Flexible Service Provision in Context-Aware
Cyber-Physical Systems

Ramoén Alcarrial’z(g), Borja Bordell’z, and Antonio Jara'

! Institute of Information Systems, University of Applied Sciences
Western Switzerland, Delémont, Switzerland
ramon. alcarria@upm. es, bbordel@dit. upm. es,
jara@ieee. org
2 Universidad Politécnica de Madrid, Madrid, Spain

Abstract. Cyber-Physical Systems have emerged in recent years as a new
technological revolution to support a collection of devices in the execution of
physical processes. In mobility scenarios the execution context is in continuous
change. Thus, Context-aware Cyber-Physical Systems must be adapted to this
situation to provide services optimally. This paper proposes mechanisms for
profile selection and consistency checking for a flexible service provision in
context-aware cyber-physical systems. These mechanisms are validated through
an experimentation, by studying the reaction of the proposed system to changes
in context.

Keywords: Cyber-Physical systems - Service provision - Matchmaking -
Service resolution

1 Introduction

The term Cyber-Physical Systems (CPS) refers to the connection of embedded devices
as integrations of computation and physical processes [1]. In order to provide a
service-oriented architecture for CPS the so-called service-oriented CPS emerged as
physical and logic infrastructures offering a collection of services and capabilities to
enable their publication, discovery and execution.

In scenarios involving changes in the number and nature of devices, as well as in
the environment around them, mechanisms are needed for the recognition and con-
nection of new devices [2] and for a seamless service provision. The contribution of
this paper is described in the context of context-aware CPS, proposing improvements in
the resolution process, that is, the process by which certain functionalities provided by
a low-level device can be substituted by others provided by that device or other, so that
service execution is preserved in a seamless way.

The resolution mechanisms proposed in this work are, firstly, a detector and
applicator of execution profiles for the services provided by cyber physical devices,

R. Alcarria and B. Bordel—On leave from Universidad Politécnica de Madrid, Madrid, Espafia.

© Springer International Publishing AG 2018

L. Barolli and T. Enokido (eds.), Innovative Mobile and Internet Services

in Ubiquitous Computing, Advances in Intelligent Systems and Computing 612,
DOI 10.1007/978-3-319-61542-4_89

874 R. Alcarria et al.

each of these profiles activates a set of functionalities that are offered to the service
orchestrator at a higher abstraction level. Secondly, a consistency checker between
running services and the execution environment.

The rest of the paper is as follows. Section 2 describes some related work in
context-aware CPS and Service Provision. Section 3 shows some background on
Context-aware CPS. Section 4 provides the main contribution of our work in service
profile detection and enablement, and consistency checking. Finally, Sects. 5 and 6
show an experimental validation and some conclusions.

2 Related Work

This section describes some works related to context-aware CPS, and how these and
other works deal with service provision and resolution processes.

Related to context-aware CPS, some approaches have integrated traditional CPS
networks, such as vehicular networks, with the context-aware concept [3]. CPS
interacting with real life’s surroundings have specific needs when using cloud-based
solutions. These needs are studied in [4]. Other works investigate the extent to which
context information may be used to improve security and survivability of CPS [5].

Service provision has also been studied in the field of CPS. The work of Mikusz [6]
explores the utility of CPS for the provision of value to customers, through the concept of
Service-Dominant Logic. Other works deal with the service delegation process [7]
considering the concept of task, a collection of actions to be executed in cloud envi-
ronments or in underlying devices. Finally, technologies for the interconnection of
components such as OSGi allow a flexible composition of services, taking into account
the possible connections and disconnections of the devices that provide them [8].

The resolution process is defined in the literature as the process by which the
description of a service (abstract service) is associated with the service provided by a
device (specific service) [8]. The service resolution process must decide which imple-
mentation is most appropriate in a given context, according to the access technology [9],
if inconsistencies occur [10], or if the execution profile of the device is adequate.

Finally, in relation to CPS and the convergence to Internet of Things, some com-
plex issues such as self-configuration of heterogeneous hardware platforms or services
composition, access and service managements [11] are currently being much studied.
Many solutions related to service composition are based on Business Process Execution
Language (BPEL) workflows [12], where executing tasks calls some external services,
often offered by devices. Service access in CPS is commonly tacked by the provision of
an access middleware [9]. Two solutions are proposed: embedded TCP/IP stacks in all
devices [13] and translation layers adapting web services provided by applications to
the particular interfaces of devices [14].

3 Context-Aware Cyber-Physical Systems

The proposed architecture for contributing to resolution process in context-aware CPS
is presented in Fig. 1.

Flexible Service Provision in Context-Aware CPS 875

i tate 2
L Stae 1 CPS device
device % §
= S| repository| © 5 State
% g g 'g 8= Operations | ansitioney | Operations |
o = =3 <z
£ 8 5 g L=
=5 & |serviee invdeations \
L . ! \
Dataservices invocation API |
- - — —/ = _C_nt_xt_ - - - - A Context/evey

Fig. 1. Architecture for process execution in context-aware CPS

The process execution module presents an execution engine that follows a
workflow-based logic for the execution of a cyber-physical process. This process
generates invocations to functionalities offered by devices. To determine the optimal
device to execute the functionality requested by the process, the resolution process is
performed. When the resolution process determines the optimal device invocation
occurs through the access middleware by the data services invocation APIL

We model a CPS device with the following abstractions:

e State, representing a unique configuration of information in device. It integrates a
complete set of properties (name-value pairs) that represents something relevant and
significant for the other services to know and operations, i.e. the functionalities
provided by this device under a given state.

e Events: The execution context is modeled as an event generator that describes a
situation. Events are initiated either by user actions on the Ul, by requests from
other services or by results from invocations to IoT objects. The state transitioner
gets these events and produce state changes in the CPS device.

e Operations: Represent functionalities associated to device states. Functionalities are
often invocations to IoT elements and local capabilities (functionalities provided by
executing nodes or devices) and also to the provision of graphical elements such as
user interfaces. Usually, operations also cause state changes and the generation of
the corresponding context events.

4 Enabling Flexible Service Provision

To contribute to a better service provision, so that context changes are contemplated
and supported in the execution plan, we plan to contribute in the areas of profile-based
execution and consistency checking.

To ensure a seamless service execution we propose the invocation of functionalities
depending on the state of the devices. For this we propose the concept of execution
profiles. Each profile activates a set of functionalities that are offered to the orchestrator.
The resolution process supports changes in the profiles, produced by changes in the
context in which these cyber-physical devices operate.

876 R. Alcarria et al.

To ensure the compatibility of the services in execution we developed a consistency
checker, which detects the problematic service and shuts it down or substitutes it for a
similar one composed by rules consistent with the current situation.

4.1 Profile Detection and Execution

The first mechanism is a detector and applicator of execution profiles for the services
provided by cyber-physical devices. Cyber-physical devices may have been pro-
grammed to operate under different execution profiles. Each profile activates a set of
functionalities that are offered to the orchestrator. The matchmaking mechanism has to
support changes in the profiles, produced by changes in the context in which these
cyber-physical devices operate.

We consider CPS devices as transducers, converting variations in a physical
quantity, such as pressure or brightness, into an electrical signal, or vice versa, and their
hardware controllers, for management and processing capabilities [2].

The plug-and-play architecture described in Fig. 2(a) can be implemented in any
controller or transducer, with the proviso that programming capability and a Serial
Peripheral Interface (SPI) (the most common in microelectronics) must be available.
SPI ports allow full-duplex communications using four independent lines:

e Master Output Slave Input (MOSI) line, to transmit data from the master device to
the slave device.

e Master Input Slave Output (MISO) line, to transmit data from the slave device to the
master device.

e Clock (CLK) line, for sharing the synchronization signal.

e Slave Select (SS) line, to active the slave device.

~
Smart Micro- Device Access Resolution
sensor || controller | Repository | [Middleware module

new
) MOSI—{MOS]| wntex@ interface
Micro- |miso—miso| Smart | changesy (spr) profile
controller| cLk —{ cLk |Sensor &5 change
SS — SS
change |
. notification . . .
Lbyte ,, 2bytes | Nospecified | device status | active profile
Interface | Sensor change request
D D Eayload | result (deviceID)
__ get device
Sensor | Device status
type [number device statu§
1 byte 1 byte device.profile

Fig. 2. (a) Microcontroller-sensor communication, (b) interaction diagram

For the communication between these two elements we consider the standards
family IEEE 1451. This specification set addresses the problem of supporting a
plug-and-play architecture based on transducers and microcontrollers [15], providing a

Flexible Service Provision in Context-Aware CPS 877

common interface for connecting transducers and processors to controllers and data
acquisition systems. For profile discovery and selection we employ the standardized
Transducer Electronic Data Sheets (TEDS) specified by IEEE 1451.2, which allows the
self-description of interfaces, and the interaction to hardware controllers.

The microcontroller detects the context, either from the sensors or from the cloud,
and proceeds to change the profile of the sensors it has connected.

When the context change occurs from the sensors, in the SPI interfaces, the master
device must activate the Slave Select signal (SS) during a time equal to the time
required by the slave device to perform the transmission of its new data. New data
coming from the smart sensors is transmitted through the MISO port. Information
transmitted is: InterfacelD, SensorID and Payload.

As described in Fig. 2(b), once received this information, the microcontroller
proceeds to change the current profile of the connected sensor. Information about CPS
device is store in the device repository database. Once the resolution requests the active
profile of a given sensors, it ask the device repository through the access middleware.

An equivalent interaction is performed when the microcontroller detects the context
from others systems or cloud environments, and must notify the sensor for a change of
interface. In this case the MOSI channel is used and a message with a structure similar
to the previous one is sent.

4.2 Consistency Checker

In rule-based cyber-physical environments, there may be inconsistencies between rules,
which are resolved by disabling problematic services. We design our consistency
checker based on LTL rules, describing the functions that can be performed by CPS
devices and the constraints prohibiting undesired behavior.

LTL formulas are composed of a finite set of atomic propositions, the Boolean
connectives — (not), A (and), V (or), and — (implies), and the temporal connectives 2l
(until), R (release), [(next time), LI (globally) and <> (in the future). Intuitively, ¢ U s
states that ¢ remains true until \y holds. Dually, ¢ R {, or ¢ releases s, means that s
must be true now and remain true until ¢ is true, thus releasing . [J ¢ means that ¢ is
true in the next time step after the current one. Finally, LI ¢ commits ¢ to being true in
every time step while <> ¢ designates that ¢ must either be true now or at some future
time step.

The consistency checker converts the LTL variability restrictions to finite state
automata and analyses the constraint model generated in real-time, determining if the
construction of this model by user actions results in a change from satisfied to tem-
porarily violated and permanently violated.

The consistency checker is also used to resolve circular dependencies. Suppose that
the resolution process selects a functionality offered by a device A which in turn
requires a device B to operate. Suppose the running service makes a call to a C
functionality, which requires B to be turned off for proper service execution. By
modelling these constraints through LTL formulas, this circular dependency is auto-
matically recognized and extracted.

878 R. Alcarria et al.

This work models the ability of the devices to execute services according to the
quality of service they offer for each of the profiles they have implemented. Information
about QoS is stored in the device repository, and is presented as a k number of n-
dimensional vectors of integer values, indicating the value of a collection of quality
parameters (availability, response time, etc.), being k the total number of profiles
implemented in the device.

QOSOﬁ‘erk == (Oclka 02y« v oy ank) (1)

On the other hand, the process execution model handles a collection of quality
parameters for each task, as follows:

QOSrequest = (ﬁl) /327 RS Bm) (2)

As in the previous case, for each task the indicated quality parameters may not be
the same, and the dimension of the vector QoS eues: can also vary.

The resolution process uses Algorithm 1 to combine the constraints imposed by the
quality of service with those imposed by the consistency detector.

Algorithm 1 Resolution process

Output:Resolved process resprocessidand Function getValidCandidates
processStatus Input: Serviceserviceld to resolve
Define List<deviceC> as validC Output: List<deviceC> List of device candidates
ordered by QoS
for eachserviceld from process processld
validC = getValidC (serviceld, Q0S,equcst) Define List<deviceC> as initialCandidates
if (validC is not empty) Define List<deviceC> as consistentC
if (active pro_ﬁ[e Q()S be[gngs to Vahdc) Define List<deviceC> as consistent&QoSC
processStatus = Status.Available Define List<QoSy,> as QoSofferList
resolveService (serviceld, validC) -
else initial Candidates= getC (Q0S,eques))
processStatus = Status. TempUnavailable for each icandidate from initialCandidates
end if if (checkConsistency (icandidate, Cy)
elseprocessStatus = Status.Unavailable then store icandidate in consistentC
end if end if
end for end for

for each ccandidate from consistentC
QoSofferList = getAllProfileOffers(ccandidate);
for eachQoS ., in QoSofferList

if (QOSctter>00S equest)

then store ccandidate in consistent&QoSC

end if
end for
sort List consistent&QoSC by QoSofrer
returnconsistent &QoSC

The operation of the algorithm is indicated below. For all the services composing a
process, the resolution process is executed, which searches for candidate devices to
execute the functionality defined by the process. These candidates must comply with
the consistency requirement, i.e., that the consistency checker validates that there is no
inconsistency with the rest of the services in execution and with the current context,
and the quality of service requirement, whereby the quality offered by the device must

Flexible Service Provision in Context-Aware CPS 879

be greater than the quality required by the process (Qo0Sofrer > QOSiequest)- As the
quality offered by the device depends on the execution profile that the device has at the
moment, a comparison must be made for all the profiles, so that the execution engine is
always aware of the current state of the resolution process and of the possibility of
execution of certain services in compatible devices, if there is a change of context that
favors an increase of the quality of service in the candidate device. If the active profile
of the device has sufficient QoS (according to the interaction diagram in Fig. 2(b)) the
service can be executed on the device.

According to the result of the resolution process, we associate to the process a
process state. Thus, each process may present three different states: available, tem-
porarily unavailable and unavailable. Table 1 describes the conditions which must fit a
process to present each state.

Table 1. Process’ states in Context-aware CPS.

State Description

Available A process is available when all the services which compose it are
available, and the guaranteed QoS of the composite service surpasses
the established QoS thresholds

Temporarily A process is temporarily unavailable when at least one of the services

unavailable which compose it is temporal unavailable, because the guaranteed QoS
of the process falls below the established QoS thresholds in the given
context

A process which is considered temporarily unavailable may return to the
available state without refreshing the composition process

Unavailable A process is considered as unavailable when at least one service is
unavailable or temporarily unavailable for a time over a certain limit
A process which is considered unavailable must refresh the resolution
process in order to change its state

5 Experimental Validation

These mechanisms are implemented on a cyber-physical environment, constructing a
prototype consisting of a controller connected to two smart sensors, as can be seen in
Fig. 3.

We have used a Zigbee transmitter and receiver module for the communication of
two Smart sensors (controller #1 and controller #2) through SPI interface. For the
control of both sensors a multiplexer is used that intervenes in the slave select line,
following the standard IEEE 1451. The Smart Sensor #1 consists of a controller
(controller #I), an NFC Reader, an NFC Antenna, potentiometer that acts as a
pull-down resistor for level control and a relay, which controls the power supplied to
the NFC antenna, so that the controller can cut the power consumed in periods of
inactivity.

880 R. Alcarria et al.

NFC Reader

Zigbee
receiver

Zigbee
transmitter

Monitoring/

Mux Temperature Sensor Controller #2 Relay

Fig. 3. Implemented prototype

The Smart Sensor #2 consists of another controller (controller #2), a temperature
sensor and another potentiometer for regulating the reference levels of the A-D con-
verters that control the temperature level.

The prototype also has a rj-11 port for monitoring and debugging.

As the consistency checker module have medium processing requirements we
opted to implement it in the cloud environment (specifically by a JSP application
installed in a t2.mini Amazon EC2 instance), reducing the complexity of the resolution
process, which is implemented in the microcontroller based-on TI CC2530.

The prototype was deployed in a laboratory of the Technical University of Madrid,
where various emulated production systems were implemented. We provide some logic
to the authentication cyber-physical device managed by Controller #1. It has two
profiles fullOperation and deactivated. In the fullOperation profile the NFC antenna is
always switched on, and in the deactivated profile, the relay permanently deactivates
the antenna, so authentication is disabled. These two profiles implements the same
openDoor interface, in the fullOperation profile the openDoor function includes an
authentication process by using an NFC tag. In the deactivated profile, the openDoor
function returns always true, without any authentication process.

We also configure Controller #2 to generate context events so that CPS devices can
change their state such as temp.LOW, temp.MEDIUM, temp.HIGH.

We perform an experiment to validate the contributions of our paper, specifically,
profile detection and execution and consistency checking in the resolution process. To
do that we include the following LTL rule in the consistency checking module:

LI (temp.HIGH — <> NFC.deactivated) An event informing of a high temperature
recording must be followed in the future by a deactivation of the NFC reader.

We simulate an increase in the temperature to generatetemp.HIGH and after that we
measure the time it takes for the resolution process to select the authentication
cyber-physical device as the optimal device to perform the openDoor function.

Flexible Service Provision in Context-Aware CPS 881

We divide the resolution process in steps and measure the time it takes for the
completion of each step:

1. Selection of initial candidates: The resolution module connects to the device
repository through the access middleware and retrieves the information about
devices, including QoS parameters.

2. Checking candidate consistency: The consistency checker compares the functions
offered by the devices with the consistency rules of the CPS, detecting inconsis-
tencies and circular dependencies.

3. GetProfiles from candidates: Q0S, .4y is compared with all QoS4 so that only a
set of profiles is selected.

4. Checking of active profile: We check which of the candidates has an active profile
that meets the conditions of execution

5. Set process status: depending on the above we classify the process as available,
temporarily unavailable or unavailable.

We execute many resolution processes (1, 5 and 10) in parallel to simulate more
components in the cyber-physical system. Results can be seen in Table 2.

Table 2. Average execution time in ms of steps #1 to #5.

Step | Average execution time of Steps #1
to #5

1 process | 5 processes | 10 processes
#1 453 ms | 502 ms 633 ms

#2 501 ms | 1107 ms 2165 ms

#3 113 ms | 140 ms 201 ms

#4 39 ms 41 ms 51 ms

#5 15 ms 17 ms 19 ms

Total | 1121 ms | 1807 ms 3069 ms

As can be seen, the execution of the resolution process for a component while
maintaining the system with a load of 10 processes in parallel has an average duration
of 3069 ms, with a standard deviation of 114 ms. This is the maximum response time
of the system, which is conditioned by the hardware limitations of the prototype, such
as the processing capacity of the TI CC2530 chip, which manages most of the reso-
lution process, except the consistency checking, which is performed in the Cloud
infrastructure.

With the results of this experiment it can be seen that step #2 is the one that
increases most in duration as parallel processes are added. The explanation is that we
consider the connection time to the cloud infrastructure through the Zigbee channel and
a PC that controls the IP communication.

882 R. Alcarria et al.

6 Conclusions

In this paper we have presented the problem of process resolution in Cyber-Physical
Systems and we have devised a resolution mechanism that allows to select the most
appropriate cyber-physical device to the current situation for a flexible execution in
changing environments. The resolution process integrates two main contributions. The
first is the detection and application of execution profiles, defined as different modes of
behavior that intelligent devices have, which depend on the context in which they are
executed.

The second contribution focuses on the detection of inconsistencies and circular
dependencies through a declarative logic based on LTL, to prevent malfunctions in a
continuous process execution.

We describe the resolution process through a functional architecture and an algo-
rithm, and we have implemented the functional modules in a hardware prototype,
which we have validated in a use case. The results on the measurements show exe-
cution times of the resolution process of little more than 1.1 s when there is a single
process running and of little more than 3 s for the existence of 10 processes, in both
cases for the hardware selected for the tests. With these results we can say that the
service provision process proposed in this paper is sufficiently flexible for
Context-aware CPS.

Acknowledgments. The research leading to these results has received funding from the Min-
istry of Economy and Competitiveness through INPAINK (RTC-2016-4881-7) and SEMOLA
(TEC2015-68284-R) projects. Borja Bordel has received funding from the Ministry of Education
through the FPU program (grant number FPU15/03977)

References

1. Lee, A.: Cyber-physical systems—are computing foundations adequate? In: NSF Workshop
on Cyber-Physical Systems: Research Motivation, Techniques and Roadmap, Austin, TX,
USA, 16-17 October 2006

2. Bordel, B., Sanchez-de-Rivera, D., Alcarria, R.: Plug-and-play transducers in cyber-physical
systems for device-driven applications. In: 10th International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 316-321 (2016)

3. Wan, J,, Zhang, D., Zhao, S., Yang, L.T., Lloret, J.: Context-aware vehicular cyber-physical
systems with cloud support: architecture, challenges, and solutions. [EEE Commun. Mag. 52
(8), 106-113 (2014)

4. Berger, C.: Cloud-based testing for context-aware cyber-physical systems. Softw. Test.
Cloud Pers. Emer. Discipline, 68-95. IGI Global (2013). Accessed 4 Jan 2017

5. Wan, K., Alagar, V.: Context-aware security solutions for cyber physical systems. Mob.
Netw. Appl. 19(2), 212 (2014)

6. Mikusz, M.: Cyber-physical systems as service systems: implications for S-D logic. In: The
2015 Naples Forum on Service, pp. 1-19 (2015)

7. Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta, V.,
Wang, S.: Toward a science of cyber—physical system integration. Proc. IEEE 100(1), 29-44
(2012)

10.

11.

12.

13.

14.

15.

Flexible Service Provision in Context-Aware CPS 883

Alcarria, R., Robles, T., Dominguez, A.M., Gonzdlez-Miranda, S.: Flexible service
composition based on bundle communication in OSGi. KSII Trans. Internet Inf. Syst.
6(1), 116-130 (2012)

Alcarria, R., Valladares, T.R., Morales, A., Ipifia, D.L., Aguilera, U.: Enabling flexible and
continuous capability invocation in mobile prosumer environments. Sensors 12(7),
8930-8954 (2012)

Robles, T., Alcarria, R., Morales, A., Martin, D.: Supporting variability dependencies for
rule-based service compositions in prosumer environments. Int. J. Web Grid Serv. 11(1), 57—
77 (2015)

Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15),
2787-2805 (2010)

Spiess, P., Karnouskos, S., Guinard, D., Savio, S., Baecker, O., Souza, L., Trifa, V.:
SOA-based integration of the internet of things in enterprise services. In: Proceedings of
IEEE ICWS, Los Angeles, USA, July 2009

Duquennoy, S., Grimaud, G., Vandewalle, J.J.: The web of things: interconnecting devices
with high usability and performance. In: Proceedings of ICESS 2009, HangZhou, Zhejiang,
China, May 2009

Buckl, C., Sommer, S., Scholz, A., Knoll, A., Kemper, A., Heuer, J., Schmitt, A.: Services to
the field: an approach for resource constrained sensor/actor networks. In: Proceedings of
WAINA 2009, Bradford, United Kingdom, May 2009

Song, E.Y., Lee, K.: Understanding IEEE 1451-networked smart transducer interface
standard-what is a smart transducer? IEEE Instrum. Measur. Mag. 11(2), 11-17 (2008)

	Flexible Service Provision in Context-Aware Cyber-Physical Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Context-Aware Cyber-Physical Systems
	4 Enabling Flexible Service Provision
	4.1 Profile Detection and Execution
	4.2 Consistency Checker

	5 Experimental Validation
	6 Conclusions
	Acknowledgments
	References

