vessels, the detection of these yellowish areas that grow
along the retina surface is an important step for the ophthalmologist to grade
the stage of DR. The manual segmentation of exudates in eye fundus images, is
very time consuming and repetitive for clinical personnel [6].

In recent years, deep learning techniques have increased the performance of
computer vision systems, deep convolutional neural networks (CNN) were used

1 http://www.who.int/diabetes/en/
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to classify natural images and recognize digits and are now being used success-
fully in biomedical imaging and computer-aided diagnosis (CADx) systems [3].

CNN models play a major role in DR grading showing superior performance
in several settings and datasets compared to previous approaches. In 2015, the
data science competition platform Kaggle launched a DR Detection competi-
tion2. The winner and the top participants used CNNs on more than 35,000
labeled images, demonstrating that for a successful training of such algorithms a
significant amount of labeled data is required. In [4] the authors used more than
100,000 labeled eye fundus images to train a CNN with a performance compa-
rable to an ophthalmologist panel. This presents a challenge, as the algorithms
need to be fed with in the order of thousand of samples, which in practice is
both time-consuming and expensive. It is important to make well-performing
algorithms such as CNN less data intensive and thus able to learn with a few
selected examples. This is more realistic in clinical practice, also because imaging
devices change over time.

Active learning is an important area of machine learning research [10] where
the premise is that a machine learning algorithm can achieve good accuracy
with fewer training labels if the algorithm chooses the data from which it learns
intelligently. This idea is key for building more efficient CADx systems and for
reducing costs in building medical image datasets [13] where the expert annota-
tions are costly and time-consuming.

In [14], an active learning algorithm for convolutional deep belief networks
is presented with an application to sentiment classification of documents. In [2],
the authors show how to formally measure the expected change of model outputs
for Gaussian process regression showing an improvement in the area under the
ROC curve with fewer queries to the model than the usual random selection.
Active learning has also been applied to reduce the number of labeled samples
in training CAD systems for DR. Sánchez et al. [9] compare two active leaning
approaches, uncertainty sampling and query-by-bagging, showing that with the
former, just a reduced number of labeled samples is necessary for the system to
achieve a performance of 0.8 in area under the receiving operating characteristic
curve. Nevertheless, this approach is computationally intensive for deep CNNs
because it is based on building multiple committees of classifiers to choose the
most informative sample, which translates into training multiple deep CNNs.

In this work we present a novel approach to detect exudates and highlight the
most interesting areas of the eye fundus images using an active learning algorithm
called expected gradient length (EGL) that works jointly with the CNN model
parameters to select the most informative patches and images to train without a
significant compromise in the model performance. Our method has the advantage
of computing a single backward-forward pass in order to obtain the samples that
lead to the most changes in the network parameters, i.e. the most informative
images and patches to learn. To the best of our knowledge, this is the first time
that an active learning method that uses the deep learning model parameters to
select the most relevant samples is presented in the medical imaging field.

2 https://www.kaggle.com/c/diabetic-retinopathy-detection
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2 Deep Learning Model

Convolutional Neural Networks (CNN) are a particular kind of a supervised
multi layer perceptrons inspired by the visual cortex. The CNNs are able to
detect visual patterns with minimal preprocessing. They are trained with the
robustness to respond to the distortion, variability and invariance to the exact
position of the pattern and benefit from data augmentation that uses subtle
transforms of the input for learning invariances. CNN models are one of the most
successful deep learning models for computer vision. The medical imaging field is
rapidly adapting these models to solve and improve a plethora of applications [3].

Fig. 1. Deep CNN architecture to classify between healthy and exudate patches.

Our deep learning model is based on a CNN architecture called LeNet [7]
with 7 layers as shown in Figure 1, which is composed of a patch input layer
followed by two convolutions and max pooling operations to finalize in a softmax
classification layer that outputs the probability of a patch being healthy or exu-
date. We choose this architecture because of its good classification performance
with small input and because (as seen in section 3) our model selects the samples
by performing a forward-backward pass over the net. A deeper network would
put a computational burden on our experiments.

3 EGL for Patch And Image Selection in Convolutional
Neural Networks

Traditional supervised learning algorithms use whatever labeled data is provided
to induce a model. Active learning, in contrast, gives the learner a degree of
control by allowing to select which instances are labeled and added to the training
set. A typical active learner begins with a small labeled set L, selects one or more
informative instances from a large unlabeled pool U , learns from these labeled
queries (that are added to L), and repeats until convergence. The principle
behind active learning is that a machine learning algorithm can achieve similar
or even better accuracy when trained with few training labels than with the
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full training set if the algorithm is allowed to choose the data from which it
learns [10].

An active learner may pose queries, usually in the form of unlabeled data
instances to be labeled by an oracle (e.g. an ophthalmologist annotator). Active
learning is well-motivated in many modern machine learning problems, where
unlabeled data may be abundant or easily obtained but labels are not. This is
an interesting direction for the so-called deep learning in the small data regime,
where the objective is to train time-consuming and high sample complexity al-
gorithms with fewer resources, as in the case of medical images.

Stochastic Gradient Descent (SGD) works by stochastically optimizing an
objective function J with respect to the model parameters θ. This means to find
the model parameters by optimizing with only one sample or sample batches
instead of the full training dataset:

θt+1 = θt − η∇Ji(θt)

Where Ji(θt) is the objective function evaluated at the i-th sample tuple (xi, yi)
at iteration t, η is the learning rate and∇ is the gradient operator. For computing
∇Ji(θ) we need the i-th sample representation and its corresponding label, if
we measure the norm of this term, i.e. the gradient length term‖∇Ji(θ)‖, this
quantifies how much the i-th sample and its label contribute to each component
of the gradient vector.

A natural choice for selecting the most informative patches for each batch
iteration of SGD is to select the instances that give the highest values for the
gradient length weighted by the probability of this sample having the yi label. In
other words, to select the instances that create the largest change to the current
model if we knew their labels:

Φ(xi) =

c∑
j=1

p(yi = j|xi)‖∇Ji(θ)‖ (1)

Where c is the total number of labels or classes. The Expected Gradient Length
(EGL) works by sorting the Φ values from an unlabeled pool of samples and
then adding them to the training dataset by asking an oracle to give the ground
truth label of these samples. The EGL algorithm was first mentioned by Settles
et. al. [11] in the setting of multiple-instance active learning. To the best of
our knowledge this is the first time the approach is used in the selection of
samples in CNN. For being able to select the most informative samples in a
CNN architecture we have to compute the two terms involved in equation (1).
For the probability of a sample having the j-th label we can perform a forward
propagation through the network and obtain the corresponding probabilities
from the softmax layer of the network. To measure the gradient length we can
perform a backward propagation through the network to measure the frobenius
norm of the gradient parameters. In a CNN architecture we have the flexibility to
compute the backward/forward phases up to a certain layer. In our experiments
we made the backward down to the first fully connected layer as experiments
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Algorithm 1 EGL for Active Selection of patches in a CNN

Require: Patch Dataset L, Initial Trained Model M with patches in L′ ⊂ L, Number
k of most informative patches

1: while not converged do
2: Create and shuffle batches from L
3: for each batch do
4: Compute Φ(x) using M, ∀x ∈ batch
5: end for
6: Sort all the Φ values and return the highest k corresponding samples Lk
7: Update M using L′ ∪ Lk
8: end while

showed no significant differences for in between layers. This process has to be
done over all possible labels for each sample. Once we have computed the Φ
values for all samples, we sort them and select the k samples with the highest
EGL values.

We begin with a small portion of labeled samples L′ ⊂ L to train an initial
model M, and then incrementally adding the k samples to L′ to update M
parameters. We stop the training procedure when the algorithm converges i.e.
when the training and validation errors do not decrease significantly or when
the performance in terms of accuracy stays the same for more than one epoch.
Since we are able to compute the most significant patches it is straightforward to
extend the procedure to select not only the most informative patches but also the
most informative images within the training set. The modification is that instead
of computing the EGL values for all ground truth exudate and healthy patches
we compute the interestingness of an image by patchifying the image with a
given stride and then densely computing Φ. Then, images are sorted by their top
EGL values and finally, the patches that belong to the most interesting image
are added to the training set for further parameter updates using Algorithm
1 until convergence. We think that this is a more realistic scenario where an
ophthalmologist does not have the time to manually annotate all images but
only those that contain most information to train a label efficient system. The
full algorithm is described in Algorithm 2

4 Experimental Setup

4.1 Ophtha Dataset

The e-ophtha database with color fundus images was used in this work. The
database contains 315 images with a size ranging from 1440×960 to 2540×1690
pixels, 268 images have no lesion and 47 contain exudates that were segmented
by ophthalmologists from the OPHDIAT Tele-medical network under a French
Research Agency (ANR) project [1]. The labeled patch dataset was created with
cropped 48× 48 pixel patches that contain both exudate and healthy examples.
We prevent over–fitting artificially creating new samples by generating artifi-
cially 7 new label-preserving samples using a combination of flipping and 90, 180
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Algorithm 2 EGL for Active Selection of images in a Convolutional Neural
Network.
Require: Training Image Set T , Patch Dataset L, Number µ of initial images to look

at
Select an initial set Tµ of images randomly

2: Train initial model M using the ground truth patches from the µ images
while not converged do

4: for each image in T \ Tµ do

Patchify image and compute σimage =
∑

patch∈image

Φ(patch), using M

6: end for
Sort all the σimage values and return Imax, the image with higher sum

8: Tµ = Tµ ∪ Imax
Lµ = { patch ∈ LI , ∀I ∈ Tµ}

10: Update M with k selected patches using Algorithm 1 and the patches in Lµ
end while

and 270 degree rotations. After the preprocessing steps of cropping and data
augmentation, the dataset splits were built with randomly selected patches of
each class as follows: a training split with 8760 patches for each class, a validation
split with 328 per class and a test split with 986. Images of a given patient could
only belong to a single group according to the described dataset distribution. At
test time, only patches of unseen patient images are evaluated.

4.2 Evaluation

The technique of Decencieriere et al. [1] was chosen as our baseline. The base
LeNet model was trained using stochastic gradient descent (SGD) from scratch
without any transfer learning from other datasets. The learning rate and batch
size were explored in a grid search and showed robustness in the range of 32-64
in terms of batch size with a learning rate of 0.01 when trained with all the
training patches. In our final experiments we set the batch size to 32 and 0.01
for the learning rate, using 30 as the number of epochs to train the model. The
model M is the LeNet CNN model described in Figure 1 and initially trained
with 5 batches of 32 samples.

The proposed approach was implemented in Python 2.7 and the Caffe deep
learning framework [5] that allows for efficient access to parameters and data in
memory. We use an NVIDIA GTX TITAN X GPU for our experiments. During
all the experiments, training loss, validation loss, as well as the accuracy over
the validation set were monitored.

5 Results

We test our algorithm 2 in the scenario where an ophthalmologist selects only
a few important or relevant images instead of patches to annotate and train
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Fig. 2. Results for F-Measure, sensitivity and specificity, using the random strategy
(blue) and active learning using EGL (green) for algorithm 2. In this setup only the
patches of the 4 initial training images were used for training the model in the first
6 SGD iterations, after this (orange line) we add the patches from the images with
maximum EGL value to the training set.

the model. In Figure 2 the left side of the orange line is when the initial model
training is performed. Then, the Algorithm 2 is used to select the most interesting
image for the model and subsequently to update the model. In our approach, the
convergence is reached at an earlier stage. As few as 15 batches are enough for
the model convergence, showing that in this more realistic scenario our strategy
also outperforms the standard way of training deep CNN models.

Fig. 3. Interestingness over training time. After the model converges the interestingness
value decays to 0 because the norm of the gradient is close to 0.

Once we have an initial training of the model we can measure the inter-
estingness of a full image computing the sum of its EGL values. This was the
criterion to select images for the results of algorithm 2. An example image with
its interestingness values over different training times is shown in Figure 2. We
can plot this value and see how this evolves as the model sees more batches.
These values are illustrated in Figure 3. Here we can see how the interestingness
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value decays after the model has converged, so when the loss function does not
decrease anymore and the norm of the parameters is nearly 0.

6 Discussion

This paper presents for the first time an active learning strategy to select the
most relevant samples and images for a sample efficient training of a deep con-
volutional neural network to classify exudate patterns in eye fundus images. The
proposed strategy was able to achieve a similar performance compared to the
model trained with the full dataset [8] but only using an informative portion
of the training data. Besides the speed-up for convergence, our algorithm also
brings an additional interpretation layer for deep CNN models that locates the
regions of the image that the ophthalmologist should label, improving the inter-
action between the model and the specialist that conventional CNN models lack.
Our approach presents a computational drawback when the number of unlabeled
data–samples to check is large, but we think that this could be overcome with
traditional sampling techniques. Despite our results showing good performance
using only a portion of the data, we would like to do further experimentation
using only the initially labeled portion and involving large–scale datasets where
the combination of our sample selection techniques with transfer learning could
lead to a performance boost. We think that active learning techniques have a
promising application landscape in the challenging tasks of medical imaging us-
ing deep learning because of their potential to relief the need for large amounts
of labeled data. This will allow the usage of deep learning models in a broader
set of medical imaging tasks like detection and segmentation of structures in spe-
cialized domains such as histopathology image analysis or computed tomography
scans where the labels are costly.
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