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Abstract— Diabetic Macular Edema (DME) is one of the many 

eye diseases which is commonly found in diabetic patients. If its 
left untreated it may cause vision loss. This paper focuses on 
classification of abnormal and normal OCT image volumes using 
a pre-trained CNN network. Using VGG16, features are 
extracted at different layers of network e.g.: Before fully 
connected layer and after each fully connected layer. On the basis 
of these features classification has been performed using different 
classifier, results  
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I. INTRODUCTION  
Diabetic Macular Edema (DME) is a type of eye disease due 
to the damage of blood vessels in the retina. When left 
untreated, DME will cause the build-up of liquid in the macula 
further leading to a swollen area on the retinal layer and 
consequently irreversible eye blindness. A recent review, 
based on SD-OCT images [2], conducted by Trichonas and 
Kaiser [1] highlighted five different patterns of structural 
changes in DME: sponge-like retinal swelling which is also 
known as Diffuse Retinal Thickening (DRT), Cystoid Macular 
Edema (CMD) and Serious Retinal Detachment (SRD), 
Posterior Hyaloidal Traction (PHT) without Tractional Retinal 
Detachment (TRD) and PHT with TRD. 
Automated diagnosis applied to OCT imaging is still at an 
early stage as only academic works have been published and 
no commercial products are yet available. Most of the pioneer 
works on OCT image analysis have focused on the problem of 
retinal layers segmentation [3, 4] or specific lesion (e.g., cysts) 
segmentation as explained in [5, 6]. More recently, SD-OCT 
databases with their corresponding ground-truths were 
provided for benchmarking; for instance a challenge 
(OPTIMA) was organized as a satellite event of the MICCAI 
2015 conference. Regarding Computer Aided Diagnosis, only 
few works have recently been published [12, 13, 14, 15] . 
Some of these works were based on a set of “hand-crafted” 
features combining low level and high level features. 
Dimensionality reduction was done either through Principal 
Component Analysis or bag of Words. On a data set of 32 
volumes [13, 14, 15], distributed evenly between normal and 
abnormal cases, the best results obtained were a sensitivity 
(SE) and specificity (SP) of 87.5% and 87.5%, respectively. 

Nowadays, deep learning has witnessed significant advances 
as compared with other machine learning techniques. In the 
field of medical imaging deep learning is one of the most 
important area of research. A lot of research had been done on 
CT, MRI, PET, and X-ray images using deep learning and 
results are outperforming other learning algorithms with 
applications to dermatology [2], prostate cancer classification  
[8, 9], image registration [10, 11], lung cancer detection [17]  
and many others. Works presented are, for most of them, 
either based on stack Auto-Encoders or Convolutional Neural 
Networks. The later approach use, for most cases, either fine-
tuning or transfer learning because the databases are not 
important enough to train a deep network from scratch.  
This paper focuses on classification of normal and abnormal 
OCT images using one of the state of the art Deep learning 
network: VGG-16. Using VGG-16, features are extracted 
from the SD-OCT images at three different locations in the 
network (after the first, 2nd and 3rd fully connected layers). 
The images provided to the network are either, raw, denoised, 
crop or a combination of these preprocessing steps. 
The rest of the paper is organized as follows. The next part 
will briefly present the dataset as well as the deep network 
used in this study. The third part will present the various 
experiments and the obtained results. The last part will 
highlight the main results obtained during this work. 
 

II. DATASET AND NETWORK 
 
2.1 Dataset 

The dataset used in the proposed algorithm has obtained an 
ethical approval and was acquired by the Singapore Eye 
Research Institute (SERI), using CIRRUS TM (Carl Zeiss 
Meditec, Inc., Dublin, CA) SD-OCT device [13, 14, 15]. The 
dataset consists of 32 OCT volumes (16 DME and 16 normal 
cases). Each volume contains 128 B-scans with resolution of 
1,024 px × 512 px. All SD-OCT volumes were read and 
assessed by trained graders and identified as normal or DME 
based on evaluation of retinal thickening, hard exudates, 
intraretinal cystoid space formation, and subretinal fluid within 
the DME sub-set. 
 



2.2 VGG Network and feature extraction 

K. Simonyan and A. Zisserman [18] proposed a very deep 
convolutional networks for large-scale image recognition 
(VGG). They have designed number of VGG model e.g.; 
VGG19, VGG16, VGG13, VGG11 as shown in Fig.1 The best 
of them obtained 92.7% top-5 test accuracy in ImageNet 
Dataset, that comprises of  over 14 million images belonging 
to 1000 classes. 
 

Figure.1: VGG ConvNet Configuration 
 
In this paper we have used the macroarchitecture of VGG16 as 
can be seen in Fig. 2.  
The input to our VGG ConvNets is of a fixed-size 224 × 224 
RGB image, where eah color channel received a copy of the 
same BScan from our Sd-OCT volumes. Then, the input 
image is passed through a stack of convolutional (conv.) 
layers. The convolution stride is fixed to 1 pixel; the spatial 
padding of conv. layer input is such that the spatial resolution 
is preserved after convolution, i.e. the padding is 1 pixel for 3 
× 3 convolution layers. Spatial pooling is carried out by five 
max-pooling layers, which follow some of the conv. layers 
(not all the conv. layers are followed by max-pooling). Max-
pooling is performed over a 2 × 2 pixel window, with stride 2. 
A stack of convolutional layers (which has a different depth in 
different architectures) is followed by three Fully-Connected 
(FC) layers: the first two have 4096 channels each, the third 
performs 1000- way ILSVRC classification and thus contains 
1000 channels (one for each class). The final layer is the soft-
max layer. The configuration of the fully connected layers is 
the same in all networks. All hidden layers are equipped with 
the rectification (ReLU) non-linearity activation function.  

 

 

Figure.2 Microarchitecture of VGG16 

III. EXPERIMENTS AND RESULTS 
 

3.1 Classification and Evaluation 

At this stage on KNN (with K=1 and 3) and Random Forest 
classifier (100 trees) were tested, using the feature vector 
provided by the VGG network with size ranging from 4096 to 
1000 depending at which level of the FCC the classifier is 
connected to. The evaluation is done in leave of one out patient 
methodology. As each BScan is evaluated, a majority rule is 
employed to classify the whole volume. 

For evaluation purposes, all the results are expressed in 
terms of Sensitivity (SE) and Specificity (SP) leave one out 
data as training/testing. 

• Sensitivity (SE) – The ability of a test to correctly 
identify those with DME disease. 

• Specificity (SP) – The ability of a test to correctly 
identify those without DME disease. 

 
 
3.2 Experiments 

Four experiments were conducted on the dataset with 
different preprocessing. Note that there are a total of 16 
volumes each for DME and normal patients.  

Experiment #1 
 Experiment #1 is carried out on raw datasets with no 
noise removal and without image cropping (A), where the 
layers are detected using the algorithm presented in [12]. Fig.3 
shows the example of input image for DME and normal 
patient. Table 1 shows the obtained results for the different 
classifiers and different level in the FCC. 



 
Fig. 3 Raw Dataset. (a) DME patient (b) Normal Patient 

Table.1 Classication results with no noise removal and no image cropping (A) 
after Ist Fully Connected Layer (1-FCL), 2nd  Fully Connected Layer(2-FCL) 

and 3rd  Fully Connected Layer(3-FCL) 
 1-FCL 2-FCL 3-FCL 

A 

Ac Se Sp Ac Se Sp Ac Se Sp 
K-NN(k=1) 

87
% 

93
% 

81
% 93% 87

% 
100
% 

45
% 

35
% 

64
% 

K-NN(k=3) 
65
% 

81
% 

43
% 

87.5
% 

93
% 81% 84

% 
81
% 

87
% 

Decision Tree 
87
% 

93
% 

81
% 75% 93

% 65% 84
% 

93
% 75 

 

Experiment #2 
 Experiment #2 is carried out on datasets with noise 
removal but without image cropping. Fig.4 shows the example 
of input image for DME and normal patient. Table 2 shows the 
obtained results for the different classifiers and different levels 
in the FCC. 

 
Fig.4 Dataset with noise removal but without image cropping. (a) DME 

patient (b) Normal Patient 

Table.2 Classication results with noise removal but without image cropping 
(B) after Ist Fully Connected Layer (1-FCL), 2nd  Fully Connected Layer(2-

FCL) and 3rd  Fully Connected Layer(3-FCL) 
 1-FCL 2-FCL 3-FCL 

B 

Ac Se Sp Ac Se Sp A
c Se Sp 

K-NN(k=1) 
68.
5% 

37.5
% 

100
% 

87.
5% 

100
% 75% 87

.5 
75
% 100 

K-NN(k=3) 
65
% 

31.5
% 100 90.

6% 
100
% 

81.2
5% 

87
.5 

81.
5% 

100
% 

Decision Tree 
71
% 

81.2
5% 

43
% 

90.
6% 

93.
5% 

87.5
% 

90
.6 

93.
5 

87.
5 

 

Experiment #3 
Experiment #3 is carried out on raw datasets with no noise 
removal but with image cropping. Fig.5 shows the example of 
input image for DME and normal patient. Table.3 shows the 
obtained results for the different classifiers and different levels 
in the FCC. 
 

 
Fig. 5 Dataset with no noise removal but with image cropping. (a) DME 

patient (b) Normal Patient 

 
 
 

Table.3 Classication with no noise removal but with image cropping (C) after 
Ist Fully Connected Layer (1-FCL), 2nd  Fully Connected Layer(2-FCL) and 

3rd  Fully Connected Layer(3-FCL) 
 1-FCL 2-FCL 3-FCL 

C 

Ac Se Sp Ac Se Sp Ac Se Sp 
K-NN(k=1) 

71
% 

43%
* 

100
% 84% 93.5

% 
75
% 84% 100

% 
86
% 

K-NN(k=3) 
76
% 31% 100

% 
87.5
% 93.5 81

% 81% 100
% 

62
% 

Decision Tree 
75
% 

93.5
% 

65
% 87% 100

% 
75
% 

84.5
% 

93.
50 

75
% 

 

Experiment #4 
Experiment #4 is carried out on datasets with noise removal 
and image cropping. Fig. 6 shows the example of input image 
for DME and normal patient. It can be seen that all the harsh 
edges are smoothened and a clearer image of the retinal layer is 
seen. Moreover, the irrelevant parts are also excluded from 
feature extraction. Table.4 shows the obtained results for the 
different classifiers and different levels in the FCC. 
 



 

 
Fig. 6 Dataset with noise removal and image cropping. (a) DME patient 

(b) Normal Patient 

 
 
 

Table.4 Classication with noise removal and image cropping (D) 
after Ist Fully Connected Layer (1-FCL), 2nd  Fully Connected Layer(2-FCL) 

and 3rd  Fully Connected Layer(3-FCL) 
 1-FCL 2-FCL 3-FCL 

D 

Ac Se Sp Ac Se Sp Ac Se Sp 
K-NN(k=1) 

75
% 

53.3
% 

100
% 

87
% 87% 87

% 87 10
0 75 

K-NN(k=3) 
53
% 6% 100

% 
84
% 

81.5
% 

87
% 87 10

0 75 

Decision Tree 
65
% 81 43% 84

% 
81.5

0 
87
% 

84
% 

93.
5 

75
% 

 

IV. CONCLUSION 

In conclusion, the development of OCT which provides 
high resolution of retinal images for DME detection plus the 
adaptation of deep learning has proven to improve image 
classification with high performance of more than accuracy 
90%. Deep learning application on DME detection using 
VGG16 has increased in SE performance of more than 20% 
compared to previous researches. This opens up to a new, 
simple and effective method for early DME detection to aid 
ophthalmologists in biomedical technologies.  

For future works, dimension reduction approach through PCA 
or BoW will be investigated as well as combination of deep 
learning architectures on a voting mode. Moreover, fine-tuning 
techniques will also be investigated. 
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