ARTICLE IN PRESS

Pattern Recognition Letters xxx (2008) xxx-xxx

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Automatic medical image annotation in ImageCLEF 2007: Overview, results, and discussion

Thomas Deselaers ^{a,*}, Thomas M. Deserno^b, Henning Müller ^{c,d}

^a RWTH Aachen University, Computer Science Department, Aachen, Germany

^b RWTH Aachen University, Department of Medical Informatics, Aachen, Germany

^c_IUniversity and Hospitals of Geneva, Medical Informatics, Geneva, Switzerland

^dBusiness Information System, University of Applied Sciences Sierre, Switzerland

ARTICLE INFO

Article history: Available online xxxx

2

6

8

Keywords: Automatic image annotation Medical images Benchmark Evaluation

ABSTRACT

In this paper, the automatic medical annotation task of the 2007 CLEF cross language image retrieval campaign (ImageCLEF) is described. The paper focusses on the images used, the task setup, and the results obtained in the evaluation campaign. Since 2005, the medical automatic image annotation task exists in ImageCLEF with increasing complexity to evaluate the performance of state-of-the-art methods for completely automatic annotation of medical images based on visual properties. The paper also describes the evolution of the task from its origin in 2005–2007. The 2007 task, comprising 11,000 fully annotated training images and 1000 test images to be annotated, is a realistic task with a large number of possible classes at different levels of detail. Detailed analysis of the methods across participating groups is presented with respect to the (i) image representation, (ii) classification method, and (iii) use of the class hierarchy. The results show that methods which build on local image descriptors and discriminative models are able to provide good predictions of the image classes, mostly by using techniques that were originally developed in the machine learning and computer vision domain for object recognition in non-medical images.

© 2008 Elsevier B.V. All rights reserved.

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

36 1. Introduction

Quantitative evaluation of performance is a crucial step in nearly every research and engineering problem. Without quantitative comparison and evaluation of competing approaches, it is impossible to determine which directions are promising and which are not. In the past, it was shown that evaluation campaigns that independently compare the state-of-the-art systems of different research groups foster improvements (Pallet, 2003).¹

Centrally organised benchmarks such as the Text REtrieval Conference (TREC)² (Voorhees and Harman, 2005) and the NIST open machine translation evaluation³ (National Institute of Standards and Technology (NIST), 2001–2008) are well established events. These are organised annually in information retrieval and machine translation, respectively.

The PASCAL visual object classes challenge (PASCAL VOC),⁴ which has been organised annually since 2005, aims at comparing

Corresponding author. Tel.: +49 241 8021613; fax: +49 241 8022219.
 E-mail addresses: deselaers@cs.rwth-aachen.de (T. Deselaers), deserno@ieee.org

- (T.M. Deserno), henning.mueller@sim.hcuge.ch (H. Müller). URL: http://www-i6.informatik.rwth-aachen.de/~deselaers (T. Deselaers).
- ¹ http://www.nist.gov/speech/history.

² http://trec.nist.gov.

Z

- ³ http://www.nist.gov/speech/tests/mt/index.htm.
- ⁴ http://www.pascal-network.org/challenges/VOC.

0167-8655/\$ - see front matter \odot 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.patrec.2008.03.001

different methods for object recognition, detection, and, more recently, segmentation (Everingham et al., 2005, 2006). ImagEVAL⁵ ran a first evaluation campaign for different aspects of content-based image access in 2006 (Moëllic and Fluhr, 2006). TRECVID⁶ is part of TREC and has organised video retrieval evaluations on an annual basis since 2001 with the goal to promote progress in content-based retrieval from digital video. The initiative for the Evaluation of XML Retrieval (INEX)⁷ has offered a multimedia track since 2005 with various query and document types.

Furthermore, two technical committees (TCs) of the International Association for Pattern Recognition (IAPR)⁸ work on benchmarking and on multimedia systems respectively. The IAPR TC 12⁹ actively works on creating the MediaMill challenges (Snoek et al., 2006) and the IAPR TC 5¹⁰ works on benchmarking and software in a more general context in pattern recognition.

ImageCLEF¹¹ was one of the first campaigns organising evaluation events for image retrieval applications. ImageCLEF is part of

- ⁶ http://www-nlpir.nist.gov/projects/t01v.
- ⁷ http://inex.is.informatik.uni-duisburg.de.

- ⁹ http://staff.science.uva.nl/~worring/TC12.
- ¹⁰ http://www.dsic.upv.es/~iaprtc5.
- ¹¹ http://www.imageclef.org.

⁵ http://www.imageval.org.

⁸ http://www.iapr.org.

129

141

142

143

144

145

146

147

148

149

160

161

162

163

164

165

166

169

170

171

172

2

84

T. Deselaers et al./Pattern Recognition Letters xxx (2008) xxx-xxx

the cross language evaluation forum (CLEF).¹² CLEF and ImageCLEF
 are described in Section 2.

71 The remainder of this paper is structured as follows: Section 2 72 gives an overview of CLEF with a focus on ImageCLEF and the med-73 ical image annotation task. The coding scheme, which is used to 74 represent image annotations, is described in Section 3. The dataset 75 used for the medical image annotation task in ImageCLEF 2007 is 76 described in Section 4. The description of the task is completed 77 with the evaluation scheme that is applied to assess annotation 78 quality in Section 5. In Section 6, a short description of the methods 79 that were applied by the individual groups in ImageCLEF 2007 is given and in Section 7, the results of the evaluation are presented. 80 The results are discussed in Section 8, and conclusions are pre-81 sented in Section 9. In the appendix, we present a table with the 82 83 results of all runs that were submitted in 2007.

2. CLEF and ImageCLEE

The cross language evaluation forum¹³ (CLEF) originally started 85 as a track for multi-lingual information access in the Text REtrieval 86 Conference¹⁴ (TREC). It aims at supporting global digital library 87 applications by developing an infrastructure for testing, tuning, 88 89 and evaluating information retrieval systems. In particular, CLEF cre-90 ates test suites of reusable data, which can be employed by system 91 developers to benchmark their systems. In contrast to TREC, CLEF fo-92 cuses on multi-lingual and more recently on multi-modal aspects of 93 information retrieval. ImageCLEF began as a pilot experiment in 2003 with a bilingual ad hoc retrieval task consisting of a database 94 95 of images with accompanying texts in one language. They were searched using textual queries written in a different language 96 97 (Clough and Sanderson, 2004). ImageCLEF 2003 attracted four partic-98 ipants, and the approaches used a range of text-based retrieval and 99 query enhancement techniques such as query expansion. In 2004, 100 a medical and an interactive retrieval task were added to ImageCLEF (Clough et al., 2005). The medical task used a set of images with 101 102 associated medical case notes and was primarily offered as a 103 query-by-(visual)-example (QBE) retrieval task (Faloutsos et al., 104 1994) because the search tasks supplied by the organisers contained 105 only images but no text. However, participants could involve text in 106 subsequent retrieval iterations through relevance feedback or query 107 expansion and combine both image processing and text-based re-108 trieval methods. ImageCLEF 2004 attracted participation from 18 re-109 search groups across the world, demonstrating the need for such an 110 evaluation campaign. In 2005, a medical image annotation task was 111 added to ImageCLEF and participation increased strongly, in particu-112 lar for the newly offered image annotation task where 12 groups 113 from 9 countries participated (Clough et al., 2006; Deselaers et al., 114 2007b). In ImageCLEF 2005 a total of 20 groups participated.

In 2006, the medical annotation task was continued with an enlarged dataset and a higher number of classes, and the database
used for medical retrieval grew to approximately 50,000 images
(Müller et al., 2007b). The photographic retrieval task used the
new IAPR TC 12 database of vacation photographs¹⁵ (Grubinger
et al., 2006), and an object detection task was added (Clough et al.,
2007). A total of 24 groups participated.

In 2007, 38 groups participated in ImageCLEF. The medical annotation task was extended towards hierarchical classification, the medical retrieval database grew to approximately 70,000 images (Müller et al., 2007a), the photographic retrieval task used sparse textual data (Grubinger et al., 2007), and the object detection task was replaced by an object retrieval task (Deselaers 127 et al., 2007a). 128

2.1. Medical automatic image annotation tasks 2005 and 2006

Starting in 2005, automatic medical image annotation has 130 evolved from a simple classification task with about 60 classes to 131 a task with almost 120 classes. From the very start however, it 132 was clear that the number of classes cannot be scaled indefinitely 133 and that the number of classes that are desirable to be recognised 134 in medical applications is far too big to assemble sufficient training 135 data to create suitable classifiers. To address this issue, a hierarchi-136 cal class structure such as the image retrieval in medical applica-137 tions (IRMA) code (Lehmann et al., 2003) can be a solution 138 because it supports the creation of a set of classifiers for 139 subproblems. 140

The classes in the years 2005 and 2006 were based on the IRMA code. They were created by grouping similar codes in a single class. In 2007, the task has changed, and the objective is to predict complete IRMA codes instead of simple classes.

The 2007 medical automatic annotation task builds on top of the task in 2006: 1000 new images were collected and are used as test data. The training and the test data of 2006 were used as training and development data, respectively.

3. The IRMA code

Existing medical terminologies such as the medical subject 150 headings (MeSH) thesaurus are poly-hierarchical, i.e., a code entity 151 can be reached over several paths. However, in the field of content-152 based image retrieval, we frequently find class-subclass relations. 153 The mono-hierarchical multi-axial IRMA code strictly relies on 154 such part-of hierarchies and, therefore, avoids ambiguities of tex-155 tual classification (Lehmann et al., 2003). In particular, the IRMA 156 code is composed of four axes having three to four positions, each 157 in $\{0, \dots, 9, a, \dots, z\}$, where "0" "denotes" 'not further specified'. 158 More precisely: 159

- the technical code (T) describes the imaging modality;
- the directional code (D) models body orientations;
- the anatomical code (A) refers to the body region examined; and
- the biological code (B) describes the biological system 167 examined.

This results in a string of 13 characters (IRMA: TTTT – DDD – AAA – BBB). Some example codes for the body region axis (BBB) are given in Table 1.

Example codes	for the	body	region	axis
---------------	---------	------	--------	------

000 not further specified ... 400 upper extremity (arm) 410 upper extremity (arm); hand 411 upper extremity (arm); hand; finger 412 upper extremity (arm); hand; middle hand 413 upper extremity (arm); hand; carpal bones 420 upper extremity (arm); radio carpal joint 430 upper extremity (arm); forearm 431 upper extremity (arm); forearm; distal forearm 432 upper extremity (arm); forearm; proximal forearm 440 upper extremity (arm); elbow ...

¹² http://www.clef-campaign.org.

¹³ http://www.clef-campaign.org/.

¹⁴ http://trec.nist.gov/.

¹⁵ http://eureka.vu.edu.au/~grubinger/IAPR/TC12_Benchmark.html.

173 The IRMA code can easily be extended by introducing charac-174 ters in a certain code position, e.g., if new imaging modalities are 175 introduced. Based on the hierarchy, the more code positions differ 176 from "0", the more detailed is the description.

The potential advantage of using a class hierarchy over using a 177 flat class scheme is that it is in principle possible to create classi-178 fiers for large numbers of classes by creating classifiers discrimi-179 nating between subclasses. Furthermore, a hierarchy-aware 180 classification scheme could potentially be extended when the hier-181 archy is extended, whereas most flat classification schemes need 182 to be retrained from scratch. 183

184 4. Database and task description

185 The complete database consists of 12.000 fully classified medical radiographs taken randomly from clinical routine at the 186 RWTH Aachen University Hospital. 10,000 of these were released 187 along with their classification as training data, another 1000 188 were also published with their classification as validation data 189 190 to allow for tuning classifiers in a standardised manner. One 191 thousand additional images were released at a later date without 192 classification as test data. These 1,000 images had to be classified using the 11,000 images (10,000 training + 1000 validation) as 193 194 training data.

195 Each of the 12,000 images is annotated with its complete IRMA code (see Section 3). In total, 116 different IRMA codes oc-196 cur in the database. The codes are not uniformly distributed, and 197 some codes have a significantly larger share among the data 198 than others (Fig. 2). The least frequent codes are represented 199 at least 10 times in the training data to allow for learning suit-200 201 able models.

Example images from the database together with textual labels 202 203 and their complete code are given in Fig. 1.

5. Hierarchical classification

To define an evaluation scheme for hierarchical classification. we assume the four axes to be independent and uncorrelated. Hence, we can consider the axes separately and just sum up the errors for each axis individually.

Hierarchical classification is a well-known topic in various fields. The classification of documents is often done using an ontology-based class hierarchy (Sun and Lim, 2001), and in information extraction similar techniques are applied (Maynard et al., 2006). In our case, however, we developed a novel evaluation scheme to account for the particularities of the IRMA code, which considers errors that are made early in a hierarchy to be worse than errors that are made at a fine level, and it is explicitly possible to predict a code partially, i.e., to predict a code up to a certain position and put wild-cards for the remaining positions, which is penalised half as strongly as a misclassification.

Our evaluation scheme is described in the following, where we only consider one axis. The same scheme is applied to each axis individually.

Let $l_1^l = l_1, l_2, \dots, l_i, \dots, l_l$ be the *correct* code (for one axis) of an image, i.e., if a classifier predicts this code for an image, the classification is perfect. Further, let $l_1^l = \hat{l_1}, \hat{l_2}, \dots, \hat{l_i}, \dots, \hat{l_l}$ be the *pre*dicted code (for one axis) of an image.

The correct code is specified completely: l_i is specified for each position. The classifiers however, are allowed to specify codes only up to a certain level, and predict "don't know" (encoded by *) for the remaining levels of this axis.

Given an incorrect classification at position \hat{l}_i we consider all succeeding decisions to be wrong and given a non-specified ("don't know") position, we consider all succeeding decisions to be not specified.

We want to penalise wrong decisions that are easy (fewer possible choices at that node) over wrong decisions that are difficult

1121-120-200-700

- T: x-ray, plain radiography, analog, overview image D: coronal, anteroposterior (AP, coronal), unspecified
- A: cranium, unspecified, unspecified
- B: musculosceletal system, unspecified, unspecified

1121-127-700-500

- T: x-ray, plain radiography, analog, overview image D: coronal, anteroposterior (AP, coronal), supine A: abdomen, unspecified, unspecified
- B: uropoietic system, unspecified, unspecified

1121-120-310-700

- T: x-ray, plain radiography, analog, overview image
- D: coronal, anteroposterior (AP, coronal), unspecified spine, cervical spine, unspecified
- B: musculosceletal system, unspecified, unspecified

1123-211-500-000

- T: x-ray, plain radiography, analog, high beam energy D: sagittal, lateral, right-left, inspiration
- A: chest, unspecified, unspecified
- B: unspecified, unspecified, unspecified

Fig. 1. Example images from the medical annotation task with full IRMA-code and its textual representation.

Please cite this article in press as: Deselaers, T. et al., Automatic medical image annotation in ImageCLEF 2007: ..., Pattern Recognition Lett. (2008), doi:10.1016/j.patrec.2008.03.001

3

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

ARTICLE IN PRESS

281

286

287

288

296

309

314

4

241

242

243

244

245

246 247

249

252

254

255

256

257

258

259

260

261

275

T. Deselaers et al./Pattern Recognition Letters xxx (2008) xxx-xxx

(many possible choices at that node). We can say that a decision at position l_i is correct by chance with a probability of $\frac{1}{b_i}$, if b_i is the number of possible labels (the "branching factor") for position *i*. This assumes equal priors for each class at each position.

Furthermore, we want to penalise wrong decisions at an early stage in the code (higher up in the hierarchy) over wrong decisions at a later stage in the code (lower down on the hierarchy), i.e., l_i is more important than l_{i+1} .

Assembling the ideas from above in a straightforward manner leads to the following equation:

$$\operatorname{Error} = \sum_{i=1}^{l} \underbrace{\frac{1}{b_i}}_{(a)} \underbrace{\frac{1}{i}}_{(b)} \underbrace{\delta(l_i, \hat{l}_i)}_{(c)}$$
(1)

250 with

$$\delta(l_i, \hat{l}_i) = \begin{cases} 0 & \text{if } l_j = l_j \quad \text{for all } j \leq i \\ 0.5 & \text{if } l_j =^* \quad \text{for some } j \leq i \\ 1 & \text{if } l_i \neq \hat{l}_i \quad \text{for some } j \leq i \end{cases}$$

where the parts of the equation account for

(b) the level in the hierarchy (position in the string);

(c) correct/not specified/wrong, respectively.

In addition, for every code, the maximal possible error is calculated and the errors are normed such that a completely false decision (i.e., all positions false) gets an error count of 1.0 and an in all positions correctly classified image has an error of 0.0.

262 Table 2 shows examples for a correct code with different pre-263 dicted codes. Predicting the completely correct code leads to an er-264 ror measure of 0.0, predicting all positions incorrectly leads to an 265 error measure of 1.0. The examples in Table 2 demonstrate that a classification error in a position to the end of the code results in 266 267 a lower error measure than a position in one of the first positions. 268 The last column of the table shows the effect of the branching fac-269 tor *b*. In this column we assumed b = 2 in each node of the hierar-270 chy. It can be observed that the errors for the later positions have 271 more weight compared to the real errors in the real hierarchy.

For example, the calculation for the classification 3177 is done as follows:

$$EM(3177) = \frac{\frac{1}{10} \cdot \frac{1}{1} \cdot 0 + \frac{1}{3} \cdot \frac{1}{2} \cdot 0 + \frac{1}{9} \cdot \frac{1}{3} \cdot 1 + \frac{1}{16} \cdot \frac{1}{4} \cdot 1}{\frac{1}{10} \cdot \frac{1}{1} \cdot 1 + \frac{1}{3} \cdot \frac{1}{2} \cdot 1 + \frac{1}{9} \cdot \frac{1}{3} \cdot 1 + \frac{1}{16} \cdot \frac{1}{4} \cdot 1},$$
(2)

where the denominator of the error measure is used to normalise the score according to the maximally possible error. The branching factors for the positions are 10, 3, 9, and 16, respectively, and the individual summands in the nominator and denominator are constructed according to Eq. (1).

Table 2

Example scores for hierarchical classification for one axis

Classified	Error measure	Error measure $(b = 2)$
318a	0.000	0.000
318*	0.024	0.060
3187	0.049	0.120
31*a	0.082	0.140
31***	0.082	0.140
3177	0.165	0.280
3***	0.343	0.260
32**	0.687	0.520
1000	1.000	1.000

The correct IRMA code is assumed to be TTTT = 318a. The columns denote (from left to right) hypothesised codes, the error measure as described above, and the error Q1 measure where a branching factor b = 2 is assumed in each node in the hierarchy.

6. Participating groups and methods

In the medical automatic annotation task 2007, 29 groups registered of which 10 groups participated, submitting a total of 68 runs. The group with the highest number of submissions had 30 runs in total. 282

In the following, groups are listed alphabetically and their methods are described briefly.

6.1. BIOMOD: University of Liege, Belgium

The Bioinformatics and Modelling group from the University of Liege¹⁶ in Belgium submitted four runs. The approach is based on an object recognition framework using extremely randomised trees and randomly extracted sub-windows (Marée et al., 2005). All runs use the same technique but differ in the way the code is assembled. One run predicts the full code, one run predicts each axis independently and the other two runs are combinations of these. 289

6.2. BLOOM: IDIAP, Switzerland

The Blanceflor-om2-toMed group from IDIAP in Martigny, Switzerland submitted 7 runs. All runs use support vector machines (either in one-against-one or one-against-the-rest manner). Features used are downscaled versions of the images, SIFT (Scale-Invariant Feature Transform) features extracted from sub-images, and combinations of these (Tommasi et al., 2007). 302

6.3. GENEVA: medGIFT group, Switzerland 303

The medGIFT group¹⁷ from Geneva, Switzerland submitted 3 runs, each of the runs uses the GIFT (GNU Image Finding Tool) image retrieval system. Different voting strategies were used to obtain classifications at different depths of the code hierarchy (Zhou et al., 2007). 308

6.4. CYU: Information Management AI Lab, Taiwan

The Information Management AI lab from the Ching Yun University of Jung-Li, Taiwan submitted one run using a nearest neighbour classifier using different global and local image features, which are particularly robust with respect to lighting changes. 313

6.5. MIRACLE: Madrid, Spain

The Miracle group from Madrid, Spain¹⁸ submitted 30 runs. The 315 classification was done using a 10-nearest neighbour classifier and 316 the features used are gray-value histograms, Tamura texture fea-317 tures, global texture features, and Gabor features, which were ex-318 tracted using FIRE. The runs differ in the features used, how the 319 prediction was done (predicting the full code, axis-wise prediction, 320 different subsets of axes jointly), and whether the features were nor-321 malised or not. 322

6.6. OHSU: Oregon Health and Science University, Portland, OR, USA 323

The Department of Medical Informatics and Clinical Epidemiology¹⁹ of the Oregon Health and Science University in Portland, Oregon submitted two runs using neural networks and GIST descriptors. 326 One of the runs uses a support vector machine as a second level classifier to help in discriminating the two most difficult classes. 328

¹⁶ http://www.montefiore.ulg.ac.be/services/stochastic/biomod.

¹⁷ http://www.sim.hcuge.ch/medgift.

¹⁸ http://www.mat.upm.es/miracle/introduction.html.

¹⁹ http://www.ohsu.edu/dmice.

Table 3Results of the evaluation by participating group

group Submissions		Rank		Score		<mark>=</mark>)		ER	ER		
		Min	Max	Min	Max	Mean	Median	Min	Max	Mean	Median
BIOMOD	4	30	35	73.82	95.25	80.90	77.26	22.90	36.00	29.28	29.10
BLOOM	7	1	29	26.85	72.41	40.44	29.46	10.30	20.80	13.77	11.50
GENEVA	3	63	65	375.72	391.02	385.68	390.29	99.00	99.70	99.33	99.30
CYU	1	33	33	79.30	79.30	79.30	79.30	25.30	25.30	25.30	25.30
MIRACLY	30	36	68	158.82	505.62	237.42	196.18	49.30	89.00	62.09	55.50
OHSU	2	26	27	67.81	67.98	67.89	67.89	22.70	22.70	22.70	22.70
RWTHi6	6	6	13	30.93	44.56	35.16	33.88	11.90	17.80	13.38	12.55
IRMA	3	17	34	51.34	80.47	61.45	52.54	18.00	45.90	27.97	20.00
UFR	5	7	16	31.44	48.41	41.29	45.48	12.10	17.90	15.36	16.80
UNIBAS	7	19	25	58.15	65.09	61.64	61.41	20.20	23.20	22.26	22.50

For each group, the number of submitted runs, the rank of the best and worst run, and the minimum, maximum, mean, and medium error count and error rate are given.

329 6.7. RWTHi6: RWTH Aachen University, Aachen, Germany

The human language technology and pattern recognition 330 group²⁰ of the RWTH Aachen University in Aachen, Germany sub-331 332 mitted 6 runs; all are based on sparse histograms of image patches, 333 which were obtained by extracting patches at each position in the 334 image. The histograms have 65536 or 4096 bins (Deselaers et al., 335 2006). The runs differ in the resolution of the images. One run is a 336 combination of 4 normal runs, and one run does the classification 337 axis-wise. The other runs directly predict the full code.

6.8. IRMA: RWTH Aachen University, Medical Informatics, Aachen, Germany

340 The IRMA (Image Retrieval for Medical Applications) group from the RWTH Aachen University Hospital²¹, in Aachen, Germany 341 submitted three baseline runs using weighted combinations of near-342 est neighbour classifiers using texture histograms, image cross cor-343 344 relations, and the image deformation model. The parameters used 345 are exactly the same as used in previous years. The runs differ in 346 the way in which the codes of the five nearest neighbours are used 347 to assemble the final predicted code.

6.9. UFR: University of Freiburg, Computer Science Department, Freiburg, Germany

The Pattern Recognition and Image Processing group from the 350 University Freiburg,²² Germany, submitted four runs using rela-351 352 tional features calculated around interest points which are later 353 combined to form cluster cooccurrence matrices (Setia et al., 354 2006). Three different classification methods were used: a flat classification scheme using all of the 116 classes, an axiswise-flat classi-355 fication scheme (i.e., 4 multi-class classifiers), and a binary 356 357 classification tree (BCT) based scheme. The BCT based approach is 358 much faster to train and classify, but comes at a slight performance 359 penalty. The tree was generated as described in (Setia and Burkhardt, 360 2007).

361 6.10. UNIBAS: University of Basel, Switzerland

The Databases and Information Systems group from the University of Basel,²³ Switzerland submitted 14 runs using a pseudo twodimensional hidden Markov model to model image deformation in the images that were scaled down, keeping the aspect ratio such that the longer side has a length of 32 pixels (Springmann and Schuldt, 2007). The runs differ in the features (pixels, Sobel features) that were used to determine the deformation and in the *k*-parameter for the *k*-nearest neighbour classifier.

7. Results

The results of the evaluation are given in Table 3 ordered by group. A full list of all submitted runs is also given in Appendix A. Table 3 gives for each group the number of submitted runs, the best and the worst rank, as well as the minimum, maximum, mean, and median error count and classification error rate. The groups are ordered by the error score of their best submission and it can be seen that there are three groups of submissions: groups with a best error count of approximately 30, groups with an error score between 30 and 80, and groups with worse results.

The method that had the best result in 2006 is at rank 8 in 2007. The method with the best result in 2005 is the main component of the runs on ranks 17 to 25 in 2007. This gives a sense of how much improvement in this field has been achieved since 2005.

8. Discussion

Fig. 2 (bottom) is the average confusion matrix over all submitted runs, with the correct class on the y-axis and the predicted class on the x-axis. The 13 columns at the right border of the confusion matrix denote classifications, with 1 to 13 (from left to right) wildcards. That is, the right-most column denotes classifications where no single code position was predicted but each position was unspecified. The classes in the confusion matrix are sorted by frequency of the class in the training data. The frequency of the classes in the training data is plotted in the upper part of Fig. 2. The most outstanding feature of the confusion matrix is that a large portion of the images are classified correctly on the average. Furthermore, it can be observed that due to the skewed class distribution to the low class numbers, there are hardly any misclassifications from frequent classes to more rare classes but only from rare classes (high class number) to frequent classes (low class number). This effect can be explained by the higher prior probabilities for the more frequent classes.

The matrix also shows that the classes which are well represented in the training data are more likely to be classified correctly. Fig. 3 directly shows the connection between classification error and amount of training data. The *x*-axis of Fig. 3 gives the frequency of the classes/codes in the training data and the *y*-axis gives the relative error for the codes averaged over all submitted runs. It can be observed that classes that occur rarely in the training data are more likely to have high errors (top left region), whereas frequent classes are seldom misclassified. 367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390 391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

²⁰ http://www-i6.informatik.rwth-aachen.de.

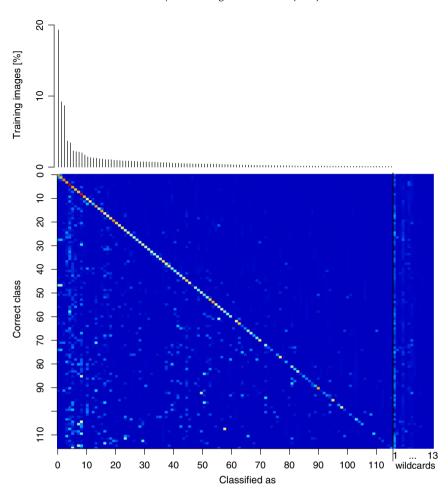
²¹ http://www.irma-project.org.

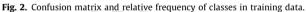
²² http://lmb.informatik.uni-freiburg.de.

²³ http://dbis.cs.unibas.ch.

6

ARTICLE IN PRESS





Please cite this article in press as: Deselaers, T. et al., Automatic medical image annotation in ImageCLEF 2007: ..., Pattern Recognition Lett.

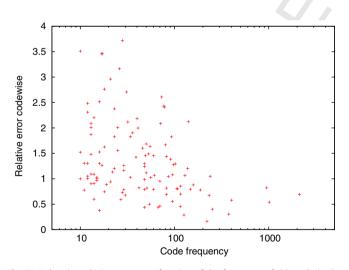


Fig. 3. Code-wise relative error as a function of the frequency of this code in the training data.

Analysing the results for individual images, we noted that only
one image was classified correctly by all submitted runs (top left
image in Fig. 1). No image was misclassified by all runs. The image
which was misclassified most frequently has an average error score
of 0.6 over all runs.

417 Analysing the results, it can be observed that the top-perform-418 ing runs do not consider the hierarchical structure of the given

(2008), doi:10.1016/j.patrec.2008.03.001

task, but rather use each individual code as one class and train a419116-class classifier. This approach seems to work best given the
currently limited amount of codes, but obviously would not scale420up indefinitely and would probably lead to a very high demand
for appropriate training data if a much larger amount of classes
is to be distinguished.420

The best run using the hierarchy is on rank 6. It builds on top of the other runs from the same group and uses the hierarchy only in a second stage to combine the four runs.

One common way to achieve improvements is to combine several runs. After the evaluation was over, we combined the best runs of the top 3 groups (BLOOM/IDIAP, RWTH Aachen University, and UFR) using a voting scheme, where a wildcard is set whenever the runs disagree about a particular position. This results in an error score of 24 (error rate of 10.3), which shows that using the code to combine runs can lead to an improvement of the score, but not of the error rate as every code which includes a wildcard is misclassified. This resulting run uses a total of 52 wildcards on 31 images.

Furthermore, it can be seen that if a method is applied that accounts for the hierarchy/axis structure of the code and if a second method is applied that uses the straightforward classification, the latter one outperforms the first (see the runs on ranks 11 and 13 as well as the runs on ranks 7 and 14, 16).

Another clear observation is that methods using local image443descriptors outperform methods using global image descriptors.444In particular, the top 16 runs all use either local image features445alone or local image features in combination with a global descriptor.446tor. The runs on the ranks 17–25 use local features to obtain defor-447

437

438

439

440

441

442

431

432

ARTICLE IN PRESS

7

T. Deselaers et al./Pattern Recognition Letters xxx (2008) xxx-xxx

448 mation fields to compare the images globally, and the runs on rank

449 26 and 27 are the best runs using pure global image descriptors. 450 Considering the ranking with respect to the applied hierarchical 451 measure and the ranking with according to the error rate it becomes obvious that there are hardly any differences. Most of the 452 differences are clearly due to use of the code (mostly inserting of 453 wildcard characters) which can lead to an improvement for the 454 hierarchical evaluation scheme, but will always lead to a deteriora-455 tion of the error rate. 456

457 9. Conclusion

The progression of the ImageCLEF medical automatic annota-458 459 tion tasks from 2005 to 2007 clearly shows that the image recognition community needs evaluation campaigns like ImageCLEF 460 where specialised methods as well as general purpose image rec-461 462 ognition and machine learning techniques can be applied and com-463 pared based on the same grounds. In 2005, the rather simple task 464 drew a lot of interest and some groups participated in each year. The task was continued with increasing complexity in 2006 and 465 466 2007.

The task is now at the point where it can be applied directly to 467 468 images being inserted into a medical picture archiving system. Now, the question arises whether further evaluations for this type 469 of task are required in the future. The main problem in the 2007 470 task is that it did not force participants to use the hierarchical class 471 472 structure, which would be a requirement if the classes spanned the whole hierarchy, since it is not feasible to produce sufficient train-473 474 ing data to create flat classifiers for such a high number of classes. 475 For the ImageCLEF 2008 evaluation we plan to extend the task 476 toward using more classes with only little support in the training 477 data, to force participants to use wildcards in their classifications.

478 Appendix A. Results of all runs

479 Table A.1.

Table A.1

Results of the medical image annotation task

Results of the medical image annotation task					
Rank	Run id	Score	ER		
1	BLOOM-BLOOM_MCK_oa	26.8	10.3		
2	BLOOM-BLOOM_MCK_00	27.5	11.0		
3	BLOOM-BLOOM_SIFT_00	28.7	11.6		
4	BLOOM-BLOOM_SIFT_oa	29.4	11.5		
5	BLOOM-BLOOM_DAS	29.9	11.1		
6	RWTHi6-4RUN-MV3	30.9	13.2		
7	UFR-UFR_cooc_flat	31.4	12.1		
8	RWTHi6-SH65536-SC025-ME	33.0	11.9		
9	UFR-UFR_cooc_flat2	33.2	13.1		
10	RWTHi6-SH65536-SC05-ME	33.2	12.3		
11	RWTHi6-SH4096-SC025-ME	34.6	12.7		
12	RWTHi6-SH4096-SC05-ME	34.7	12.4		
13	RWTHi6-SH4096-SC025-AXISWISE	44.6	17.8		
14	UFR-UFR_cooc_codewise	45.5	17.9		
15	UFR-UFR_cooc_tree2	48.0	16.9		
16	UFR-UFR_cooc_tree	48.4	16.8		
17	rwth_mi_kl_tn9.187879e-05_common.run	51.3	20.0		
18	rwth_mi_k5_majority.run	52.5	18.0		
19	UNIBAS-DBIS-IDM_HMM_W3_H3_C	58.1	22.4		
20	UNIBAS-DBIS-IDM_HMM2_4812_K3	59.8	20.2		
21	UNIBAS-DBIS-IDM_HMM2_4812_K3_C	60.7	23.2		
22	UNIBAS-DBIS-IDM_HMM2_4812_K5_C	61.4	23.1		
23	UNIBAS-DBIS-IDM_HMM2_369_K3_C	62.8	22.5		
24	UNIBAS-DBIS-IDM_HMM2_369_K3	63.4	21.5		
25	UNIBAS-DBIS-IDM_HMM2_369_K5_C	65.1	22.9		
26	OHSU-OHSU_2	67.8	22.7		
27	OHSU-gist_pca	68.0	22.7		
28	BLOOM-BLOOM_PIXEL_oa	68.2	20.1		

Table A.1 (continued)

Rank	Run id	Score	ER
29	BLOOM-BLOOM_PIXEL_00	72.4	20.8
30	BIOMOD-full	73.8	22.9
31	BIOMOD-correction	75.8	25.3
32	BIOMOD-safe	78.7	36.0
33	im.cyu.tw-cyu_wli6t8	79.3	25.3
34	rwth_mi_k5_common.run	80.5	45.9
35	BIOMOD-independant	95.3	32.9
36	miracle-miracleAAn	158.8	50.3
37	miracle-miracleVAn	159.5	49.6
38–60	Runs from miracle group	-	
61	miracle-miracleVA	325.9	85.2
62	miracle-miracleVATABD	350.2	89.0
63	GE-GE_GIFT10_0.5ve	375.7	99.7
64	GE-GE_GIFT10_0.15vs	390.3	99.3
65	GE-GE_GIFT10_0.66vd	391.0	99.0
66	miracle-miracleVATDAB	419.7	84.4
67	miracle-miracleVn	490.7	82.6
68	miracle-miracleV	505.6	86.8

Score is the hierarchical evaluation score, and ER is the error rate in % that was used in 2005 and 2006 to evaluate the annotation results.

References

- Clough, P.D., Sanderson, M., 2004. The CLEF 2003 cross language image retrieval track. In: Comparative Evaluation of Multi-lingual Information Access Systems, Lecture Notes in Computer Science, vol. 3237, Trondheim, Norway, pp. 581– 593
- Clough, P., Müller, H., Sanderson, M., 2005. The CLEF cross language image retrieval track (ImageCLEF) 2004. In: Fifth Workshop of the Cross-Language Evaluation Forum (CLEF 2004), Lecture Notes in Computer Science, vol. 3491, pp. 597–613.
- Clough, P., Müller, H., Deselaers, T., Grubinger, M., Lehmann, T., Jensen, J., Hersh, W., 2006. The CLEF 2005 cross-language image retrieval track. In: Accessing Multilingual Information Repositories, sixth Workshop of the Cross-Language Evaluation Forum, CLEF 2005, Lecture Notes in Computer Science, vol. 4022, Vienna, Austria, pp. 535-557.
- Clough, P., Grubinger, M., Deselaers, T., Hanbury, A., Müller, H., 2007. Overview of the ImageCLEF 2006 photographic retrieval and object annotation tasks. In: Evaluation of Multi-lingual and Multi-modal Information Retrieval – Seventh Workshop of the Cross-Language Evaluation Forum, CLEF 2006, Lecture Notes in Computer Series, vol. 4730, Alicante, Spain, pp. 579–594.
- Deselaers, T., Hegerath, A., Keysers, D., Ney, H., 2006. Sparse patch-histograms for object classification in cluttered images. In: DAGM 2006, Pattern Recognition, 27th DAGM Symposium, Lecture Notes in Computer Science, vol. 4174, Berlin, Germany, pp. 202–211.
- Deselaers, T., Hanbury, A., Viitaniemi, V., Benczúr, A., Brendel, M., Daróczy, B., Escalante Balderas, H.J., Gevers, T., Hern'andez Gracidas, C.A., Hoi, S.C.H., Laaksonen, J., Li, M., Marin Castro, H.M., Ney, H., Rui, X., Sebe, N., Stöttinger, J., Wu, L., 2007a. Overview of the ImageCLEF 2007 object retrieval task. In: Working Notes of the CLEF 2007 Workshop, Budapest, Hungary.
- Deselaers, T., Müller, H., Clough, P., Ney, H., Lehmann, T.M., 2007b. The CLEF 2005 automatic medical image annotation task. Internat. J. Comput. Vision 74 (1), 51–58.
- Everingham, M., Gool, L.V., Williams, C., Zisserman, A., 2005. Pascal visual object classes challenge results. Tech. Rep., University of Oxford, Oxford, UK.
- Everingham, M., et al., 2006. The 2005 pascal visual object classes challenge. In: Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Textual Entailment (PASCAL Workshop 05 Lecture Notes in Artificial Intelligence, vol. 3944, Southampton, UK, pp. 117-176.
- Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W., 1994. Efficient and effective querying by image content. J. Intell. Inform. Systems 3 (3–4), 231–262.
- Grubinger, M., Clough, P., Müller, H., Deselaers, T., 2006. The IAPR benchmark: A new evaluation resource for visual information systems. In: LREC 06 OntoImage 2006: Language Resources for Content-Based Image Retrieval, Genoa, Italy.
- Grubinger, M., Clough, P., Hanbury, A., Müller, H., 2007. Overview of the imageCLEFphoto 2007 photographic retrieval task. In: Working Notes of the CLEF 2007 Workshop, Budapest, Hungary.
- Lehmann, T.M., Schubert, H., Keysers, D., Kohnen, M., Wein, B.B., 2003. The IRMA code for unique classification of medical images. In: Proc. SPIE, No. 5033, pp. 440–451.
- Marée, R., Geurts, P., Piater, J., Wehenkel, L., 2005. Random subwindows for robust image classification. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2005), IEEE vol. 1, San Diego, CA, USA, pp. 34–40.
- Moëllic, P.-A., Fluhr, C., 2006. ImageEVAL 2006 official campaign. Tech. Rep., ImagEVAL.
- Maynard, D., Peters, W., Li, Y., 2006. Metrics for evaluation of ontology-based information extraction. In: Evaluation of Ontologies for the Web, Edinburgh, UK.

480

481

482

483

484

485

486

487

511

512

513

535

8

537

538

539

540

541

542

543

544

545

546

547

548

549

553

554

T. Deselaers et al./Pattern Recognition Letters xxx (2008) xxx-xxx

- 536 Müller, H., Deselaers, T., Kim, E., Kalpathy-Kramer, J., Deserno, T.M., Hersh, W., 2007a. Overview of the ImageCLEFmed 2007 medical retrieval and annotation tasks. In: Working Notes of the CLEF 2007 Workshop, Budapest, Hungary.
 - Müller, H., Deselaers, T., Lehmann, T., Clough, P., Hersh, W., 2007b. Overview of the ImageCLEFmed 2006 medical retrieval and annotation tasks. In: Evaluation of Multi-lingual and Multi-modal Information Retrieval – Seventh Workshop of the Cross-Language Evaluation Forum, CLEF 2006, LNCS vol. 4730, Alicante, Spain, pp. 595-608.
 - National Institute of Standards and Technology (NIST), 2001-2008. NIST open MT machine translation evaluation. <http://www.nist.gov/speech/tests/mt/ index.htm>.
 - Pallet, D.S., 2003. A look at NIST's benchmark ASR tests: Past, present, and future. Tech. Rep., National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA. URL <http://www.nist.gov/speech/history/>.
- 550 Sun, A., Lim, E.-P., 2001. Hierarchical text classification and evaluation. In: IEEE 551 International Conference on Data Mining (ICDM 2001), San Jose, CA, USA, pp. 552 521-528.
 - Springmann, M., Schuldt, H., 2007. Speeding up IDM without degradation of retrieval quality. In: Working Notes of the CLEF Workshop 2007.

- Setia, L., Burkhardt, H., 2007. Learning taxonomies in large image databases. In: ACM SIGIR Workshop on Multimedia Information Retrieval, Amsterdam, Holland.
- Setia, L., Teynor, A., Halawani, A., Burkhardt, H., 2006. Image classification using cluster-cooccurrence matrices of local relational features. In: Proc. 8th ACM Internat. Workshop on Multimedia Information Retrieval, Santa Barbara, CA, USA.
- Snoek, C.G., Worring, M., van Gemert, J.C., Geusebroek, J.-M., Smeulders, A.W., 2006. The challenge problem for automated detection of 101 semantic concepts in multimedia. In: ACM Multimedia, Santa Barbara, CA, USA, pp. 421-430.
- Tommasi, T., Orabona, F., Caputo, B., 2007. CLEF2007 Image annotation task: An SVM - based cue integration approach. In: Working Notes of the 2007 CLEF
- Workshop, Budapest, Hungary. Voorhees, E.M., Harman, D.K., 2005. TREC: Experiment and Evaluation in Information Retrieval (Digital Libraries and Electronic Publishing). The MIT Press.
- Zhou, X., Gobeill, J., Ruch, P., Müller, H., 2007. University and Hospitals of Geneva at ImageCLEF 2007. In: Working Notes of the 2007 CLEF Workshop, Budapest, Hungary.

571 572 573

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

574