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⇤⇤ École Polytechnique Fédérale de Lausanne, Biomedical Imaging Group, Lausanne, Switzerland.
† Stanford University, Department of Radiology and Medicine (Biomedical Informatics), Stanford, CA, USA.
a Corresponding: roger.schaer@hevs.ch

Contents

1. Introduction 396
2. Methods 399

2.1. Overview of ePAD 399

2.2. Quantitative imaging features 402

2.3. Feature aggregation 404

2.4. Classification 405
2.5. Web technologies 407

2.6. System architecture 408

3. Use-cases 412
3.1. Analysis of whole ROIs 413

3.2. Patch-based ROI analysis 417

3.3. Training a statistical modal and classifying ROIs 418

3.4. Helper tools for segmentation 423

4. Discussion 423
5. Conclusions 426

References 428

Abstract
Recent papers in the field of radiomics showed strong evidence that novel image biomarkers
based on structural tissue properties have the potential to complement and even surpass
invasive and costly biopsy-based molecular assays in certain clinical contexts. To date, very
few translations of these research results have been carried out. In addition, a majority of
the identified imaging biomarkers are perceived as black boxes by end-users, hindering their

c� Elsevier Ltd.
All rights reserved. 395
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acceptance in clinical and research environments. We present a suite of plugins for the open-
access cloud-based ePAD platform enabling the exploration and validation of new imaging
biomarkers in a clinical environment. The latter include the extraction, visualization and
comparison of intensity- and texture-based quantitative imaging features, regional division
of regions of interest to reveal tissue diversity, as well as the construction, use and sharing of
user-personalized statistical machine learning models. No software installation is required
and the platform can be accessed through any web browser. The relevance of the developed
tools is demonstrated in the context of various clinical use-cases. The software is available
on request.

Keywords: Quantitative imaging biomarkers, radiomics, texture analysis, medical imaging,
radiology, web technologies, machine learning.

1. Introduction
Modern multi-dimensional imaging in radiology yields much more information than
the naked eye can appreciate. As a result, errors and variations in interpretations are
currently the weakest aspect of clinical imaging. Computerized quantitative image
analysis may provide solutions for ensuring the quality of medical image interpre-
tation by yielding exhaustive, comprehensive and reproducible analysis of imaging
features, which spawned the new fields of radiomics and imaging genomics [15] (see
Chapter 8). It has the potential to complement, and possibly even surpass invasive
biopsy-based molecular assays with the ability to capture intralesional heterogeneity
in a non-invasive way [12]. Two large initiatives have recently been created in North
America to coordinate and promote research and development of quantitative imaging
methods for cancer: the Quantitative Imaging Network (QIN)1 from the National Can-
cer Institute (NCI), and the Quantitative Imaging Biomarkers Alliance (QIBA)2 from
the Radiological Society of North America (RSNA). Although the research commu-
nity in radiomics provided strong evidence that the novel imaging biomarkers may
have a very high potential clinical value, very few translations of these biomarkers
into clinical trials or medical practice were carried out so far. In 2012, the United
States (U.S.) Food and Drugs Administration (FDA) issued a comprehensive report3

containing guidance for industry on how to describe and evaluate computer-assisted

1http://imaging.cancer.gov/programsandresources/specializedinitiatives/qin, as of 5
December 2016.
2https://www.rsna.org/qiba/, as of 5 December 2016.
3http://www.fda.gov/RegulatoryInformation/Guidances/ucm187249.htm, as of 5 December
2016.
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detection devices applied to radiology data in order to obtain FDA approval.
Quantitative imaging features can be di�cult to interpret, as they can appear ab-

stract to a medical doctor, since their meaning in the clinical context may not be di-
rectly obvious. It is very timely to develop front-end software enabling the explo-
ration and validation of the imaging biomarkers in a clinical environment. Tools are
required to allow experimentation with e.g., various features, parameter settings. Such
tools can lead to a better understanding of relatively intangible numerical values. It
may help in understanding which values are a↵ected by a certain pathology, how one
value relates to another, how certain values generalize across a cohort of patients,
or how a set of variables can di↵erentiate between an unhealthy patient and a con-
trol case. During the past 10 years, an increasing number of commercial, freeware
and open-source quantitative imaging software for radiology data have been devel-
oped. Some of them are for general purpose, or either organ-, imaging modality-, or
disease- specific. Noteworthy examples are listed in Table 13.1. Along with Origi-
nal Equipment Manufacturer (OEM) image analysis software, some of the examples
listed in Table 13.1 reported high acceptance and usefulness in the clinical environ-
ment. The market for these tools appears to be growing at a higher rate as compared to
the equipment market4. Most of current software available implementing quantitative
biomarkers is based on image intensity and shape only. Moreover, the existing soft-
ware applications leveraging structural tissue properties (i.e., image texture) are most
often not easy to use for non-medical experts and do not have application-specific
clinical workflows implemented (e.g., Slicer, Analyze, MeVisLab). In addition, they
generally provide only basic texture features (i.e., Haralick, isotropic filtering), which
have shown limited abilities to fully leverage multi-scale and directional texture pat-
terns when compared to recent approaches in the field [5, 4, 20] (see Chapter 3).

4http://www.marketsandmarkets.com/Market-Reports/medical-image-analysis-software
-market-846.html, as of 5 December 2016.
5http://amide.sourceforge.net/index.html, as of 5 December 2016.
6http://analyzedirect.com, as of 5 December 2016.
7Apollo Medical Imaging Technology, http://www.apollomit.com/mrm.htm, as of 5 December 2016.
8https://code.google.com/archive/p/cgita/, as of 5 December 2016.
9http://www.imageanalysis.org.uk/demo-dynamika as of 5 December 2016.
10http://www.lifexsoft.org, as of 5 December 2016.
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Table 13.1: Overview of existing quantitative imaging software.
Imaging software Medical structure Imaging modality Quantitative biomarkers License Type
AMIDE5 multiple multiple intensity freeware standalone
Analyze6 multiple multiple intensity, shape, texture commercial standalone
Apollo MIT7 multiple CT, DCE-MRI intensity commercial multiple
CGITA8 [10] multiple PET, CT, MRI intensity, texture open-source standalone
Dynamika9 multiple (DCE-) MRI intensity multiple cloud
ePAD multiple multiple intensity open-source cloud
LifeX10 multiple PET, CT, MRI intensity, texture freeware standalone
MaZda11 multiple multiple intensity, texture open-source standalone
MeVis12, MeVisLab13 multiple multiple intensity, shape, texture multiple multiple
Medis14 cardiovascular multiple intensity, shape commercial standalone
MIPAV15 multiple multiple intensity, shape open-source standalone
mint Lesion16 multiple multiple intensity commercial multiple
Pie Medical Imaging17 cardiovascular multiple intensity, shape commercial standalone
Slicer18 multiple multiple intensity, shape, texture open-source standalone
TexRAD19 multiple CT, MRI texture commercial cloud
VIDA diagnostics20 lungs CT intensity, shape commercial cloud

The electronic Patient Annotation Device (ePAD) imaging platform21 [21, 22, 18]
is a freely available quantitative imaging informatics platform, developed by the Rubin
Lab at Stanford University. Its main objectives include providing a rich web client
application that runs on any modern browser and does not require software installation
on the client side, catalyzing the adoption and use of quantitative imaging data in
clinical practice and providing a flexible architecture enabling third-party developers
to extend the capabilities of ePAD and adapt it to more specific needs and personalized
use-cases. Thanks to its plug-in architecture, ePAD can be used to support a wide
range of imaging-based projects. The platform has been widely used by radiologists
at various academic centers in the United States and showed to provide state-of-the-art
solutions for visualizing, collecting, annotating and sharing data between clinicians
from multiple institutions.

Using ePAD as an entry-point for medical doctors is appealing, as the system is
accessible and usable from any computer and mimics the behavior of a standard ra-

11http://www.eletel.p.lodz.pl/programy/mazda/, as of 5 December 2016.
12http://www.mevis.de, as of 5 December 2016.
13http://www.mevislab.de, as of 5 December 2016.
14http://www.medis.nl, as of 5 December 2016.
15http://mipav.cit.nih.gov, as of 5 December 2016.
16https://mint-medical.com/products-solutions/, as of 5 December 2016.
17http://www.piemedicalimaging.com, as of 5 December 2016.
18http://www.slicer.org, as of 5 December 2016.
19http://texrad.com, as of 5 December 2016.
20http://vidadiagnostics.com, as of 5 December 2016.
21http://epad.stanford.edu, as of 5 December 2016.
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diology image workstation closely. It provides the opportunity to easily set up and
share an advanced collaborative environment for clinical and research purposes. It
is therefore a convenient tool to let doctors interact and familiarize themselves with
general-purpose imaging tools and features, allowing them to gain intuition from in-
tensity or texture measurements that can at first seem very abstract, but which can
carry a lot of information and meaning in a given context. We also aim to provide
medical doctors with tools that can be used to create personalized machine learning
models for a given study, giving full control to the doctor of what should or should
not be included in a given model for classification. This is in contrast with recent de-
velopments in the fields of big data and deep learning, where e↵ective models can be
achieved, but understanding the inner decision rules of the algorithms can be di�cult
to grasp. Moreover, deep learning methods require large amounts of data for build-
ing the models, which significantly complicates the investigation of novel promising
imaging biomarkers. Using simple models that can be e�ciently trained with small
amounts of data (e.g., Support Vector Machines (SVM)) allows for quick evaluation
of the relevance of a given quantitative imaging measure in a user-defined applicative
context.

Our main goal is to provide tools allowing medical doctors and researchers to ex-
plore and understand how to use quantitative imaging biomarkers in a specific medical
application context (and especially texture biomarkers, which may be conceptually dif-
ficult to comprehend but can provide important cues for diagnosis of various patholo-
gies). We developed a suite of plugins for the ePAD ecosystem and set up our own
server architecture for performing complex computations and saving data for further
analysis. The software is available on request.

2. Methods
This section describes the architecture of the ePAD platform and the developed plug-
ins. The implemented quantitative imaging features are described. The system set up
and deployment, as well as the tools and libraries used are detailed.

2.1. Overview of ePAD
This section presents a general overview of the ePAD platform with a focus on the web
interface and its associated features. The ePAD web interface can be accessed from
any modern browser and any location. The access to the platform is secured by a login
and password, ensuring that only authorized users can visualize potentially sensitive
data. Once the user has logged in, the main interface is shown. Fig. 13.1 depicts an
overview of the interface, which is composed of the following sections:

1. Navigation menu - This menu provides access to the di↵erent views available
in ePAD, such as the hierarchical structure of patients, their studies, images se-



i
i

“main˙BTA” — 2017/5/15 — 10:46 — page 400 — #400 i
i

i
i

i
i

400 Biomedical Texture Analysis

Figure 13.1: General overview of the ePAD web interface, highlighting the main areas:
1. Navigation menu, 2. Command toolbar, 3. Project list and 4. Workspace.

ries and annotations under the menu entry Search (see Fig. 13.1). Other views
include a global list of all annotations (menu entry Annotate) and the Digital
Imaging and Communications in Medicine (DICOM) image viewer (menu en-
try Display). An Edit menu entry provides common actions for any item in the
platform (e.g., Delete, Copy & Paste, Undo).

2. Command toolbar - This contextual toolbar provides di↵erent options depend-
ing on the current view. It allows uploading files in the Search or Annotate
view or navigating and manipulating DICOM images within the system’s image
viewer, for instance.

3. Project list - Users can assign patients, plugins and other resources to various
projects, allowing to group similar cases together for example. This panel allows
the user to switch from one project to another, and to set up a collaborative
environment in the context of a research project.

4. Workspace - This context-sensitive area will display the information of the cur-
rently selected view (e.g., image viewer, patient list). It constitutes the central
area where most interactions with the user take place.

The Display view containing the image viewer and annotation tools is where most
user interactions will be performed. It allows visualizing and navigating in DICOM
volumes, adjusting the window width and level, zooming in on specific areas of an
image, Multi-Planar Rendering (MPR) visualizations, to name a few possibilities. It is
also the main entry point for saving annotations and executing plugins. When saving
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Figure 13.2: Screenshot of the ePAD image viewer, showcasing several of the features
such as drawing annotations, inverting the image, zooming and panning in the image
as well as selecting a template for running a plugin.

a region, a window will be shown allowing the user to enter information related to that
annotation and selecting a template which is linked to a specific plugin in the back-end
system. Fig. 13.2 shows an overview of the features provided in the viewer.

2.1.1. Typical workflow in ePAD
This section presents a typical workflow for a medical doctor using the ePAD platform
in clinical routine:

1. The user logs into the platform from his/her web browser.

2. DICOM image series can be uploaded to the platform by choosing local files,
or entire studies can be pushed from the Picture Archiving and Communication
System (PACS).
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Figure 13.3: Overview of a typical image series visualization and analysis workflow
in ePAD.

3. The image series is opened inside the viewer, where several features are avail-
able, such as:

• volumetric navigation,
• adjust the window level settings for specific image types (e.g., lung, brain,

abdomen),
• invert pixel values, zooming, taking screen captures,
• display metadata about the series as an image overlay,
• annotate images with 2D ROI using several drawing tools.

4. Once an annotation has been drawn, the user can optionally call a plugin. A
selection window allows choosing the type of information to provide about the
annotation and which analysis to perform on the selected ROI.

5. The chosen plugin is executed and the user is notified about the status of the
plugin’s state (started, running, complete, failed).

6. Depending on the plugin, various event types can be triggered in the browser
once a plugin has completed. For example, a chart displaying the computed
features can be shown.

Fig. 13.3 shows a schematic overview of the workflow with screenshots of the ePAD
interface.

2.2. Quantitative imaging features
Various types of quantitative imaging features are implemented in the proposed ePAD
plugins. This section details the basics of these image measurements and their rele-
vance to practical use-cases. Two distinct feature groups are considered in the follow-
ing subsections: intensity- and texture-based attributes.



i
i

“main˙BTA” — 2017/5/15 — 10:46 — page 403 — #403 i
i

i
i

i
i

Web-Based Tools for Exploring the Potential of Quantitative Imaging Biomarkers in Radiology 403

0

50

100

150

200

250

300

-1000 -800 -500

Co
un

t

Hounsfield Units (HU)

-1000 to -500, 50 bins -1000 to -800, 20 bins

Figure 13.4: Two overlapping histograms of the same ROI with di↵erent upper
bounds. The wide plot (gray) shows the distribution of values where the minimum
and maximum edges of the histogram are set to -1000 and -500 HUs, with a bin size
of 10 (i.e., 50 bins are generated). The narrower plot (blue) shows the distribution of
values where the minimum and maximum edges are set to -1000 and -800 HU, with a
bin size of 10 (i.e., 20 bins are generated).

2.2.1. Intensity-based features
Intensity-based features are based on the statistical distribution of the pixel/voxel val-
ues (see Section 2.1 of Chapter 1). They are both fundamental and interpretable. In
the context of the ePAD plugin development, we implemented two general-purpose
intensity feature subtypes: Statistics and Histogram.

The Statistics are meant to summarize of the intensity distribution of gray-levels
within the chosen ROI. The first four statistical moments are computed to characterize
the distributions: (i) mean, (ii) standard deviation (Std), (iii) kurtosis and (iv) skew-
ness. Exact definitions and significance are detailed in Section 2.2.1 of Chapter 12.

The Histogram shows the discretized distribution of gray-level values in the se-
lected ROI and can be customized in two ways: setting the minimum and maximum
values (i.e., bounds) of the histogram, and defining the resolution of the histogram (i.e.,
number of bins). This allows the user to focus on a given range of gray levels and to
choose the level of detail of the chart. Fig. 13.4 shows an example of two histograms
of the same ROI with di↵erent upper bounds in high-resolution chest Computed To-
mography (CT).

2.2.2. Texture-based features
Texture features are encoding the spatial transitions between the pixel/voxel values,
which is independent from the distribution of the latter (see Fig. 1.1 of Chapter 1). Tex-
ture measurements are therefore complementary to their intensity counterpart. They
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provide exclusive cues for assessing e.g., diagnosis, prognosis, treatment response in
a variety of diseases and imaging modalities [23, 5]. There is a large variety of meth-
ods for extracting quantitative texture measurements from medical images, and the
most popular categories are extensively reviewed in Chapter 3. Two groups of texture
measurements were integrated into the feature extraction plugins developed for ePAD.

The first one is based on Gray-Level Co-occurrence Matrices (GLCMs), which
estimates the statistics of gray-level co-occurrences between pixel pairs separated by
a user-defined distance and direction. A detailed description and review is presented
in Section 3 of Chapter 3. Thanks to their simplicity and interpretability, GLCMs are
the most widely used group of texture measurements. In particular, GLCM statistics
such as contrast or energy correspond to our intuitive perception of textured image
patterns [14] (see Fig. 13.5). However, a major limitation of this feature group is
their lack of ability to characterize transition between pixels that are far apart. It also
requires drastic reduction and merging of the gray-level values, which can potentially
result in a loss of information. Important parameters are the number of gray levels
considered for the reduction (8, 16, 32) as well as the distance between pixels for
computing the co-occurrences (e.g., 1, 2, 3). The GLCM measures are made invariant
to image rotation by averaging the statistics over the four main image directions (0,
45, 90 and 135 degrees, see Section 3.1 of Chapter 3).

The second texture group is based on Riesz wavelets. The latter are a subtype
of convolutional approaches and can quantify image derivatives of any order and at
multiple scales. Moreover, the image derivative are maximized for each position in-
dependently (i.e., the filters are “aligned” along dominant local orientations), allowing
characterization of the local organization of image direction with invariance to the lo-
cal orientation of anatomical structures (e.g., bronchovascular structures). The image
derivatives have an intuitive interpretation and the Riesz features have shown to pro-
vide valuable imaging measurements in various medical applications [2, 6, 8, 1, 3, 19].
For instance, the first-order derivative measures the slope of the spatial transition be-
tween the pixel values, and the second-order measures the curvature of the transition.
A detailed description and review is provided in Section 2.2 of Chapter 3. The im-
portant parameters are the alignment of the filters (yes/no), number of scales (e.g.,
1, . . . , 5) and the order of the image derivatives (e.g., 0,1,2,3).

2.3. Feature aggregation
Several strategies exist for aggregating features computed on a ROI. They are de-
scribed in details in Section 3.1 of Chapter 1. For instance, the intensity or texture
measurement can be averaged or counted over a user-defined ROI. However, aver-
aging pixel-wise feature values over large ROIs containing mixed tissue type results
in meaningless imaging measurements (see Section 3.2 of Chapter 2). To avoid this,



i
i

“main˙BTA” — 2017/5/15 — 10:46 — page 405 — #405 i
i

i
i

i
i

Web-Based Tools for Exploring the Potential of Quantitative Imaging Biomarkers in Radiology 405

GLCMs

0.820.82
0.750.75

0.320.32

0.810.81

0.510.51

0.600.60

0.500.50

0.870.87

0.760.76

0.640.64

0.190.19

0.780.78

vascular mild emphysema mild ground glass

Contrast Correlation Energy Homogeneity
0

0.25

0.5

0.75

1

Figure 13.5: GLCMs features extracted from three full ROIs, showing global values
for each of them.

large ROIs can be automatically split into smaller patches to reveal the diversity of
tissue types (e.g., tumor habitats [11]).

To that end, two aggregating strategies are implemented for each feature extraction
plugins. First, pixel-wise features can be aggregated over the entire ROI, yielding a
single feature vector for the entire ROI (see Fig. 13.5). The second method divides
ROIs into a series of small circular patches on which pixel-wise features are aggre-
gated. This allows characterizing local tissue subtypes of the region. Feature-specific
inter- and intra- regional variability can be visualized and investigated with scatter
plots of the first two principal components. Principal Component Analysis (PCA) is
computed over the collection of patches from the multiple regions. Fig. 13.6 illustrates
how this method can be used to compare multiple regions.

2.4. Classification
Apart from extracting visual features and displaying them to the user, two more ePAD
plugins were developed for creating user-personalized machine learning models. A
first plugin allows selecting a series of training ROIs and to build a SVM model. A
second plugin allows the submission of one or several ROIs for classification. SVMs
are able to learn maximum margin separating hyperplanes from a sparse number of
training instances called support vectors. This learning rule showed to generalize well
on unseen instances. It is therefore well suited to quickly explore the potential of a
feature subset based on a small number of training ROIs. The Waikato Environment
for Knowledge Analysis (WEKA) data mining software was used for the implemen-
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Figure 13.6: GLCMs features extracted from multiple ROIs split into circular patches.
The feature vectors are transformed into a two-dimensional PCA space, where each
patch is represented by a point in the scatter plot.

tation of the SVM classifier [13]. The pairwise coupling strategy was used to output
class-wise probabilities [24]. A two-phase approach was taken for the creation and
use of SVM models, consisting of the following steps (see Fig. 13.7 for a detailed
flowchart of the steps involved in the process). The beginning of the process is similar
in both cases: the user selects one or more regions to train or classify, specifying a
feature group (i.e., Statistics, Histogram, GLCMs or Riesz), as well as an identifier
for the created model (e.g., “healthyVSabnormal Riesz”). Each ROI is then processed
independently, and the initial steps include (i) extracting all the necessary information
(ROI coordinates, DICOM image, patient data) from the annotation and associated
metadata, and (ii) extracting features for each region (see Fig. 13.12). The computed
feature vectors are persisted in the database. From that point onwards, the processes
diverge between training and classification:

1. During the training process, the features of each ROI are collected in a data
structure, normalized in [0, 1], and then used by the SVM library included in the
WEKA toolkit to generate a model which can be used subsequently for classifi-
cation. The model is then persisted as a file using serialization.

2. For the classification process, each ROI is classified using the previously gener-
ated model, and the results are collected in a data structure. A JavaScript Object
Notation (JSON) file containing all the classification results is saved and then
loaded by the client’s web browser to display the chart.
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Figure 13.7: Flowchart of the training and classification plugins’ processes.

2.5. Web technologies
The ePAD platform is mainly based on two technologies. The first is a Java-based
REpresentaional State Transfer (REST) Application Programming Interface (API) for
the implementation of the system’s back-end: it handles all requests coming from plu-
gins and clients using the front-end user interface. It exposes Create, Read, Update,
Delete (CRUD) operations through HyperText Transfer Protocol (HTTP) endpoints
for all aspects of the platform (e.g., users, patients, images, files, plugins, projects).
It provides tools and utility methods for interacting with the other components of the
platform such as the My Structured Query Language (MySQL) database, DICOM
image repository, Annotation and Image Markup (AIM) annotations database. The
second part is the front-end user interface. It is based on Google Web Toolkit (GWT),
a development toolkit created by Google for developing complex browser-based ap-
plications without the need of advanced knowledge in web technologies such as Cas-
cading StyleSheets (CSS), Javascript and HyperText Markup Language (HTML). It
allows writing Java code which is then translated into Javascript and deployed to the
browser. Several APIs are provided for handling communication, and widgets are
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Figure 13.8: Docker container architecture of the base ePAD distribution.

available for the visual components (e.g., panels, lists, form controls, menu bars).
For the development of our plugins, we used the Java Enterprise Edition (Java EE)

platform, including Enterprise Java Beans (EJBs) for lifecycle management of the
image processing and machine learning services, the Java Persistence API for Object-
Relational Mapping (ORM) and Java EE annotations for configuring components (e.g.,
stateless beans for web services or singleton beans for keeping one single shared ref-
erence to heavy MATLAB objects). The Highcharts22 library was used for generating
attractive and dynamic charts. Highcharts is a powerful Javascript library for generat-
ing a variety of graphs and charts in 2D and 3D.

2.6. System architecture
This section focuses on the technical architecture of ePAD and related plugin ecosys-
tem.

2.6.1. Docker architecture
The ePAD platform is based on Docker, which enables the packaging and deployment
of applications inside software containers [16]. It allows running isolated processes
in light-weight, self-contained, and single-purpose containers. The main advantages
are the ease of deploying containers on any host running any operating system with a
consistent behavior, as well as the ability to avoid conflicts between di↵erent system
libraries and tools that may be required for running each process. Fig. 13.8 illustrates

22http://www.highcharts.com/, as of 5 December 2016.
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how the system is designed. It is composed of the following docker containers:
• ePAD web - This container runs the Java web server. It hosts both the user interface

and the back-end of the ePAD platform. It includes a web service tier with a REST
API, a GWT-based interface and utilities for communicating between the two tiers.

• MySQL - This container runs an instance of the MySQL database system and is
responsible for storing the organizational structures of ePAD (e.g., users, projects,
image series, plugins, files).

• DCM4CHEE - This container hosts the DICOM for Che Enterprise (DCM4CHEE)
service, a Java EE-based DICOM archive. All uploaded DICOM image series and
segmentations are stored in this repository. A web interface allows searching for
patients and images. It is also linked to the ePAD web container for adding up-
loaded images to the repository.

• eXist - This container runs eXist, a native eXtensible Markup Language (XML)
database used for storing image annotations in the AIM format [17].

Combining and linking the four containers mentioned above constitutes the complete
ePAD platform.

2.6.2. Plugin architecture
There exist two main approaches for server-side ePAD plugin development:
• Local plugins - These plugins are executed directly on the Java application server

running the ePAD back-end. The main advantage of these plugins is data locality,
but drawbacks include the dependency on the server’s runtime environment (in-
stalled libraries such as the MATLAB Compiler Runtime), as well as the risk of
altering ePAD’s responsiveness when computationally heavy plugins are called.

• Remote plugins - These plugins are executed on another server, and communi-
cation with ePAD is performed through HTTP calls. Advantages include the sep-
aration of concerns, running computations on a more powerful distant computer
and being independent of the ePAD server’s runtime environment. Drawbacks in-
clude the necessity for transferring data across the network, which can increase the
latency of the plugin.

The second approach was chosen, as the benefits of running computations on an inde-
pendent server with more power and being able to reuse the developed web services
outside the scope of ePAD were very important for us. Each plugin consists of three
parts: a Java plugin class that is integrated into ePAD, a web service class hosted on a
remote application server, and a MATLAB routine that contains the image processing
code. The MATLAB code is compiled into a Java library and added to the remote ap-
plication server’s dependencies. Using this technique, only the royalty-free MATLAB
Runtime Compiler, which requires neither to purchase nor to use MATLAB licenses
for execution, is needed on the application server. Fig. 13.9 shows the architecture and
interaction between the ePAD platform and the developed Java EE web service layer:
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Figure 13.9: Overview of the ePAD plugin architecture.

1. A plugin execution is started from within the ePAD Docker container, and the
corresponding plugin class is called within the same container.

2. The container communicates via standard HTTP requests and responses with a
remote Java EE server.

3. The Java EE server runs the plugin code (e.g., a MATLAB routine) and performs
additional tasks such as persisting data in the database.

4. Plugin results are returned to the ePAD Docker container, where the user will be
notified of the status of the plugin’s execution (success or failure).

2.6.3. Java EE for plugin development
The Java EE application server is used for multiple purposes. It serves as the main
resource for heavy computations required by certain plugins. The physical machine
hosting the server has the following performance characteristics:
• 2 x Intel(R) Xeon(R) Central Processing Unit (CPU) E7- 4820 @ 2.00 GigaHertz

(GHz) processors (64 cores in total),
• 128 GigaByte (GB) main memory,
• Gigabit Ethernet network connection,
• 550 GB Solid State Drive storage.
The Java EE server architecture allows persisting all processed images, annotations,
patients, along with computed features and generated results in a relational database
for further analysis, reuse for training machine learning algorithms, extraction of
statistics, etc. Fig. 13.10 shows a model of the various business objects involved in
the persistence of image annotations and all linked metadata. It consists of the follow-
ing main classes:
• Person - abstract class defining the basic properties of a person, i.e., an identifier

(for the database) and a name.
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Figure 13.10: Business objects of the Java EE plugin platform.

• User & Patient - implementations of Person with additional fields (user ID and role
for User, and personal information such as the birth date and sex for Patient).

• ImageReferenceEntity - description and content of a DICOM image.
• ImageAnnotation - properties and coordinates of ROIs.
• QuantitativeImagingFeatures - representation of the computed visual features ex-

tracted by a quantitative image analysis plugin.
• SVMClassifier - instances of SVM models built from one or more computed feature

vectors stored in QuantitativeImagingFeatures.
The persistence of business objects is fully managed through the Java Persistence API
(JPA). Java EE contains several security mechanisms, allowing to ensure data privacy
and security in all layers of the system (applicative, network transmission, storage).
All components of the application (web services, business objects, image processing
classes) are easily managed through the use of EJBs. Their execution environment
(i.e., EJB containers) handles the role, scope and lifecycle of every components. Web
Services and business classes used for short-lived operations are defined as stateless
session beans. JPA entities are used to annotate business object classes for persistence.
A singleton bean is used for managing the MATLAB factory, which initializes a unique
reference to the heavy objects used for executing the MATLAB routines. Its lifecycle
is as long as the application. The persistence bean contains a persistence context,
which allows establishing a connection to the MySQL server and executing queries
through the EntityManager interface. Fig. 13.11 shows the various EJBs and their
links to other managed components of the system.
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Figure 13.11: Java EE EJBs. The stateless Web Service Resource (top) is used by
the ePAD plugins using a web service client class. It holds references to the three
main EJBs (MATLAB Bean, Persistence Bean and SVM Classifier Bean), which are
obtained through dependency injection. The MATLAB Bean handles the call to the
MATLAB routines using a singleton factory object. The Persistence Bean handles sav-
ing and reading the business objects described in Fig. 13.10 to the MySQL database.
The SVM ClassifierBean handles the creation and reuse of SVM models using WEKA.

3. Use-cases
This section describes the various plugins that were developed for the ePAD platform
in the context of general-purpose use-cases. These plugins are designed to accelerate
the exploration of quantitative imaging parameters’ value in diagnosis, prognosis or
treatment planning tasks. The use-cases are divided in three major subsections. Sec-
tion 3.1 describes various examples of (i) the extraction of intensity and texture mea-
surements aggregated from whole user-defined ROIs, and (ii) the display of the latter
in bar plots. Section 3.2 details the use of patch-based analysis to reveal the diversity
of tissue components contained in user-defined ROIs with scatter plots. Section 3.3
illustrates the construction of personalized statistical models from a collection of user-
defined ROIs and associated labels. The obtained models can be used to classify new
ROIs with unknown labels.
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3.1. Analysis of whole ROIs
The goal of this plugin is to allow medical doctors to annotate a specific region in
a medical image and evaluate the value of associated quantitative imaging features.
Fig. 13.12 details the process of executing the plugin and the interactions between the
various layers of the application (ePAD front-end and back-end, Java EE server and
EJBs, as well as the MySQL database). The process for one ROI is:

1. The user creates an image annotation and selects a feature extraction plugin to
run based on various feature types. He/she clicks on a button to initiate the plugin
execution.

2. The ePAD back-end receives this call, containing all the required information
about the image, selected region, patient, etc. The input is transformed into an
object sent (via an HTTP request) to the web service layer of the remote Java EE
server.

3. The web service receives the query, parses the input parameters and calls the
MATLAB Bean to execute corresponding the feature extraction routine.

4. Once feature extraction is complete, the received input data and the generated
output results are sent to the Persistence Bean.

5. The Persistence Bean begins a transaction for saving all the supplied objects,
connecting to the MySQL database and executing the appropriate queries to cre-
ate or update rows. If any step of this procedure fails, the entire transaction is
rolled back to ensure data integrity.

6. Once the objects have been persisted, the results are sent back to the web service
layer, which will respond to the ePAD back-end with the computed features.

7. The ePAD back-end saves the computed features along with chart formatting
parameters in a format that the Highcharts library can process, as a JSON file
that is saved within the file hierarchy of ePAD. An event is then generated to
inform the user that the plugin’s execution has completed.

8. The front-end receives the event and runs a query to receive the newly created
JSON file from the back-end and renders the chart with the computed values and
given configuration (see Fig. 13.13).

Each feature type may contain one or more parameters that can be specified at runtime.
The parameters of the plugin vary according to the selected feature category. Below is
a list describing the currently available parameters:
• All feature types
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Figure 13.12: Sequence diagram showing the execution of the feature extraction plu-
gins.

• Patches - boolean parameter to determine whether the ROI is analyzed as a
whole or split up into smaller patches (see Section 3.2).

• Riesz
• RieszOrder - order of the Riesz transform (see Section 2.2.2),
• NumScales - number of wavelet scales.

• Histogram
• HistMin, HistMax - minimum and maximum bounds for the intensity values

of the histogram (see Section 2.2.1),
• HistNumBins - number of bins.

• GLCMs, Statistics - no additional parameters (see Sections 2.2.2 and 2.2.1).
By testing di↵erent feature types and parameter values, the user can gain intuition
about the meaning and discriminatory power of the raw features in the context of a
given pathology. Below are two concrete use-cases to show the potential of using
ePAD and the developed plugin for whole ROI analysis.
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Figure 13.13: Basic statistical feature extraction on two ROIs.



i
i

“main˙BTA” — 2017/5/15 — 10:46 — page 416 — #416 i
i

i
i

i
i

416 Biomedical Texture Analysis

Riesz

15.9115.91 16.8416.84

36.2336.23

197.27197.27

358.74358.74

14.0414.04

24.7124.71

60.8260.82

199.05199.05

436.95436.95

19.4019.40

38.9938.99

84.3784.37

172.42172.42

533.05533.05

16.1016.10

32.9432.94

71.3671.36

143.35143.35

736.61736.61

liverTissue_patient2 liverTissue_patient1 lesion_patient2 lesion_patient1

feat1 feat2 feat3 feat4 feat5
10

20

40

100

200

400

1k

Riesz

GLCMs

1.591.59

0.300.30

0.070.07

0.620.62
0.700.70

0.540.54

0.170.17

0.740.74

0.930.93

0.770.77

0.060.06

0.700.70
0.660.66

0.710.71

0.110.11

0.740.74

liverTissue_patient2 liverTissue_patient1 lesion_patient2 lesion_patient1

Contrast Correlation Energy Homogeneity
0

0.25

0.5

0.75

1

1.25

1.5

1.75

GLCMs

Figure 13.14: Riesz (bottom left) and GLCMs (bottom right) feature extraction on four
ROIs located in the liver (top).

3.1.1. Liver lesion quantification
In this use-case, the goal is to compare regions of the liver in terms of texture features
(Riesz and GLCMs were used for this use-case). A first run uses the Riesz feature
extraction plugin, using the following default parameter values (RieszOrder = 0,
NumScales = 5, Patches = false). Fig. 13.14 (bottom left) shows the results of the
plugin execution on four ROIs. The chart shows that the energies of scales 2, 3 and
5 (i.e., feat2, feat3, feat5, note that the y-axis uses a logarithmic scale) is higher for
the lesioned regions than those of healthy tissue (the scales vary from fine to coarse,
see Section 2.2 of Chapter 3). Scale 1 is mostly characterizing small scale CT noise.
Scale 4 is more represented in normal tissue when compared to lesions. A second
run was performed on the same ROIs, using GLCM features with the following pa-
rameter value: Patches = false. The results of the plugin execution are also shown
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in Fig. 13.14 (bottom right). In this case, there is no clear trend separating healthy
and lesioned tissue. The values of the computed features vary between regions of the
same type, and have similar values as regions of the other type. We can conclude that
GLCMs may not be optimal for specifically characterizing liver tissue in CT.

3.1.2. Liver metastasis quantification
In this use-case, the objective is to quantify the liver tissue density in three ROIs in CT.
Two hypodense ROIs contain metastasized tissue and the third one contains a majority
of normal liver parenchyma. The intensity-based features (Statistics and Histogram)
were used for this use-case. A first run uses the basic Statistics feature extraction
plugin, using the following parameter value: Patches = false. In Fig. 13.15 (top
right chart), the mean shows a clear distinction between healthy and metastasized liver
tissue. Using simple statistical analysis therefore seems appropriate in this specific
situation, as it is e↵ective and easily interpretable. A second run was performed on
the same ROIs using the Histogram feature extraction with: HistMin = 0, HistMax =
200, HistNumBins = 30, Patches = false. Results are shown in Fig. 13.15 (bottom
chart). Note that the histograms are not normalized across ROIs. The hypodensity
of metastases is well characterized by the intensity histograms, which enables fine-
grained visualization of the tissue contained in each region. It is valuable to assess
similarities in terms of density between various tissue types.

3.2. Patch-based ROI analysis
The plugin described in 3.1 can also be used in patch mode, where the selected ROI is
split into several smaller patches. It can be used to reveal the diversity of one or several
regions. The user can visualize the spread of patches when represented in the first two
PCA dimensions of a chosen feature space. Each selected ROI is split into several
smaller patches (patch radius r = 28 pixels). The features are computed for each patch
and the results aggregated in a data structure. When all features have been computed,
the PCA decomposition is computed and the first two components explaining most
variance are used as the dimensions of a scatter plot where each point represents one
patch instance. Fig. 13.16 shows the result of extracting GLCMs features from two
large ROIs divided into patches. The unhealthy lung parenchyma (gray) appears to
have more variation along the first PCA component (PCA1) when compared to the
healthy lung tissue (blue). Similarly, the healthy lung tissue has more variation along
the PCA2 component than the unhealthy lung parenchyma tissue.

3.2.1. Patch-based liver lesion quantification
In this use-case, the goal is similar to Section 3.1.1, but the global features are sub-
stituted for locally computed features based on patches. The basic Statistics features
were used for this use-case, with Patches = true (see Fig. 13.17). It can be observed
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Figure 13.15: Statistics (top right) and Histogram (bottom, unnormalized) feature ex-
traction on three ROIs located in the liver (top left).

that the patches in the healthy ROI are occupying a well-defined region of the PCA
space, whereas the ROI containing a heterogeneous lesion is spread out (some patches
also contain healthy tissue, which also clearly visible with the naked eye).

3.3. Training a statistical modal and classifying ROIs
Visualizing features and comparing them can be useful, but manual visual inspec-
tion and analysis is not necessarily the easiest or most e�cient way of di↵erentiating
ROIs. A more automated and reproducible approach is to enable the training of user-
personalized statistical models based on annotations with known labels (e.g., normal
versus abnormal, good versus poor treatment response). With a su�cient number of
training examples (this depends on the complexity of the recognition task), SVMs can
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Figure 13.16: Scatter plot (bottom) of a patch-based GLCMs feature extraction on two
ROIs (top). The first two PCA dimensions are represented.

be further used to classify ROIs of unknown classes with probability output. The goal
is to allow the user to fully control which ROI instances and quantitative imaging fea-
tures to use for the generation of the predictive model. This makes the classification
process easier to understand and trust (the decisions taken by the machine learning al-
gorithm are backed up with concrete examples, rather than abstract concepts gathered
from huge datasets with limited quality control as it is the case for big data and deep
learning).
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Figure 13.17: Patch-based Statistics feature extraction on two ROIs located in the liver.
The first two PCA dimensions are represented. The diversity in terms of tissue density
of the liver lesion is revealed by scattered patches instances in the PCA space.

The first step of this process consists in selecting several ROIs of known class
for training a new model. The labels of each class present in the generated model are
currently based on the name given to each ROI (e.g. “normal”, “abnormal”). Fig. 13.18
shows the ePAD interface used for selecting the training ROIs. The next step is to
determine the feature type for the creation of the model, as well as a user-defined
model name for the created model (allowing a user to create and share multiple models
for di↵erent purposes). This is done through the input of two plugin parameters by the
user in the ePAD web interface, as shown in Fig. 13.19. The features are then extracted
from each region, and the resulting instances are normalized and used to train the
model. A notification is provided to the user when the model training is complete,
which can subsequently be used for classification of new ROIs with unknown label.
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Figure 13.18: ROI selection for statistical model training.

Figure 13.19: Plugin parameter definition for statistical model training. Both the visual
feature type and a user-defined model name are required.

For classifying a ROI, the user selects it in the Annotations list and runs the classi-
fication plugin based on the classifier specified by the feature type and the model name
previously used for the training plugin. The model is loaded by the server and the clas-
sification is performed using the normalized features extracted from the unseen ROI.
The result is sent back to the client’s browser, where a bar plot shows the probabil-
ity (in percent) for each class (see Fig. 13.20). Using these two plugins (training and
classification), the user can easily create and share statistical models, test and refine
them by providing new examples increasing the size of the ground truth, improving
the classification accuracy of the generated model over time.
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Figure 13.20: Classification of a ROI with unknown label (two-class SVM model
based on Statistical features).

Figure 13.21: Four among the twelve ROIs of known class (normal versus reticulation)
from two di↵erent patients used for training.

3.3.1. Lung tissue classification
In this use-case, the goal is to train a model that can distinguish between healthy lung
parenchyma and reticulation. The model is trained using 12 ROIs (6 normal, 6 retic-
ulation) taken from 2 di↵erent patients. Fig. 13.21 shows 4 of the 12 training ROIs.
Once the model is trained, the classification is tested with 3 ROIs from an unseen pa-
tient: 1 normal, 1 reticulation and 1 unknown. Distinct models based on the same
collection of training ROIs but based on di↵erent feature types (i.e., Riesz, GLCMs,
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Statistics and Histogram) are compared in Fig. 13.22. In each case, the Patches pa-
rameter was set to false. For all feature types but Histogram, the two control ROIs
were correctly classified. Histogram feature type wrongly classified healthy tissue as
reticulation by a small margin. The latter can be explained by the inadequate choices
of the Histogram parameters, the latter characterizing the intensity between [0, 100]
HU whereas both healthy lung and reticulation mainly have intensity values below 0
HU. The largest classification confidence for the control ROIs are obtained by the
GLCM features, with a probability of 89% for the reticulated tissue and 92% for the
healthy lung tissue. The unknown ROI is classified as normal lung tissue when using
either Riesz, GLCMs or Statistics features, with a probability of 53%, 64% and 56%,
respectively.

3.4. Helper tools for segmentation
In addition to the specific use-cases mentioned previously, another plugin was devel-
oped to investigate and showcase the numerous features provided by the ePAD plat-
form. It allows automatically segmenting lungs in a DICOM volume, using the method
described in [9]. The detected lung regions are highlighted using colored overlay in
the image viewer of ePAD (see Fig. 13.23).

This type of plugin along with the image overlay functionality showcase the pos-
sibility to automate the annotation process, yielding reproducible ROIs that can be
further used by the quantitative image analysis plugins. The execution process of this
plugin di↵ers significantly from the previously mentioned ones. In this case, the anal-
ysis is performed not only on a single DICOM image, but on the entire volume. In
addition, it does not require a user-defined ROI for initialization and is entirely au-
tomated. ePAD provides utilities for downloading all images of the current DICOM
series and storing segmentation information in the DICOM archive using the stan-
dardized DICOM Segmentation Object (DSO) format. It also handles displaying this
information in the front-end interface. Similar plugins may be used in combination
with quantitative image analysis methods (e.g., intensity, shape or texture) to highlight
areas in an image representing a distinct tissue type using di↵erent colors, enabling the
quantification and simplified visual inspection of images using visual cues of patho-
logical findings within an a↵ected area.

4. Discussion
This section is dedicated to the analysis of the obtained results and experience work-
ing with the ePAD platform. The ePAD environment is a fully-featured imaging, an-
notation and analysis platform that is already in use by several medical doctors and
researchers. This provides the exciting opportunity to finally include end-users in the
development cycle of quantitative image analysis in radiology as all developed plugins
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Figure 13.22: Lung tissue classification using Riesz features (middle left, RieszOrder
= 0, NumScales = 5), GLCMs features (middle right), Statistics features (bottom left)
and Histogram features (bottom right, HistMin = 0, HistMax = 100, HistNumBins
= 20, the bin values are used as features).
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Figure 13.23: Two images of automatically segmented lungs in a DICOM volume.
The detected lung regions are highlighted with green image overlays in the front-end
of ePAD.

and tools are within immediate reach of the clinical context. The methods developed
in this work represent e↵orts to reduce the black-box e↵ect of current quantitative
imaging biomarkers. The plugins allow quickly evaluating the significance and dis-
criminatory power of intensity or texture imaging biomarkers in an applicative context
that the end user fully controls. The possibility to o✏oad the main computational
aspects of the plugins to a remote server designed to our own specifications added a
layer of complexity (e.g., managing the transfer of data between the two servers), but
was ultimately a judicious decision, because it allowed freedom for the design of the
plugins and the associated frameworks (e.g., use of Java EE for component lifecycle
management and persistence, use of a version of MATLAB that di↵ers from the ver-
sion for which ePAD is configured). The use of standardized protocols and formats
such as HTTP and JSON allowed interoperability between all tiers of the platform.
Moreover, the image analysis services deployed on the remote server can be accessed
by any other client with or without the ePAD front-end, which allows eased reusability
of the developed components. The relevance of developed plugins has been demon-
strated with several use-cases. Using the developed tools, we can bring quantitative
imaging biomarkers and texture analysis closer to the clinical world and allow medi-
cal doctors and researchers to experiment with various feature types, parameters and
perform comparisons across image series and patients with ease.



i
i

“main˙BTA” — 2017/5/15 — 10:46 — page 426 — #426 i
i

i
i

i
i

426 BIBLIOGRAPHY

5. Conclusions
We developed a suite of web-based tools for medical doctors and researchers allowing
the rapid exploration of the potential of quantitative imaging biomarkers in a medi-
cal applicative context. Recent and extensive scientific evidence of such biomarkers
was provided by researchers in the domain of radiomics. The contributions of this
work are timely to ease the adoption of quantitative imaging biomarkers in the med-
ical domain. Focusing on a small set of use-cases and features, the developed tools
enable the creation of personalized methods and models that can be adapted to various
specific medical contexts. They are a proof-of-concept showing that it is possible to
bring complex texture analysis methods such as Riesz or GLCMs to the user in an
approachable manner, using experimentation as the key to understanding. Extracting
quantitative features from several ROIs, comparing between images and patients can
provide intuition as to whether a given feature type can be helpful in a given clini-
cal setting, and can be used to identify optimal features for a medical image analysis
task. We recognize limitations of this work, including the current impossibility to deal
with three-dimensional ROIs and texture features, which is presented in Chapters 11
and 12. In the future, we aim to enhance the current plugins and create new plug-
ins, performing more complex tasks while remaining user-friendly. The possibility of
segmenting an image and highlighting di↵erent texture components is very promis-
ing, for example. We also plan to integrate new types of features such as circular
harmonic wavelets [7] and to improve the training/classification processes with the
addition of several machine learning methods and inner cross-validations for automat-
ically choosing hyperparameters. There is still much work to be done, and we want
to develop tools that will make the frequent use of quantitative imaging biomarkers
analysis in hospitals a reality. The software is available on request.
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