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Abstract
The processes of radiomics consist of image-based personalized tumor phenotyping for pre-
cision medicine. They complement slow, costly and invasive molecular analysis of tumoral
tissue. Whereas the relevance of a large variety of quantitative imaging biomarkers has been
demonstrated for various cancer types, most studies were based on 2D image analysis of
relatively small patient cohorts. In this work, we propose an online tool for automatically ex-
tracting 3D state-of-the-art quantitative imaging features from large batches of patients. The
developed platform is called QuantImage and can be accessed from any web browser. Its
use is straightforward and can be further parameterized for refined analyses. It relies on a
robust 3D processing pipeline allowing normalization across patients and imaging protocols.

c� Elsevier Ltd.

All rights reserved. 365
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The user can simply drag-and-drop a large zip file containing all image data for a batch of pa-
tients and the platform returns a spreadsheet with the set of quantitative features extracted
for each patient. It is expected to enable high-throughput reproducible research and the
validation of radiomics imaging parameters to shape the future of non-invasive personalized
medicine.

Keywords: Quantitative imaging biomarkers, radiomics, texture analysis, medical imaging,
radiology, web technologies, precision medicine.

1. Introduction
Cancer ecosystems are composed of micro-habitats defining the cancer subtype, stage,

response to treatment, and patient survival [28]. Estimating the composition of tumoral

tissue can therefore provide valuable information for optimal personalized disease

management. Current promising approaches for precision medicine are mostly based

on molecular analyses of biopsied or resected tissue [47]. Nevertheless, the success of

such approaches are hindered by their invasiveness as well as the requirement of slow,

costly and complex analysis of “-omics” data. In addition, the tissue samples used

for molecular analyses are most often acquired from a highly localized tumor region

or from the grinding of whole tumor mass, which does not allow to accurately cap-

ture molecular heterogeneity [30]. The computerized quantitative analysis of existing

diagnostic, treatment planning and follow-up images enables reproducible and com-

prehensive analysis of tumoral regions as a whole, potentially allowing the exploration

of tumor heterogeneity in a non-invasive fashion. The latter spawned the new research

fields of radiomics [40] and imaging genomics [36] (see Chapter 8). The metabolism,

density and structure of tumoral tissue observed in three-dimensional Positron Emis-

sion Tomography (PET), Magnetic Resonance (MR) and Computed Tomography (CT)

images reflects their nature [41], including regions of active cancer cells, angiogenesis,

necrosis [1] and even subsets of underlying cancer-related genomics [32, 31]. Exam-

ples of PET and CT images of heterogeneous Non-Small Cell Lung Cancer (NSCLC)

tumors are depicted in Fig. 12.1.

Radiomics consists of image-based personalized tumor phenotyping, complement-

ing slow, costly and invasive molecular analysis [40, 48]. Computerized quantita-

tive image analysis yields a collection of variables, which are further linked to dis-

ease outcomes and sub-types using advanced statistical and machine learning meth-

ods. These processes are detailed in Fig. 12.2. The main categories of quantitative

imaging biomarkers are intensity, shape and texture, which are characterizing the dis-

tribution of voxel values, the contour of tumors and the spatial transitions between
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Figure 12.1: Axial views of heterogeneous NSCLC tumors. The three CT images on

the left show tumors with solid (red) and ground glass (blue) regions delineated. The

PET image on the right shows the metabolic heterogeneity of the tumor.

voxel values, respectively. Current state-of-the-art in radiomics provided initial ev-

idence about the relevance of these quantitative imaging parameters for precision

medicine [26, 52, 44, 19, 8]. However, several limitations are concerning texture-

based image measures in particular. First, large-scale clinical studies are required to

further validate texture-based features in diverse disease-specific contexts. This is of

primary importance because texture parameters are mostly informative when used in

large groups (e.g., 50 to 100 attributes), requiring large cohorts of patients to respect

acceptable ratios between the number of variables and instances. Second, most stud-

ies are based on sub-optimal texture operators applied in 2D slices that are not able

to capture the wealth of complex three-dimensional tissue architectures available in

modern imaging protocols (see Chapter 3). 3D approaches are emerging [16]. How-

ever, the interpretation of such image measures is challenging since the human cannot

fully visualize opaque 3D solid images. Moreover, few computer tools are available

and they are not specific to PET and CT imaging. Exceptions include LifeX

28

and

CGITA

29

[21], which allow extracting three-dimensional texture measures. However,

they are both based on gray-level matrices only, which have shown limited abilities to

mine rich textural patterns (see Section 3 of Chapter 3).

This work presents an online tool for extracting high-throughput, advanced 3D

radiomics features in PET-CT images. No software installation is required and the

platform can be accessed through any web browser. It allows submitting large batches

of patient files and to download resulting patient-wise collections of radiomics features

in a standard Comma-Separated Values (CSV) data structure. The radiomics attributes

include PET- and CT-specific intensity values, novel distance measures characterizing

metastatic spread, as well as three distinct groups of texture measurements combining

28http://www.lifexsoft.org, as of 5 December 2016.

29https://code.google.com/archive/p/cgita/, as of 5 December 2016.
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Figure 12.2: Illustration of the radiomics processes (toy example): Several quantita-

tive imaging features are extracted from the tumoral region (green) in PET-CT. The

resulting collection of variables spans a hyperspace where distinct cancer sub-types

and treatment responders are ideally occupying well-defined regions. The latter can

be further revealed by advanced statistical and machine learning methods.

advanced analysis and interpretability. All attributes can be parameterized in a simple

web page.

The chapter is structured as follows. The methods of the proposed 3D quanti-

tative image analysis pipeline are detailed in Section 2. Each subsection contains

the necessary technical details to understand and reproduce every quantitative imag-

ing biomarkers: intensity-, distance- and texture-based features. Section 3 details the

workflows and processes of the proposed online tool, which can be used as a reference

manual for the end-user. Conclusions and perspectives are provided in Section 4.

2. Methods
The pipeline of our system is shown in Fig. 12.3. The very first step of the pipeline con-

sists in finding and regrouping image studies and series from a batch zip file uploaded

to the server. For each patient, the latter should include Digital Imaging and Commu-

nications in Medicine (DICOM) files of both CT and PET scans, as well as a DICOM

RT structure file containing the Region(s) Of Interest (ROI) to analyze. The structure

of the zip file and its parsing is detailed in Section 3.2. Nonetheless, it is required to

explain at this point that the DICOM RT file must contain the ROI corresponding to

main tumor referred to as GTV T. Optionally, it may contain secondary ROIs referring

to nodes or metastases named GTV N. The structure of the returned CSV file contain-

ing all 3D quantitative imaging parameters is described in Section 3.3. The following

subsections detail the various steps of the pipeline contained inside the orange box in

Fig. 12.3.
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Figure 12.3: Architecture of the proposed 3D quantitative image analysis pipeline.

2.1. PET-CT alignment
The DICOM RT file is generated with respect to the CT scan and the ROI it is always

in the same scale and alignment as the CT image. This is not the case for the PET

scan. Most often, the resolution of the CT scan is higher than the PET and the volume

covered might be unaligned between the two. The volume position and voxel dimen-

sions specified in the headers of the DICOM files series from the PET and CT scans

are used to resample and to perform a rigid alignment of the PET series on the CT.

This transformation requires an interpolation procedure. The nearest neighbor method

is used to preserve the uptake values of the PET. After this step, the PET and CT vol-

umes contain the same number of voxels and cover the same 3-dimensional region.

Fig. 12.4 shows a full slice as well as a zoomed view of the around the ROI (marked in

green) of fused PET and CT volumes after the alignment. This example will be further

used to illustrate the various steps of the system.

2.2. Intensity-based features
This section details intensity-based features, which are based on the regional distri-

butions of the voxel values. The latter correspond to the Hounsfield Units (HU) and

the Standardized Uptake Values (SUV) in CT and PET images respectively. Only the

voxels inside GTV T and GTV N are used. The system allows to further refine the

ROIs based on multiple user-defined metabolic thresholds on the SUV values. This is

illustrated in Fig. 12.5, where the initial ROI shown in Fig. 12.4 shrinks with respect

to increasing metabolic thresholds ⌧.

2.2.1. Statistics of voxels values
The first four statistical moments are used to characterize the intensity distribution

inside the ROI. By intensity we refer to the voxel values, i.e., HU in CT and SUV in
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Figure 12.4: Left: axial CT slice and PET image overlay after the alignment and

rescaling of the PET image. Right: closeup view of the ROI (green).
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Figure 12.5: Resulting cropped ROI (in blue) when applying increasing metabolic

thresholds ⌧ on the initial ROI shown in Fig. 12.4.

PET (see Section 2.1 of Chapter 1). These statistical moments are the mean µ, standard

deviation �, skewness skew, and kurtosis kurt. Let M⌧ be the region containing the

voxels of the ROI M with intensity value greater than a threshold ⌧. We define NM⌧ as

the number of voxels in M⌧. The position of each voxel is determined by the 3D vector

⇠, and f (⇠) corresponds to the intensity value at the position ⇠. The four moments are

defined as

µM⌧ =
1

NM⌧

X

⇠2M⌧

f (⇠), (12.1)

�M⌧ =

s
1

NM⌧

X

⇠2M⌧

�
f (⇠) � µM⌧

�
2, (12.2)
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Table 12.1: Table with the values of the first four moments of the intensity distribution

for the examples shown in Fig. 12.6.

µM �M skewM kurtM
HU distribution -78.0416 211.2127 -1.3821 9.4431

Normal distribution -78.0416 211.2127 0 3

SUV distribution 3.5962 1.9587 1.5430 6.9098

Normal distribution 3.5962 1.9586 0 3

skewM⌧ =
1

NM⌧�
3

M⌧

X

⇠2M⌧

�
f (⇠) � µM⌧

�
3, (12.3)

kurtM⌧ =
1

NM⌧�
4

M⌧

X

⇠2M⌧

�
f (⇠) � µM⌧

�
4. (12.4)

The skewness measures the symmetry of the distribution. skew = 0 means that the

distribution is symmetric, skew < 0 means that the distribution is more concentrated on

the right of the mean µ (i.e., high voxel values), and skew > 0 when the concentration

is on the left of the µ. The kurtosis measures the tailedness of the distribution, i.e., the

concentration of the data around µ. The higher is the kurtosis, the more concentrated

the data with a high peak at µ. The normal distribution has always skew = 0 because it

is completely symmetric. Its kurtosis is always 3. Fig. 12.6 shows the distributions of

the CT (HU) and PET (SUV) inside the unthresholded ROI M shown in Fig. 12.4. The

normal distribution with identical µ and � as the corresponding distribution is showed

in black to illustrate the significance of skewness and kurtosis. The intensity statistics

of M are specified in Table 12.1.

2.2.2. PET-specific intensity-based features
A set of PET-specific features based on the distribution of SUV intensity values has

been identified in the literature as meaningful for assessing the metabolic properties

of tumors [50, 8]. These are (i) SUV
max

, the maximum SUV value inside the ROI, (ii)

SUV
peak

, the peak SUV measuring the mean SUV value within a spherical neighbor-

hood of 1.2 cm radius and centered at the position of SUV
max

, (iii) MTV , the Metabolic

Tumor Volume, and (iv) TLG, the Total Lesion Glycolysis combining both metabolic

and volumetric information. Let S
max

be the spherical neighborhood of SUV
max

, and

v
vox

the volume of one single voxel. The measures are defined as (following the nota-

tion introduced in Section 2.2.1)

SUV
max

= max

⇠2M

�
f (⇠)

�
, (12.5)
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Figure 12.6: Distribution curves for each intensity measure in CT (top) and PET (bot-

tom). The equivalent normal distributions with corresponding µ and � are shown in

black.

SUV
peak,⌧ =

1

NM⌧\S
max

X

⇠2M⌧\S
max

f (⇠) = µM⌧\S
max

, (12.6)

MTV⌧ = v
vox

· NM⌧ , (12.7)

TLG⌧ = µM⌧ ·MTV⌧. (12.8)

It worth noting that SUV
max

is not a↵ected by the threshold ⌧.

2.3. Distance features: measures of cancer invasiveness
Fried et al. introduced the concept of disease solidity for NSCLC in [23]. It consists of

measuring disease spread by computing the relation between the volume of the main

tumor and all secondary nodes with respect to the volume of their convex hull. The lat-

ter is defined as the smallest convex shape containing all nodules (including the tumor).

Following this concept, we designed new measures of metastases spread based on dis-
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Figure 12.7: Distances features as measures of cancer invasiveness. Various distances

dT,Mi between the barycenter bT of the primary tumor region T and the barycenter bMi

of each metastasis region Mi are computed to measure the spread of disease.

tances between the main tumor (delimited in GTV T) and the metastases (in GTV N).

The various distance measures are illustrated in Fig. 12.7. Let T be volumetric region

of the main tumor and Mi the region of metastasis i. Let bT be the barycenter of the

main tumor, bMi the barycenter of the metastasis i, and bM the barycenter of all metas-

tases. The distance between T and Mi is defined as the Euclidean distance between

their barycenters, i.e.

dT,Mi = ||bT � bMi ||2 (12.9)

The same formula is used to compute the distance between the main tumor and the

barycenter of all metastases dT,M. Considering this definition, and denoting the MTV

in cubic millimeters (mm

3

) of the metastasis Mi as MTVi, seven di↵erent features are

introduced as

(i) the distance between the tumor and the barycenter of all metastases bM

dT,M = ||bT � bM ||2, (12.10)

(ii) the sum of all tumor-metastasis distances

X

i

dT,Mi =
X

i

||bT � bMi ||2, (12.11)
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(iii) the sum of distances weighted by the respective MTV of the metastases

X

i

MTVi · dT,Mi =
X

i

MTVi · ||bT � bMi ||2, (12.12)

(iv) the metastasis remoteness

max

i

�
dT,Mi

 
= max

i

� ||bT � bMi ||2
 
, (12.13)

(v) the metastasis remoteness weighted by the MTV of the corresponding metastasis

max

i

�
MTVi · dT,Mi

 
= max

i

�
MTVi · ||bT � bMi ||2

 
, (12.14)

(vi) the cumulative distance between each metastasis and the barycenter of all metas-

tases

X

i

dMi,M =
X

i

||bMi � bM ||2, (12.15)

and (vii) the MTV-weighted version of the latter

X

i

MTVi · dMi,M =
X

i

MTVi · ||bMi � bM ||2. (12.16)

2.4. Texture features
Another set of quantitative imaging features extracting measures of 3D texture, i.e.,
the spatial transitions between the voxel values (see Section 2.1 of Chapter 1) are

implemented. The three main groups of texture measures are 3D Gray-Level Co-

occurrence Matrices (GLCM) [34], 3D Laplacians of Gaussians (LoG), and 3D Riesz

wavelets [12]. Detailed descriptions and review can be found in Sections 3.1, 2.1

and 2.2 of Chapter 3, respectively. The latter were successfully used in various ra-

diomics applications [24, 22, 18, 19, 13].

2.4.1. Isometric volumes
Inside the body, three-dimensional tissue architectures can be constituted of texture

patterns characterized by transitions between voxel values along any directions of R3

.

To ensure the unbiased management of directions, the voxels of the images must be

isometric, i.e., the dimensions of each voxel �⇠
1

, �⇠
2

, �⇠
3

must be equal (see Sec-

tion 3.2 and Fig. 1.15 of Chapter 1). Moreover, the voxel dimensions must be normal-

ized across patients to allow optimal inter-patient comparisons of image scales and

directions. As a pre-processing step before extracting any texture feature, CT, PET,

and ROI volumes are resampled to have identical isometric voxel sizes. The latter are

set to 0.75 ⇥ 0.75 ⇥ 0.75 mm

3

as a trade-o↵ between data size and image resolution.

Resampling methods are based on cubic spline interpolation for the CT volume and

on nearest neighbors for PET and ROI volumes.
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Figure 12.8: 3D GLCM neighborhood of all possible spatial configurations between

the central voxel (red) and another voxel (semi-transparent) separated by a distance

of 1 and 2 voxels. A displacement parameterized by the index vector �k = (�k
1

=

2,�k
2

= 1,�k
3

= 2) is exemplified between the black voxel and the center one (red).

2.4.2. 3D gray level co-occurrence matrix (GLCM) features
GLCMs constitute a group of popular texture descriptors introduced by Haralick et
al. in [34]. The 2D version of this descriptor is discussed in Section 3.1 of Chap-

ter 3. 3D GLCMs were proposed for the description of 3D textures in [53, 14]. The

properties of 2D GLCMs presented in Table 3.8 of Chapter 3 are also valid for the 3D

extension. 3D GLCMs are extending their 2D counterparts consisting in measuring

the co-occurrences between two voxel values in a 3D neighborhood. Fig. 12.8 shows

the 3D neighborhood of all possible spatial configurations between the central voxel

(red) and another voxel (semi-transparent) separated by a distance of 1 and 2 vox-

els. While the set of 2D directions u can be defined with one single angle ✓ in polar

coordinates, u is parameterized by 2 angles (✓, �) in spherical coordinates (see Sec-

tion 2 of Chapter 2). The 13 equally-sampled directions used to approximate the full

3D neighborhood are detailed in Table 12.2 (see Fig. 1.14 of Chapter 1). The cumu-

lative co-occurrences along every 13 directions allow building approximately locally

rotation-invariant features in a similar fashion as 2D locally rotation-invariant GLCMs

depicted in Fig. 3.10 of Chapter 3. This strategy has been commonly used in the liter-

ature [16]. 11 texture measurements are computed from the GLCMs to characterize

3D texture properties. These are: contrast, correlation, energy, homogeneity, entropy,

inverse di↵erent moment, sum average, sum entropy, sum variance, di↵erence vari-
ance and di↵erence entropy (detailed formula can be found in [33]). The contrast and

energy texture features correspond to our intuitive perception of texture in 2D.
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Table 12.2: The thirteen 3D directions u considered for computing GLCMs.

Coordinates of u 2 R3 ✓ �
(0, 1, 0)

⇡
2

0

(1, 1, 0)

⇡
4

0

(1, 0, 0) 0 0

(1, -1,0) �⇡
4

0

(0, 1, 1)

⇡
2

⇡
4

(0, 0, 1) 0

⇡
2

(0, -1, 1) �⇡
2

3⇡
4

(1, 1, 1)

⇡
4

⇡
4

(1, 0, 1) 0

⇡
4

(1, -1, 1) �⇡
4

⇡
4

(1, 1, -1)

⇡
4

�⇡
4

(1, 0, -1) 0 �⇡
4

(1, -1, -1) �⇡
4

� 3⇡
4

2.4.3. 3D Laplacian of Gaussians (LoG) features
One of the simplest texture descriptor based on convolution is the Laplacian of Gaus-

sians (LoG). The LoG operator is defined for any D-dimensional image in Section 2.1

of Chapter 3. The formula of the operator function is specified in Eq. (3.5) and its main

properties are summarized in Table 3.1. The parameter controlling the size of the LoG

filters is � and allows studying volumetric texture properties at multiple scales. This

� is referred in this section as �
LoG

to distinguish it from the standard deviation of

intensity distributions introduced in Section 2.2.1. A set of multi-scale and locally

rotation-invariant (LoG are circularly/spherically symmetric) texture measurements is

obtained by averaging the absolute values of the response maps of LoG operators in

the ROI mask M for a series of increasing values of �
LoG

. Fig. 12.9 depicts the profile

of the LoG filter for three di↵erent �
LoG

values. The response maps resulting from

the convolutions of the three filters with two di↵erent images fA and fB are shown in

Fig. 12.10. It can be observed that di↵erent values of �
LoG

can be used to characterize

di↵erent texture scales.

As described in Fig. 1.12 of Chapter 1, it is possible to distinguish between the tex-

ture found on the margin of the ROI (M
margin

) and the one found in the core region of

the tumor (M
core

⌘ GTV N). To that end, the LoG response maps are averaged in both

regions separately (see Fig. 12.11). M
margin

is obtained from the di↵erence between

M
core

dilated and eroded with a spherical structural element (diameter = 2.25mm).

Therefore, the tumor margin has an approximate thickness of 4.5mm.
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Figure 12.9: 3D LoG filters at various scales controlled by the parameter�
LoG

. The top

row shows central sections of the filters and the bottom row shows spherical wedges.

fA

fB

Figure 12.10: 2D sections of the response maps of two di↵erent simulated tumors fA
and fB for the LoG filters shown in Fig. 12.9.
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M coreMmargin
Figure 12.11: M

margin

and M
core

regions used for feature aggregation.

2.4.4. 3D Riesz-wavelets features
Another convolutional feature group is extracted by the proposed pipeline and is based

on 3D Riesz wavelets [12]. The latter are defined for any D-dimensional image and

are detailed in Section 2.2 of Chapter 3. They consist in computing the real Riesz

transform of a primal circularly/spherically symmetric wavelet decomposition, the lat-

ter being similar to LoG filters. The Lth-order real Riesz transform of an image f (x)

computes Lth-order all-pass derivatives of the latter. In other words, L = 1 computes

first-order image derivatives and measures the slope of the spatial transition between

the values of a set of aligned voxels, and the second-order transform (L = 2) measures

the curvature of the transition. Consequently, they have an intuitive interpretation

and have shown to provide relevant quantitative image measurements in the context

of several medical applications [13, 17, 19, 6, 15, 51]. We used the primal circu-

larly/spherically symmetric wavelet presented in [18, 55], which was found to have

an optimal bandwidth. We limited a maximum Riesz order to 2 and a maximum of

wavelet scales to 4. Riesz order 1 encodes the gradient of the image (first order deriva-

tive), while order 2 also encodes the Hessian of the image (second order derivative).

The scale controls the size of the texture properties to be detected. Fig. 12.12 shows

sliced response maps of first-order Riesz wavelets for scale 1 and 2 on a 2D slice of

the synthetic tumor fB (see Fig. 12.10). While the LoG reacts equally to transitions

between voxel values along any direction (LoGs are circularly/spherically symmet-

ric), the first-order Riesz filterbank contains three di↵erent filters characterizing three

orthogonal directions. Second-order Riesz filters characterize six di↵erent directions

according to the Hessian (see Fig. 12.13). Sets of scalar texture measurements are

obtained by computing the average energies of the response maps in both the tumor

margin M
margin

and the core M
core

region (see Fig. 12.11).

In order to obtain both directional and locally rotation-invariant features, Riesz

wavelets are aligned at each position ⇠
0

based on the local direction u maximizing

the energy of the gradient [20, 12]. This alignment strategy is applicable to any Riesz

order and is illustrated in Fig. 12.14) for order 1 (i.e., the gradient). The benefits of

locally aligning the filters are explained in Section 4.3 (moving frames) of Chapter 2
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scale 1 scale 2

. . . . . .

Figure 12.12: Response maps of the simulated tumor image fB (left) for Riesz filter-

banks of order 1 with scales 1 and 2.

Regional Lung Texture Analysis
The prototype regional distributions of the morphological tissue

properties of classic versus atypical UIPs were learned using support
vector machines (SVMs). The SVM is a supervised machine learning
algorithm that can learn the complex relationship between a group of
variables (ie, the vector vl) and the presence or absence of a class from
an ensemble of examples called the training set.28 Once the SVMmodel
has been built from the example cases, it can predict the class of an un-
seen case with a confidence score (called computer score thereinafter).
The group of variables feeding SVMs consisted of the responses (ie,
energies) of the multiscale Riesz filters in each of the 36 anatomical re-
gions of the lungs (Fig. 3). The size of the vector vl regrouping the re-
sponses of the 6 Riesz filters at 4 scales from the 36 regions was
equal to 864.

To compare Riesz wavelets with other features that could capture
the radiological phenotype of diffuse lung disease, 2 different feature
groupswere extracted for each region to provide a baseline performance:
15 histogram bins of the gray levels in the extended lung window
[−1000; 600] Hounsfield units (HU) and 3D gray-level co-occurrence
matrices (GLCM).29 Statistical measures from GLCMs are popular tex-
ture attributes that were used by several studies in the literature to

characterize the morphological properties of lung tissue associated with
interstitial lung diseases.16,17,20,21 They consist in counting the co-
occurrence of voxels with identical gray level values that are separated
by a distance d, which results in a co-occurrence matrix. Eleven statistics
were extracted from these matrices29 as texture attributes. The choices
ofd and the number of gray levels were optimized by considering values
in {−3; 3} and {8, 16, 32}, respectively. The size of the vector of attri-
butes vlwas 540 for the gray-level histogram attributes (calledHU there-
inafter) and 396 for the GLCM attributes.

RESULTS
A leave-one-patient-out cross-validation evaluation was used to

estimate the performance of the proposed approach. The leave-one-
patient-out cross-validation consisted of using all patients but 1 to train
the SVM model and to measure the prediction performance on the re-
maining test patient. The prediction performance was then averaged
over all possible combinations of training and test patients. Receiver
operating characteristic (ROC) curves of the system's performance in
classifying between classic and atypical UIP are shown in Figure 4 for
different feature groups and their combinations. The ROC curves were
obtained by varying the decision threshold between the minimum and

TABLE 2. Localization of the Lung Masks

⊥ Vertical ⊥ Axial ⊥ Coronal ⊥ Sagittal

Apical, central, basal Peripheral, middle, axial Left, right Anterior, posterior

The lungs are split perpendicularly to 4 axes.25

Images can be viewed online in color at www.investigativeradiology.com.

FIGURE 2. Second-order Riesz filters characterizing edges along the main image directions X, Y, Z and 3 diagonals XY, XZ, and YZ. Figure 2 can be viewed
online in color at www.investigativeradiology.com.
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Figure 12.13: Profiles of the elements the Riesz filterbank of order 2. The latter cor-

responds to the six distinct second-order derivatives (i.e., the Hessian) of the circu-

larly/spherically symmetric primal wavelet.

for 2D images. This local alignment is even more important in 3D as the amount of

possible directions is much larger in volumetric neighborhoods. To demonstrate the

importance of locally aligning the filters, we designed a synthetic example of possible

local volumetric tissue architecture. The latter follows the examples provided in Sec-

tion 4.1 of Chapter 2 showing two-dimensional natural and biomedical textures where

the local organization of the image directions (LOID) is crucial for their unequivocal

description (see Fig. 2.10). Our example extends the latter to 3D and contains three

volumetric solid images with three tubular bars each (see Fig. 12.15). They simulate

tubular structures crossing in the 3D space as it may occur with e.g., intricate tissue

vasculature. The importance of maintaining the directional information while obtain-

ing locally rotation-invariant features is demonstrated in Fig. 12.16, where the dis-

criminatory power of the various texture features, i.e., 3D GLCMs (see Section 2.4.2),

3D LoGs (see Section 2.4.3), and aligned 3D Riesz wavelets are compared. GLCMs

and LoGs yield almost identical feature values for the three synthetic images, while

the aligned Riesz filters are able to discriminate each of them. For this example, seven

values of �
LoG

were used for the LoG filters. Order 2 and one scale were used for the

Riesz wavelets.
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Figure 12.14: Illustration of the local alignment strategy of the Riesz filters on the

boundary of a synthetic tumor. Riesz wavelets of order 1 are depicted.

Example 1 Example 2 Example 3

Figure 12.15: Synthetic 3D images containing three tubular structures with varying

spatial configurations. The latter simulate, e.g., possible vascular structures.
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Figure 12.16: Feature values obtained for the three examples shown in Fig. 12.15.

Only aligned Riesz wavelets are able to discriminate each of them.
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Figure 12.17: Home page of QuantImage, which can be accessed at

https://radiomics.hevs.ch.

3. The QuantImage online image analysis platform
The QuantImage online platform consists of a simple web-page where the physicians

can upload batches of image series from multiple patients and download a CSV file

containing the values of the features described in the previous sections. The underly-

ing system of the developed web-service follows the pipeline depicted in Fig. 12.3. It

mainly consists of three steps from a user point of view: choosing system parameters,

uploading DICOM files, and downloading the computed features. These three steps

were carefully designed to be user-friendly and based on default parameter values,

while users can also have the full control of the computed features and their parameter-

izations. The home page of QuantImage can be accessed at https://radiomics.hevs.ch
and is depicted in Fig. 12.17.
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Figure 12.18: Options for performing axial-wise dilations of GTV N ROIs provided

in the DICOM RT files.

3.1. Parameter setting
As a first step, the user can select the parameter values for the QuantImage computing

pipeline. The latter are grouped in four consecutive blocks. The first block allows

performing an initial dilation (in mm) of the ROIs (GTV T and GTV N). The ROI

named GTV T corresponds to the delineation of the main tumor (see Fig. 12.18),

while GVT N refers to secondary nodules. This optional dilation is performed in 2D

for each axial slice of GTV T and GTV N. It is useful when the initial ROIs pro-

vided in the DICOM RT files do not cover the full tumor volumes. The subsequent

metabolic thresholds ⌧ will yield more precise metabolic subregions. The three fol-

lowing blocks refer to each feature group described in Sections 2.2, 2.3, 2.4 and are

detailed in Sections 3.1.1, 3.1.2, 3.1.3, respectively.

3.1.1. Intensity-based features parameters
The second block of the QuantImage web page allows choosing whether to extract the

various intensity-based features and their parameters. A clickable question mark icon

is available next to each option to obtain more information about the type of feature

and its parameters. The features are organized in two subgroups: CT Measures and

PET Measures. CT Measures refer to the mean HU inside the main tumor GTV T
and is computed at two di↵erent metabolic thresholds ⌧i based on the PET image

(see Section 2.2.1). These are ⌧
1

= 3 SUV and ⌧
2

= 42% of SUV
max

. The PET Mea-
sures correspond to the statistics and PET-specific features described in Sections 2.2.1

and 2.2.2, respectively. In this case, the user can define sets of metabolic thresholds by

setting the range of values of ⌧ and an incremental step. These thresholds can be spec-

ified for measures extracted from both the main tumor GTV T and from other nodes

GTV N (when available in the DICOM RT files). This selection can be specified for

both absolute SUV values and relative to SUV
max

. For intensity measures computed

from GTV N with relative thresholds, the reference SUV
max

can be computed from

either GTV T or GTV N.
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Figure 12.19: Parameter setting for intensity features.

Figure 12.20: Parameter setting for distance features.

3.1.2. Distance-based features parameters
The only parameter to set for distance based features is the metabolic threshold for

all GTV regions. The features computed when this option is selected are described in

Section 2.3.

3.1.3. Texture-based features parameters
The last block is dedicated to the parameter setting of the texture-based features de-

scribed in Section 2.4 (3D GLCMs, 3D LoGs, and 3D Riesz). Only the most important

parameters of the descriptors can be tuned to limit the complexity of use. The texture

features are extracted from both CT and PET image series inside GTV T. In the case of

the GLCMs, the user can choose whether to consider symmetric voxel pairs, the dis-
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Figure 12.21: Parameter setting for 3D texture features.

tance between voxels, and the number of gray levels (see Section 2.4.2). The features

returned for this descriptor are the 11 measures mentioned previously. When selecting

3D LoGs, the user must select the range of scales parameterized by �
LoG

in between

0.25 and 3.25 with a fixed step of 0.5. As explained in Section 2.4.3, these features

are computed from both the core and the margin of the ROI. The last section of this

block concerns the parameter setting for Riesz wavelets, i.e., the order of the image

derivatives and the number of scales. The Riesz energy features are computed from

both the core and the margin of the ROI.

3.2. File upload
Once the parameters are defined by the user, the next step is to upload the DICOM

files of the batch of patients to be analyzed on the server. This file transfer includes

encryption to protect patient data. The user must provide one unique zip file containing

all CT, PET, and DICOM RT files of all patients. The files must be all DICOM files

(CT and PET), and DICOM RT (ROI). The file structure inside the zip file is not

important, because the system is able to parse the inner structure of the zip file by

reading the DICOM headers and to regroup files based on patients and image series.

The DICOM RT file must at least include one ROI named GTV T corresponding to

the main tumor. It may contain another optional ROI named GTV N with other nodes

of interest (e.g., metastasis regions). If no GTV N ROI is provided, the corresponding

features will not be computed and will have NaN (not a number) values in the returned

CSV data structure. After creating the zip file containing the above-mentioned files,
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Figure 12.22: Screenshot of the resulting CSV data structure returned by the system.

In this particular case, three patients with identifiers “P32”, “P 56” and “Pat96” were

processed (see lines 5-7). The parameter values used for feature extraction are dis-

played in lines 1 and 2.

the user can upload it in the block entitled “2. Upload the CT/PET/DCOMRT ZIP

file here” shown in Fig. 12.17. The upload can be done either by browsing the file

system or with a simple drag-and-drop. After clicking the button upload, a progress

bar will show the progress of file upload, followed by the progress of file processing

and feature extraction.

3.3. Output CSV data structure
The output of the web-service is a CSV file containing the feature values. The first

two rows of the file contain the values of the parameters chosen by the user, allowing

reproducibility of the experiments. The next non-empty row of the file contains a

header with the names of the computed features. Each following row corresponds to

each single patient included in the uploaded zip file. Tables .4, .5, .6, .7, and .8 in

the Appendix detail the various feature names used and their signification. In order to

shorten the list of names, we used the following naming conventions in the feature-

code field:

• a list of strings in between { } means that one and only one string can be present in

the final name,

• a letter in between [ ] means that this letter corresponds to a parameter and it will

be encoded by its substituted value,

• a parameter called charDir was included for Riesz features that will be replaced

by the composition of the letters X, Y and Z, representing the direction of the Riesz

filter following the partial directional image derivatives (e.g., XX corresponds to

@2/@x2

1

, XY corresponds to @2/@x
1

@x
2

).
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Table 12.3: Variations of the feature-code tex InnerRieszN[n] {CT,PET} [charDir] scale[s]
when using Riesz wavelets of order 2 and 2 consecutive scales.

tex InnerRieszN2 CT XX scale1 tex InnerRieszN2 CT YY scale1 tex InnerRieszN2 CT ZZ scale1

tex InnerRieszN2 CT XY scale1 tex InnerRieszN2 CT XZ scale1 tex InnerRieszN2 CT YZ scale1

tex InnerRieszN2 CT XX scale2 tex InnerRieszN2 CT YY scale2 tex InnerRieszN2 CT ZZ scale2

tex InnerRieszN2 CT XY scale2 tex InnerRieszN2 CT XZ scale2 tex InnerRieszN2 CT YZ scale2

tex InnerRieszN2 PET XX scale1 tex InnerRieszN2 PET YY scale1 tex InnerRieszN2 PET ZZ scale1

tex InnerRieszN2 PET XY scale1 tex InnerRieszN2 PET XZ scale1 tex InnerRieszN2 PET YZ scale1

tex InnerRieszN2 PET XX scale2 tex InnerRieszN2 PET YY scale2 tex InnerRieszN2 PET ZZ scale2

tex InnerRieszN2 PET XY scale2 tex InnerRieszN2 PET XZ scale2 tex InnerRieszN2 PET YZ scale2

As an example, let us consider the following feature-code

tex InnerRieszN[n] {CT,PET} [charDir] scale[s].

Let then suppose that the user selected a Riesz order of 2, and 2 wavelet scales. Then,

this feature-code will be denoted in the CSV file with all the forms listed in Table 12.3.

4. Discussions and conclusions
We presented an online radiomics tool called QuantImage. The latter is based on

a user-friendly web-service allowing the extraction of current state-of-the-art three-

dimensional quantitative imaging features from PET and CT images. To the best of

our knowledge, this is the first radiomics-specific tool that can be simply accessed

through a secure web platform. The latter enables the extraction of quantitative imag-

ing parameters from large cohorts of patients without the need of neither software nor

hardware installation. The online tool can therefore be accessed directly from a clini-

cal environment. We believe that this e↵ort is timely to further validate the relevance

of radiomics imaging biomarkers with large-scale clinical studies in the context of

well-defined and well-controlled oncological contexts. The features extracted by the

system include intensity-, distance-, and texture-based descriptors. While all feature

groups are preconfigured with default parameter values, the user has the possibility

to further choose which features to extract and to tune their most important parame-

ters. The most relevant aspects of these features are explained in this chapter, which

can be used as a reference manual of the QuantImage system. The output of the sys-

tem is in the standard CSV data format, o↵ering the possibility to manually analyze

the feature values with data plots, as well as their inclusion in more complex sys-

tems including advanced uni- and multi-variate statistical methods or machine learn-

ing techniques such data clustering, linear discriminant analysis, LASSO regression

or support vector machines to name a few. Whereas all intensity- and texture-based



i
i

“main˙BTA” — 2017/5/15 — 10:46 — page 387 — #387 i
i

i
i

i
i

BIBLIOGRAPHY 387

Table .4: Feature-codes used for general information in the CSV file.

Feature-code Description
Patient Patient ID found in DICOM header.

volT Volume of GTV T.

quantitative imaging features were previously validated in various applicative con-

texts [13, 19, 2, 45, 5, 46, 2, 54, 42, 25, 24, 27, 26, 43, 4, 35, 11, 38, 39, 29, 37, 49, 7, 3].

The presented system was initially validated in the context of head and neck [8, 10, 9]

tumors at the Lausanne University Hospital (CHUV). Future work includes the imple-

mentation of covariance-based aggregation functions as an alternative to the average

for LoGs and Riesz wavelets [13], as well as three-dimensional shape features for the

characterization of the tumoral contour.

Appendix
This section details the various feature names and their signification as listed in the

CSV data structure returned by the system. General information, intensity (parts I

and II), distance and texture feature-codes are detailed in Tables .4, .5, .6, .7, and .8,

respectively.
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Table .5: Feature-codes for intensity features used in the CSV file (part I): features

extracted in ROI GTV T

Feature-code Description
int HUMean 3abs Mean HU of the main tumor voxels with SUV >3.

int HUMean 42rel Mean HU of the main tumor voxels with SUV >42 % of

SUVMax.

int SUVMax Maximum SUV inside the main tumor.

int SUVMean T [⌧]abs Mean SUV of the main tumor voxels with SUV >⌧.
int SUVVariance T [⌧]abs SUV variance of the main tumor voxels with SUV >⌧.
int SUVSkewness T [⌧]abs SUV skewness of the main tumor voxels with SUV >⌧.
int SUVKurtosis T [⌧]abs SUV kurtosis of the main tumor voxels with SUV >⌧.
int SUVPeak T [⌧]abs Mean SUV of the main tumor voxels with SUV >⌧ in a

spherical neighborhood of a radius of 8 voxels centered at

the voxel with maximum SUV.

int MTV T [⌧]abs Volume (in mm) of the ROI containing the main tumor vox-

els with SUV >⌧.
int TLG T [⌧]abs Total lesion glycosis of the ROI containing the main tumor

voxels with SUV >⌧.
int SUVMean T [⌧]rel Mean SUV of the main tumor voxels with SUV >⌧ % of

SUVMax.

int SUVVariance T [⌧]rel SUV variance of the main tumor voxels with SUV >⌧ % of

SUVMax.

int SUVSkewness T [⌧]rel SUV skewness of the main tumor voxels with SUV >⌧% of

SUVMax.

int SUVKurtosis T [⌧]rel SUV kurtosis of the main tumor voxels with SUV >⌧ % of

SUVMax.

int SUVPeak T [⌧]rel Mean SUV of the main tumor voxels with SUV >⌧ % of

SUVMax in a spherical neighborhood of a radius of 8 voxels

centered at the voxel with maximum SUV.

int MTV T [⌧]rel Volume (in mm) of the ROI containing the main tumor vox-

els with SUV >⌧ % of SUVMax.

int TLG T [⌧]rel Total lesion glycosis of the ROI containing the main tumor

voxels with SUV >⌧ % of SUVMax.
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Table .6: Feature-codes for intensity features used in the CSV file (part II): features

extracted in ROI GTV N

Feature-code Description
int SUVMean N [⌧]abs Mean SUV of the metastases voxels with SUV >⌧.
int SUVVariance N [⌧]abs SUV variance of the metastases voxels with SUV >⌧.
int SUVSkewness N [⌧]abs SUV skewness of the metastases voxels with SUV >⌧.
int SUVKurtosis N [⌧]abs SUV kurtosis of the metastases voxels with SUV >⌧.
int MTV N [⌧]abs Volume (in mm) of the ROI containing the metastases voxels

with SUV >⌧.
int TLG N [⌧]abs Total lesion glycosis of the ROI containing the metastases

voxels with SUV >⌧.
int SUVMean N [⌧]rel Mean SUV of the metastases voxels with SUV >⌧% of SU-

VMax.

int SUVVariance N [⌧]rel SUV variance of the metastases voxels with SUV >⌧ % of

SUVMax.

int SUVSkewness N [⌧]rel SUV skewness of the metastases voxels with SUV >⌧ % of

SUVMax.

int SUVKurtosis N [⌧]rel SUV kurtosis of the metastases voxels with SUV >⌧ % of

SUVMax.

int MTV N [⌧]rel Volume (in mm) of the ROI containing the metastases voxels

with SUV >⌧ % of SUVMax.

int TLG N [⌧]rel Total lesion glycosis of the ROI containing the metastases

voxels with SUV >⌧ % of SUVMax.

Table .7: Feature-codes for distance features used in the CSV file.

Feature-code Description
dst TBarycenterN Distance between barycenter of the main tumor and the

barycenter of all metastases (see Eq. 12.10).

dst sumDistTN Cumulative distance between the barycenter of each metas-

tasis and the barycenter of the main tumor (see Eq. 12.11).

dst MTVweightedSumDistTN MTV-weighted cumulative distance between the barycenter

of each metastasis and the barycenter of the main tumor (see

Eq. 12.12).

dst maxDistTN Maximum metastasis remoteness (see Eq. 12.13).

dst MTVweightedMaxDistTN MTV-weighted maximum metastasis remoteness (see

Eq. 12.14).

dst sumDistNBarycenterN Cumulative distance between the barycenter of each metas-

tasis and the barycenter of all metastases (see Eq. 12.15).

dst MTVweightedSumDistNBarycenterN MTV-weighted cumulative distance between the barycenter

of each metastasis and the barycenter of all metastases (see

Eq. 12.16).
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Table .8: Feature-codes for texture features used in the CSV file.

Feature-code Description
tex GLCMsContrast {CT,PET} [d] [n] Contrast measure of the GLCMs computed with distance d

and number of gray levels n for CT or PET.

tex GLCMsCorrelation {CT,PET} [d] [n] Correlation measure of the GLCMs computed with distance

d and number of gray levels n for CT or PET.

tex GLCMsEnergy {CT,PET} [d] [n] Energy measure of the GLCMs computed with distance d
and number of gray levels n for CT or PET.

tex GLCMsHomogeneity {CT,PET} [d] [n] Homogeneity measure of the GLCMs computed with dis-

tance d and number of gray levels n for CT or PET.

tex GLCMsEntropy {CT,PET} [d] [n] Entropy measure of the GLCMs computed with distance d
and number of gray levels n for CT or PET.

tex GLCMsInverseDi↵Moment {CT,PET} [d] [n] Inverse di↵erence moment measure of the GLCMs com-

puted with distance d and number of gray levels n for CT
or PET.

tex GLCMsSumAverage {CT,PET} [d] [n] Sum average measure of the GLCMs computed with dis-

tance d and number of gray levels n for CT or PET.

tex GLCMsSumEntropy {CT,PET} [d] [n] Sum entropy measure of the GLCMs computed with dis-

tance d and number of gray levels n for CT or PET.

tex GLCMsSumVariance {CT,PET} [d] [n] Sum variance measure of the GLCMs computed with dis-

tance d and number of gray levels n for CT or PET.

tex GLCMsDi↵Variance {CT,PET} [d] [n] Di↵erence variance measure of the GLCMs computed with

distance d and number of gray levels n for CT or PET.

tex GLCMsDi↵Entropy {CT,PET} [d] [n] Di↵erence entropy measure of the GLCMs computed with

distance d and number of gray levels n for CT or PET.

tex InnerLoG {CT,PET} sigma[�] LoG in the core of the main tumor with sigma � for CT or

PET.

tex MarginLoG {CT,PET} sigma[�] LoG in the margin of the main tumor with sigma � for CT
or PET.

tex InnerRieszN[n] {CT,PET} [charDir] scale[s] Riesz energy of the Riesz filter with direction charDir of

order n and scale s in the core of the main tumor for CT or

PET.

tex MarginRieszN[n] {CT,PET} [charDir] scale[s] Riesz energy of the Riesz filter with direction charDir of

order n and scale s in the margin of the main tumor for CT
or PET.
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