NOSE: A NOmadic Scalable Ecosystem for pervasive sensing, computing and communication

Gianluca Rizzo, Audrey Dupont, Yann Bocchi IIG Institute, HES SO Valais, Switzerland

The Smart City paradigm is the dominant model for urban development

Integration of ICT and IoT in resource management and service provisioning

- Mobility, Energy (Smart Grid, …)
- Building, Public services,
- Main features:
- Systemic vision:

City as a system of interconnected components

What are the main prerequisites of the smart city paradigm?

- A pervasive sensing and communication infrastructure
 - High costs of installation and maintenance
- A critical mass of users
 - Justify investments

Administrative unity

A clean slate approach: Design for smart

How to bring smart city services to sparse communities?

- A large portion of humanity lives in small cities, towns and sparse urban agglomerations
- Such urban districts lack the main prerequisites for adoption of Smart City paradigm
 - No critical mass
 - Administratively fragmented
 - Fixed costs less sustainable
- The Smart City paradigm might create a new urbanization
 Urban districts are at a competitive disadvantage
- Need for cheap, alternative sensing and communication infrastructure

NOSE: Turning mobile infrastructure into a platform for sensing, computing and communication

- Public Buses have Wi-Fi/3G/4G connectivity
- currently underutilized
- Others: postman, employees, etc.

We exploit such infrastructure to create

- A mobile sensing and monitoring platform
 - Multi-service
 - Replacing and/or integrating fixed, expensive infrastructure
- A delay tolerant communication network
 - Emergency, real time communications, disaster recovery
 - Connectivity of molok/smart bus stops everywhere, etc

Is NOSE a viable approach for a "smart district" paradigm?

Transport network is pervasive: Less administrative barriers

What about the economic barriers?

- Nomadic vs fixed infrastructure also means trading CAPEX vs OPEX
- Can we make a fair comparison (same performance)?

WE need to explore the CAPEX/OPEX tradeoff

Is it the time for a smart district?

- Plenty of existing work on mobile sensing
 - MIT CarTel, Pothole Patrol, among others
 - Environmental monitoring, mainly
- Focused on:
 - Technical feasibility
 - Measurement issues (calibration,...)
 - Lack of clear, well justified performance requirements
- Is the technology ready for production?

Design principles: scalability, modularity, ease of integration and management

Candidate Services

Environmental Monitoring («District Pulse»)

Road surface monitoring

City scanning

A system for real time road surface monitoring

Objectives:

- Offer a real time view and a forecast of road surface conditions
 - Tracking of ice, snow, water, soil, crackings, shape changes, amount of salt
 - Integration with data from other sources (weather forecasts, fixed sensors, etc.)

Applications:

- Inform on time drivers about hazards due to road surface state;
- Increase efficiency of interventions:
 - Intervene only when and where it is actually needed;
 - Improve traffic conditions;
 - Improve road safety (better prevention of hazards);
 - Optimize use of salt.

Components

- On Bus communication system
- On board road surface sensors
- Servers for data collection, data mining, forecast, visualization

Mounted on rear/front bumpers Or on top

Environmental Monitoring

- Complement to weather forecast: air pressure, temperature, humidity
- Pollution: CO, CO2, NO, NO2, SO2, O3, particles (PM1, PM2.5 and PM10 measurements)
- Pollen map
- Output on a map
- Candidate device: Raspberry Pi + on board sensors
 / Airquality Egg

City Scan

- Obtain measurements of various parameters of the city
- Exploiting API of Kinekt 2, and/or other sensors
- Many possible applications:
 - Pedestrian density estimator
 - Parking occupation estimator
 - Traffic density estimator
 - People mood monitoring

• Make available data for mining and analysis

The onboard infrastructure

Data path for the Road Surface Monitoring Service

http://vmhiotmiddleware.hevs.ch/nose/dashboard/ice/default

Lessons learned

- The opportunistic nature of nomadic infrastructure requires systems to be:
 - Adaptive
 - With built in redundancy
- They tend to be
 - Less accurate
 - Less available
- We established a technical baseline for economic analysis of capex/opex tradeoffs
 - Still open issue
- Cultural barrier
 - Not yet considered

Thank you!