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A 3-D Riesz-Covariance Texture Model for
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Abstract— This paper proposes a novel imaging biomarker of
lung cancer relapse from 3-D texture analysis of CT images.
Three-dimensional morphological nodular tissue properties are
described in terms of 3-D Riesz-wavelets. The responses of the
latter are aggregated within nodular regions by means of feature
covariances, which leverage rich intra- and inter-variations of the
feature space dimensions. When compared to the classical use
of the average for feature aggregation, feature covariances pre-
serve spatial co-variations between features. The obtained Riesz-
covariance descriptors lie on a manifold governed by Riemannian
geometry allowing geodesic measurements and differentiations.
The latter property is incorporated both into a kernel for
support vector machines (SVM) and a manifold-aware sparse
regularized classifier. The effectiveness of the presented models
is evaluated on a dataset of 110 patients with non-small cell lung
carcinoma (NSCLC) and cancer recurrence information. Disease
recurrence within a timeframe of 12 months could be predicted
with an accuracy of 81.3–82.7%. The anatomical location of
recurrence could be discriminated between local, regional and
distant failure with an accuracy of 78.3–93.3%. The obtained
results open novel research perspectives by revealing the impor-
tance of the nodular regions used to build the predictive models.

Index Terms— Cancer recurrence, computer-aided diagnosis,
lung computed tomography, radiomics, Riesz-covariance model,
texture classification.

I. INTRODUCTION

RECURRENCE modeling in cancerous nodules is an
ongoing research topic in the medical imaging domain.
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Current medical imaging acquisition devices generate big
amounts of data and meta-data, such as 3-D scans of
patient bodies or particular organs, and associated infor-
mation such as regions of interest (ROI) delineations and
other monitoring information according to its clinical rele-
vance by experts (e.g., patient survival, treatment response).
This highlights the need for developing methodologies for
managing these big data, particularly focusing on med-
ical assessment such as tissue identification, case retrieval
or prediction of disease outcome. The latter belongs to
an emerging research field called radiomics [1], which is
based on recent evidence that imaging biomarkers have the
potential to surrogate invasive biopsy-based molecular assays
with the ability to capture intralesional heterogeneity in
a non-invasive way [2], [3]. Personalized phenotyping of
the manifestation of the disease can be used to diagnose,
assess treatment response, and predict prognosis with higher
precision [4], [5].

In the particular case of non-small cell lung carci-
noma (NSCLC), several studies highlighted the value of
imaging biomarkers for predicting patient outcomes [6]. The
proportions of solid and ground-glass opacities (GGO) are
known to be a predictor of prognosis [7], [8] and invasive-
ness [9]. The size and shape of solid tumor components was
related to cancer aggressiveness [6]–[8], [10]. Ganeshan et al.
showed multiple correlations between texture features based
on 2-D multiscale isotropic Laplacian of Gaussian (LoG)
filters and histopathology [11], glucose metabolism and
stage [12] as well as patient survival [13], [14]. 2-D LoG
filters were also used by Ravanelli et al. to predict tumor
response to chemotherapy in [15]. Al-Kadi et al. were
able to predict tumor aggressiveness with high accuracy
using texture attributes based on 2-D fractal analysis and
corresponding lacunarity. One important limitation of the
above-mentioned studies is that texture properties are most
often averaged over the gross tumor volume (GTV) and
do not explicitly characterize GGO and solid components.
The mixed values of texture attributes computed over entire
nodular regions are not unequivocal and entail the risk of
regrouping tissue with distinct morphological properties and
“habitats” [16] (see Figure 1). Mattonen et al. [17] separated
the analysis of tumor components, although focusing on GGO
regions only. In previous work, we specifically learned texture
models of solid and GGO nodule components to predict
nodule recurrence [18]. The models were based on linear
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Fig. 1. Example of a lesion with GTV (blue) and solid (red) components
annotated in an axial CT slice. The GGO region was excluding the two solid
ROIs in this case.

combinations of 2-D steerable Riesz-wavelets learned using
support vector machines (SVM).

3-D image analysis approaches are required to best leverage
the wealth of information contained in modern radiological
images. In particular, 3-D texture features and descriptors
can capture complex structural tissue properties and can be
used for tissue modeling, segmentation and classification [19].
Imaging biomarkers of NSCLC based on 3-D texture analysis
of nodular components are scarce. Parmar et al. used 3-D
GLCMs and run-length texture analysis along with 2-D coiflet
wavelets, 3-D shape and intensity features to predict patient
survival, histology and tumor stage [20]. The predictive perfor-
mance was estimated using a large cohort of 647 patients with
NSCLC and showed to be poor for all three outcomes. The
latter can potentially be related to the importance of separating
the analysis of nodular components (e.g., solid and GGO),
which was not the case in this study.

This paper investigates the fusion of visual texture charac-
terization techniques, as provided in previous research lines of
the authors, and classification models that can relate the visual
observations on computed tomography (CT) scans with the
patient’s temporal recurrence classes, as annotated by expert
clinicians as part of their monitoring. The novelty is to find
correlated relationships between observed nodule regions of
interest on control cases with known recurrence risk, and
to obtain predictive models for newly-observed patients in
a quantitative manner. These models are formulated by 3-D
Riesz-covariance descriptors for observed texture samples—in
the complete 3-D delineated nodule regions—and associated
classification models in this non-linear descriptor space, con-
sidering different recurrence time windows as different sample
classes. The presented method does not use any geometry or
structural prior information regarding the nodule boundaries,
which is not always easy to determine in an unsupervised
manner. It relies on the statistical notion of the covariance of
feature observations for modeling texture distributions within
regions of interest of arbitrary size. When compared to our
previous study based on 2-D Riesz texture models of nodule
recurrence (see [18]), the main novelty of the current approach
is its natural extension to the 3-D domain via the spatial
relation of 3-D Riesz-wavelet features through the covariance-
based descriptors. The previous approach used the axial CT
with the maximum nodule surface for classification, where
the responses of the Riesz filters were aggregated based
on the average. The latter discarded spatial co-variations
between features, and therefore mixing texture properties of
distinct nodular components (see Fig. 1). 3-D Riesz-covariance
descriptors do not require a selection of a 2-D slice with the
maximum observable area, as all voxel samples within a three-

dimensional ROI are considered as observations of a multi-
dimensional joint distribution of features, encoding the texture
characteristics regardless of its size or region shape. When
used as an aggregation function, the average loses the spatial
localization of the Riesz filter responses. On the other hand,
the feature covariances encode the spatial co-responses of
the Riesz filters, providing much richer tissue representations.
Overall, the proposed approach provides a flexible framework
in which any arbitrary tissue region can be evaluated, regard-
less of size, shape and connectivity, without the requirement
for manual input. The covariance-based descriptors lie on
the space of Riemannian geometry, which follows the trend
of state-of-the-art work [21], [22], and provides a coherent
theoretic framework in order to built classification methods
that are sensitive to the topological properties of the described
data, e.g. recurrence and locality failure prediction models
based on tissue component features.

The rest of the paper is organized as follows:
Section II introduces the presented methodology including
II-A: the dataset of patients with early stage NSCLC and
treated with stereotactic radiation, II-B and II-C: the used
texture features and the derived descriptive unit, II-D: an
analysis of their Riemannian space geometry for self-
contention and II-E: the formulation of two classification
algorithms taking into account their spatial constraints —
a kernel-based SVM and a manifold-regularized sparse
representation. Section III presents the experimental
evaluation conducted to test the effectiveness of the presented
method for predicting early stage NSCLC recurrence. Finally,
Section IV discusses the results and presents our conclusions.

II. METHODOLOGY

A. Patient data

A cohort of 110 patients treated with thoracic stereotactic
ablative radiotherapy (SABR) from Stanford Cancer Institute
was used in the analysis with institutional review board
approval. All patients treated with SABR from 2004 to 2013
who had biopsy proven early staging NSCLC were considered
but were not included if they received chemotherapy prior
to a diagnosis of metastatic disease, had synchronous tumors
at diagnosis, or if they received a new diagnosis of primary
NSCLC following SABR. Patients were treated using SABR
with variable dose fractionation schemes from 25 Gy in one
fraction to 60 Gy in five fractions. Treatment planning scans
used for analysis were acquired on a General Electric (GE) or
Siemens CT simulation scanner used for treatment planning
prior to radiation therapy. CT scans had 1.25 to 2.50 mm
slice thickness with most scans having in-plane pixel spacing
of 0.98 mm with a range of from 0.7 to 1.37 mm. Patients
were followed in 3 month intervals at first and monitored
for response and recurrence using both clinical exams and
cross sectional imaging. The final dataset kept only of patients
whose associated CT scan images did not contain fiducial
markers or other acquisition artifacts affecting the feature
extraction procedure, and with a complete follow-up infor-
mation along treatment, yielding to the sets defined below.

GTVs were delineated in 3âŁ“D by three treating radia-
tion oncologists from Stanford University who specialize in
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thoracic malignancies and stored in the Digital Imaging and
Communications in Medicine (DICOM) radiation therapy (RT)
format. Each radiation oncologist had 4-18 years of experience
at the time of patient treatment. For this study a single
radiation oncologist delineated the GGO and solid components
of the treated GTV using the lung and mediastinum CT
windows. MATLAB was used for the post-processing of CT
images and data, including region ground-truth preparation and
resampling of volumes in order to have isotropic voxels of
0.8 × 0.8 × 0.8 mm3 using cubic spline interpolation. The
nodules had a reported size ranging from 7 to 1,868 mm3.

Disease-free survival (DFS) times were collected for
92 patients and divided into three categories:

• patients with “short-term recurrence”: cancer relapse
occurred within the first 12 months of treatment
(23 cases);

• patients with “long-term recurrence”: cancer recur-
rence occurred within the first 24 months of treatment
(30 cases);

• patients with “no recurrence” within 24 months of treat-
ment (62 cases).

The patients in the “long-term recurrence” group included
all patients of the “short-term recurrence” group.

A second data categorization according to type of recur-
rence, regardless relapse times, was collected for 32 patients
(the 30 previous and two with recurrence after more than
24 months), which are labeled as:

• “local”, if the cancer nodule reappeared within the lung
parenchyma of the same lobe of the treated lesion
(12 cases);

• “regional”, metastasis developed in regional hilar or
mediastinal lymph nodes (13 cases);

• “distant”, if disease recurrence developed at distant
metastatic sites including the brain (7 cases).

B. 3-D Riesz-wavelet features

3-D
multiscale Riesz filterbanks are used to characterize the

texture of the lung parenchyma in 3-D CT. Each component
of the 2nd-order Riesz transform R(N) of a three-dimensional
signal f (x) is defined in the Fourier domain as:

̂R(n1,n2,n3) f (ω) = (− j)N

√
N !

n1!n2!n3!
ωn1

1 ωn2
2 ωn3

3

||ω||n1+n2+n3
f̂ (ω), (1)

for all combinations of (n1, n2, n3) with n1 + n2 + n3 = N
and n1,2,3 ∈ N. Eq. (1) yields M = (N+2

2

)
components

R(n1,n2,n3), which corresponds to all-pass filters pertaining to
the 3-D phase only, i.e., the directions defined by the N th-
order partial derivatives of f (x) along x, y, z. Band-limited
filters are obtained by coupling the Riesz transform with a
multi-resolution framework based on non-separable isotropic
wavelets (e.g., Simoncelli) [23].

Altogether, the Riesz components R(n1,n2,n3) form steerable
filterbanks, meaning that the local response of each Riesz

Fig. 2. 2nd-order Riesz kernels R(n1,n2,n3) convolved with isotropic
Gaussian kernels G(x).

component to an image rotated by an arbitrary 3-D angle
can be derived analytically from a linear combination of the
responses of all components of the filterbank.

This work uses the second-order Riesz filterbank (depicted
in Figure 2), which qualitatively corresponds to the six unique
elements of the Hessian matrix. When compared to lower or
higher orders of the Riesz transform, the second-order provides
an appropriate balance between the wealth and the dimen-
sionality of the filterbanks. Rotation-covariance is obtained by
locally aligning the Riesz components R(n1,n2,n3) of all scales
based on the locally prevailing orientation. The latter is esti-
mated using the uni-directional Riesz components as proposed
in [24]. This estimation relies on computing the regularized
structure tensor proposed by Chenouard et al. [25] using
only the three Riesz filters R(2,0,0), R(0,2,0) and R(0,0,2). The
sorted collection of eigenvectors of the resulting 3-dimensional
matrix composes a rotation matrix Ug ∈ R

3×3, where g is the
regularization function used when building the structure tensor,
in our case a 3-D Gaussian window. Applying Theorem 1
of [26], the steering matrix SUg ∈ R

M×M corresponding to
Ug can be obtained and used to steer the Riesz components
while preserving their directional inner-relations. This steering
matrix is computed from the wavelet coefficients of the first
scale using an isotropic Gaussian regularization window with
σ = 1 and is applied to all scales. For every scale si with
i ∈ {1, 2, 3}, locally aligned second order Riesz features are
denoted as R̃(2)

si
in the next sections.

C. Riesz-covariance 3-D texture descriptors

Covariance matrices have been used as descriptors in the
computer vision and pattern recognition area for feature fusion,
big data characterization and multimodal signal processing.
Tuzel et al. [27] presented an object recognition method for
2-D color images using visual cues such as edges, curvature
or color values inside a region of interest of arbitrary size.
Fehr et al. [28] extended this framework to other domains
such as 3-D object recognition in unstructured point clouds.
Other approaches, such as [29]-[31] also support the feasibility
of covariance-based descriptors for metric learning or spatio-
temporal gesture recognition.

As defined in Eq. (1), 2nd-order 3-D Riesz-wavelet features
yield to a 6-dimensional filterbank for each scale si . Three
dyadic scales are chosen to cover the spatial spectrum of nodu-
lar regions, leading to a total of 18 Riesz-wavelet features. For
a posterior task of region characterization and classification, a
compact yet accurate representation of these region-collected
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Fig. 3. Feature volumes involved in the descriptor calculation for a given cubic CT volume of 56 × 56 × 56 pixels containing a delineated nodule region.
Volumes are plotted by a 3-D representation including three axial slices. The left-most image shows the CT values, followed by the delineated region. Middle
subfigures depict the 2nd order 3-D Riesz-wavelet responses for the three wavelet decomposition levels. The 18 × 18 matrix in the right-most subfigure
depicts the resulting 3-D Riesz-covariance descriptor, encoding all covariances between the distributions of the observed texture features. All the voxels
within the delineated ROI where considered as samples of an 18-dimensional joint distribution, for the 18 available Riesz-wavelet response features. The
resulting multiscale descriptor provides a discriminative signature for the entire 3-D ROI, and encode the tissue characteristics in terms of texture intensities,
directionality and scale homogeneity.

features is needed. The feature values obtained for each voxel
need to be aggregated over a given region of interest (ROI) to
estimate their statistical distributions. The complete space of
Riesz-wavelet features constitutes a sparse variety, with a lack
of characterization for particular texture entities. Following
previous research in which we investigated covariance-based
descriptors for shape and texture fusion of 3-D surfaces [21],
tissue characterization in 3-D CT imaging [22] or 2-D color
image categorization [32], we propose to exploit Riesz-wavelet
features in their covariance space. The latter can be locally
estimated by computing the covariance matrix of the Riesz
features in a given ROI.

The benefits of translating feature magnitudes within a ROI
to the space of the covariances of these observations are
threefold:

(i) The consideration of voxels within a 3-D region as sam-
ples of a multi-dimensional feature distribution implies
a loss of structural information, which leads to the
robustness to spatial and rotation transformations (due to
the steerability of 3-D Riesz-wavelet features) [21], [22].

(ii) The characterization of a set of feature observations by
its covariance matrix provides a compact, size and shape
independent discriminative signature [32].

(iii) Considering the texture pattern distributions in terms of
relationships between Riesz-wavelet features provides a
meaningful dictionary of texture possibilities, instead of
modelling a sparser space of all the possible feature
magnitudes taken separately.

In order to formally define the 3-D Riesz-covariance descrip-
tors, we denote a feature selection function �( f (x), v) for
a given 3-D CT image f (x) and a selected subvolume
region v as:

�( f (x), v) =
{
R̃(2)

si
(p),∀p ∈ v ⊂ R

3
}

, (2)

where R̃(2)
si

(p) is the concatenation of the six 3-D Riesz
features for each scale si .

Then, for a given 3-D ROI v of the CT image, the associated
3-D Riesz-covariance descriptor is:

Riesz3D
Cov (�( f (x), v) = 1

M − 1

M∑
i=1

(
ψ i − μ

) (
ψ i − μ

)T
,

(3)
where μ is the vector mean of the set of vectors � =
{ψ1, . . .,ψM } within the volumetric neighborhood v made of
M samples.

The resulting 18 × 18 matrix Riesz3D
Cov is a symmetric

matrix where the diagonal entries represent the variance of
each feature channel and the non-diagonal elements represent
their pairwise covariance, as seen in Figure 3. The pairing of
Riesz-wavelet features with a covariance-based framework is
particularly interesting for robust tissue modelling with respect
to possible rotations or shape variabilities for further classifi-
cation tasks. The steerability of the used features ensures that
the norm of the wavelet responses remains unaltered for any
rotation of the observations. The inherent loss of structural
information on the construction of covariance matrices, due
to the consideration of feature values as samples of a joint
distribution, provides invariance to spatial transformations,
shape variabilities, scaling and occlusions.

D. Riemannian geometry of the descriptor space

3-D Riesz-covariance descriptors are embodied by covari-
ance matrices that not only provide a compact and flexible
representation but also lie in the Riemannian manifold of
symmetric definite positive matrices Sym+

d [33]. This has
a major impact on their interest as descriptive units, as
their spatial variety is geometrically meaningful: 3-D regions
sharing similar texture characteristics remain close areas in
this descriptor space.

Since symmetric matrices contain only d(d +1)/2 indepen-
dent coefficients, in their upper or lower triangular parts, it is
possible to apply a vectorization operation in order to obtain
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Fig. 4. Mapping of points in a Sym+
d manifold to the tangent space TY .

a linear orthonormal space for the independent coefficients:

X̂ = vec(X)

= (X1,1,
√

2X1,2, . . . ,
√

2X1,d , X2,2,
√

2X2,3, . . . , Xd,d),

(4)

where the
√

2 coefficient in the non-diagonal elements is used
for preserving the norm magnitude of the original symmetric
matrix and its vectorized form ‖X‖F = ‖X̂ ‖2 (where ‖X‖F is
the Frobenius norm of the matrix X). The obtained vector X̂
lie in the Euclidean space R

m , where m = d(d + 1)/2.
While this vectorization approximation could be used

for the comparison of 3-D Riesz-covariance descriptors, its
inherent simplification does not fully exploit the structure
of this descriptor space. Instead, the Riemannian mani-
fold can be approximated in close neighborhoods by the
Euclidean metric in its tangent space, TY , where the symmetric
matrix Y ∈ Sym+

d is a reference projection point in the mani-
fold [34]. TY is formed by a vector space of d × d symmetric
matrices (e.g., corresponding to Riesz3D

Cov in our case), and
the tangent mapping of a manifold element X to x ∈ TY is
made by the point-dependent logY operation (Figure 4):

x = logY (X) = Y
1
2 log

(
Y − 1

2 XY − 1
2

)
Y

1
2 , (5)

where the matrix logarithm is computed as

log(X) = U log(D)U T , (6)

with U and D being the elements of the singular value
decomposition (SVD) of X ∈ Sym+

d .
Analogously, the exponential mapping of a point x ∈ TY

returns its original point representation X ∈ Sym+
d :

X = expY (x) = Y
1
2 exp

(
Y − 1

2 xY − 1
2

)
Y

1
2 , (7)

where the matrix exponential is computed using the SVD of
x ∈ TY as:

exp(x) = Uexp(D)U T . (8)

Pennec et al. [33] pointed to the following Riemannian
metric that defines the scalar product between two points x1, x2
in the tangent space at the reference point Y , TY :

〈x1, x2〉Y = trace
(

x1Y −1x2Y −1
)

. (9)

The decision of a projection point in the manifold that is
equivalent to the origin of coordinates in the tangent space is
not trivial. Since the mean of a set of points is, by definition,
the point which minimizes the distances with respect to all
points in the set. It can be used as the optimal projection
element yielding to the closer tangent space approximation.
Due to the convexity of the Sym+

d manifold, the mean of a set
of covariance matrices X j=1..J on a Riemannian manifold has
to be approximated in order to lay on the manifold ensuring:

μ({X}) = argmin
X ′∈Sym+

d

J∑
j=1

δ2 (
X j , X ′) , (10)

where δ2(X1, X2) expresses the Riemannian distance between
two points X1, X2 ∈ Sym+

d , as defined by [35]:

δ(X1, X2) =
√√√√trace

(
log

(
X

− 1
2

1 X2 X
− 1

2
1

)2
)

, (11)

or more simply δ(X1, X2) =
√∑d

i=1 log(λi )2, where λi are

the positive eigenvalues of X
− 1

2
1 X2 X

− 1
2

1 .
Several gradient descent procedures are proposed

in [36], [37] for the computation of the mean in an
iterative manner. Pennec et al. [33] presented the following
method for computing the geodesic mean of a finite set of
points in Sym+

d , X1, ..., X J by an iterative re-projection to
the tangent space:

μ̂({X})t+1 = expμt

⎛
⎝ 1

J

J∑
j=1

logμt
(X j )

⎞
⎠

= μ
1
2
t expμt

⎛
⎝1

J

J∑
j=1

log

(
μ

− 1
2

t X j μ
− 1

2
t

)⎞⎠μ
1
2
t . (12)

Due to the high dimensionality of manifold points, several
dimensionality reduction techniques such as multidimensional
scaling, isomap or discriminant diffusion map analysis were
presented in the literature [38]-[40]. These techniques provide
simpler representations of data samples while preserving their
similarity relationships in a lower order space. Their goal is
to further perform classical data analysis techniques in the
machine learning and classification domains such as linear
discriminant analysis, data separability or kernel optimization.
In order to evaluate the feasibility of the proposed descriptor
space for class differentiation, the previously defined tangent
mapping operation was used to project the descriptors to an
associated class space of type of recurrence, as determined
by clinicians. Using discriminant diffusion map analysis [40]
with the defined metric in Eq. 11, we projected the points to
a 3-D space preserving their Riemannian distance, as depicted
in Figure 5. Such a projection demonstrates the following:
a) the provided 3-D Riesz-covariance descriptors are able
to capture several class entities, b) the provided Riemannian
metrics and mapping operators are able to provide an adequate
kernel for classification, and c) this classification separability
correlates with clinical knowledge on classes like recurrence
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Fig. 5. Descriptor space embedding for the classes of type of recurrence
on the follow-up information from ground-truth annotations. Discriminant
diffusion map analysis is used together with the Riemannian metrics of the 3-D
Riesz-covariance descriptor space for plotting the set of 110 patient nodule
delineations in 3-D, together with the labeled information on the dataset. The
plot demonstrates the characterization capabilities of the proposed framework,
in which texture information preserves a correlation with nodule recurrence
information.

locality of the nodules and recurrence time annotations, as is
analyzed in this article.

E. Classification methods on the Sym+
d manifold

The topological layout of the proposed 3-D Riesz-
covariance descriptor yields to focus on geometrically sensitive
models that can exploit the Riemannian manifold distribution
of the data samples for classification. According to the associ-
ated clinical meta-data there are two scenarios of interest for
nodule recurrence classification:

(i) a binary separation whether a patient is prone to suffer
recurrence within a given time frame or not and

(ii) a multi-class separation according to the possible
anatomical localizations of cancer recurrence: no failure,
local failure, regional failure, or distant metastasis.

This section includes the presented formulation for both sce-
narios in which a kernel-based support vector machine (SVM)
framework is chosen for binary classification and a manifold-
regularized sparse classifier is presented for multi-class
datasets.

1) Binary classification via a kernel SVM formulation:
Support vector machines constitute a very common classifi-
cation method in the machine learning literature [41]. In its
linear form, this supervised learning methodology attempts to
separate a set of S labeled samples {xi , yi }S

i=1 by finding a
hyperplane with a normal vector w such that the separation
margin, i.e. the distance between this hyperplane and the
nearest point of each class, is maximized. The classification
decision function is defined as the projection of:

h(x) = b +
S∑

i=1

αi yi 〈xi , x〉 = b + 〈w, x〉, (13)

where the term b is a bias magnitude and {αi } are the
Lagrangian multipliers that take values only on the support
vectors [42]. 〈·, ·〉 denotes the L2-norm inner product between
vectors.

This basic formulation can be extended to the case in
which data samples are not linearly separable in their natural
distribution by mapping the samples into another transformed
space [43]. In the case of 3-D Riesz-Covariance descriptors
of nodule regions, the mapping to the tangent space arises
in a straightforward way. The introduction of this mapping
function φ yields to a slight change to Eq. (13) as follows:

h(x) = b +
S∑

i=1

αi yi 〈φ(x i ), φ(x)〉. (14)

An associated kernel function k(xi , x j ) = 〈φ(xi ), φ(x j )〉
is usually defined instead of an implicit mapping function φ.
In the case of covariance matrices for signal processing,
Yger [44] recently reviewed several kernel formulations that
yield useful high-dimensional space mappings.

The natural choice for a kernel-based SVM for the classifi-
cation of covariance-based descriptors is the tangent mapping
function defined in Eq. (5): φY (X) = logY (X). Using the
scalar product in the tangent space and the complementary
Riemannian metrics previously defined we can derive the
following kernel for symmetric positive-definite matrices:

k(Xi , X j )Y = 〈φ(Xi )Y , φ(X j )Y 〉, (15)

where Y ∈ Sym+
d is the projection reference point, set to the

mean of the training sample and set as in Eq. (12) in order
to maximize the mapping likelihood. Related to this definition
with the inner product defined in Eq. (9) we can derive the
following kernel:

k(Xi , X j )Y = trace
(

logY (Xi )Y
−1logY (X j )Y

−1
)

= trace
(

log
(

Y − 1
2 Xi Y

− 1
2

)
log

(
Y − 1

2 X j Y
− 1

2

))
.

(16)

Finally, in order to enable a computationally efficient imple-
mentation of this kernel-based SVM, the following condition
is verified thanks to the trace operator and the tangent mapping
function defined in Eq. (5):

k(Xi , X j )Y = trace
(

Y − 1
2 logY (Xi )Y

− 1
2 Y − 1

2 logY (X j )Y
1
2

)
= 〈xi , x j 〉. (17)

Therefore, we can use this kernel trick to perform an equiva-
lent kernel-based classification in the tangent projected space
of the 3-D Riesz-covariance descriptors, with respect to the
projection reference point at their mean. We refer to [44]
for an exhaustive study on covariance-oriented kernels for
classification. The same formulation was recently used in
electroencephalography signal processing [45], where signals
were characterized by their low-level covariance matrices
with successful results. Therefore, we propose to test the
performance of the same methodology with the developed 3-D
Riesz-covariance descriptors.

2) Multiclass classification using sparse regularized
Manifolds: Sparse representation-based methods [46], [47]
have shown recent relevance in the machine learning
community. These models are specially targeted to complex
classification tasks where only a low number of learning
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samples might be available, and where a sample to be
classified might require strong constraints in order to avoid
ambiguous classification decisions. This yields to a sparse
model that integrates a regularization term according to the
used descriptor space. In the case of 3-D texture analysis,
where few patients are available and tissue texture provides
a complex class definition, we propose a new formulation
adapted to the manifold of 3-D Riesz-covariance descriptors.

As a brief overview in their most general formulation, sparse
representation-based classifiers consider a test sample y as a
linear combination of elements in a dictionary 	 of training
samples from different classes: y = 	α, where α is the sparse
vector indicating the weight coefficients for each element in
	. The intuition is that the test sample y should be ideally
represented, as accurately as possible, by using the smallest
number of samples. This sparsity restriction is found via the
L1-norm minimization of α:

α̂ = argmin
α

{
‖α‖1 + ‖y − 	α‖2

2

}
. (18)

Then, given α̂, the classification label for y is determined by
the subset of training samples of a given class i that provides
the minimum representation error:

class(y) = argmin
i

{
ei s.t. ei = ‖y − 	i α̂i‖2

}
. (19)

This initial approach shares similar fundamentals as in
the classical nearest neighbor or nearest subspace classifiers.
Eq. (18) intuitively represents an unknown sample as a pos-
sible combination of all elements in 	, but this collabora-
tiveness is discarded afterwards as the minimization of the
residuals in Eq. (19) determines the closest distance to a single
class with the minimal representation error for a unique class
decision.

This suggests an important concern: if some subsets of
different classes i and j in the training set, 	i and 	 j , are
correlated due to similarities in the elements of each class, then
the distance between reconstructions ‖ei‖2 and ‖e j‖2 could be
very small leading to possible misclassifications. A solution
is to avoid the L1 norm sparsity minimization constraint in
Eq. (18) and express the test sample y collaboratively on all
the dictionary samples of K classes 	 = [	1,	2, ...,	K ]
without forcing any class sparsity prior: then the linear rep-
resentation solution can be treated as a classical least squares
minimization problem:

α̂ = argmin
α

{
‖y − Xα‖2

2

}
. (20)

The main problem is that the solution to this minimiza-
tion may become unstable and computationally expensive
depending on the number of classes or samples (more details
can be found in [47]). Therefore, if we want to extend this
classification paradigm to the presented 3-D Riesz-covariance
descriptor space there is a need for finding a formulation that
takes into account its manifold topology and also integrates
the sparsity conditions together with the prior knowledge on
the geometric descriptor distribution.

This can be achieved by proposing a manifold-aware min-
imization constraint that relaxes the computational expense

Fig. 6. Schema of the topology of the descriptor space and the sparse
classifier integration. The set of α coefficients is computed as an optimization
problem on the tangent space with respect to μA but the regularization term
in the matrix D, which includes the geodesic distances of the samples in
the Sym+

d manifold penalizes these elements with higher dissimilarity in the
descriptor space.

of the method and adds numerical stability. Let A be the
whole set of S training samples from K classes, A =
[{a1}, {a2}, ..., {aK }] ∈ R

171×S , where each element in the
set {ak} for a class k is a vectorized 3-D Riesz-covariance
descriptor sample as = vec(logμA

(As)) ∈ R

171, according to
Eq. (4). This “dictionary” of training samples is mapped on
the tangent space with respect to the mean μA ∈ Sym+

d of
available learning descriptors. Then, a test sample in the form
of a new 3-D Riesz-covariance descriptor c = vec(logμA

(C))
can be expressed as a linear combination of the available set
of training samples: C ≈ Aα, being α = [α1, α2, ..., αs ] a
vector of weights corresponding to each one of the training
samples in A. Then, we propose a regularized variation of the
minimization expression defined in Eq. (20) as follows:

α̂ = argmin
α

{
‖C − Aα‖2

2 + ‖Dα‖2
2

}
, (21)

where D is a diagonal matrix of size S × S that allows the
imposition of prior knowledge on the solution with respect
to the training set, using the Riemannian metric defined
in Eq. (11). This term contributes to making the least squares
solution stable and to introducing sparsity conditions to the
vector α̂. D is defined as:

D =
⎛
⎜⎝

δ(A1, C) 0
. . .

0 δ(An, C)

⎞
⎟⎠ (22)

where Ai and C are the 3-D Riesz-covariance descriptors
for training and test samples respectively. See Figure 6 for
a schema of the presented classification method. Finally, the
solution to the sparse collaborative representation, α̂, can
be calculated by the following derived expression according
to [47]:

α̂ =
(

AT A + DT D
)−1

AT C, (23)

The classification label of the test sample C can be obtained
by observing the regularized reconstruction residuals from the
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TABLE I
RESULTS FOR THE BINARY CLASSIFICATION OF PATIENT RECURRENCE, USING SHORT- (12 MONTHS) AND LONG-TERM (24 MONTHS) BINARIZATION

AND SEVERAL NODULE REGION DESCRIPTORS. PRESENTS THE PERFORMANCE EVALUATION OF THE PRESENTED KERNEL-BASED SVM
FORMULATION FOR COVARIANCE-BASED DESCRIPTORS. SHOWS THE RESULTS OF A LINEAR SVM FOR PLAIN VECTORIZED COVARIANCE

DESCRIPTORS. FINALLY, ASSESSES THE PERFORMANCE OF A LINEAR SVM USING THE AVERAGE OF THE 3-D RIESZ FILTER RESPONSES

WITHIN THE DELINEATED REGION AS TEMPLATES (E.G., CORRESPONDING TO OUR APPROACH IN [18]). THE SHORT-TERM
EXPERIMENT INVOLVED 23 RECURRENCES VERSUS 62 REMISSIONS. THE LONG-TERM EXPERIMENT INVOLVED 30 RECURRENCES

VERSUS 62 REMISSIONS. ARE EXPRESSED IN TERMS OF CV REPETITION AVERAGES ± STANDARD DEVIATIONS

resulting sparse vector α̂:

class(C) = argmin
i

{‖C − Ai α̂i‖2

‖α̂i‖2
ωi

}
, (24)

where ωi is a class balancing coefficient that is set to the
normalized cardinality of each class sampling in order to
minimize the impact of unbalanced data sets.

III. EXPERIMENTAL EVALUATION

A description of the patient cohort and imaging data used in
order to evaluate the performance of the presented predictive
recurrence model is provided in Section II-A. 3-D Riesz-
covariance descriptors for both the GGO and solid components
were computed separately, as well as 3-D Riesz-covariance
descriptors for the complete nodule region containing the two
areas. Following these conditions, the methods were tested
according to the characteristics of the presented classification
models: kernel SVM for binary classification, or manifold-
regularized sparse representation for multi-class modeling. Ten
fold cross-validation (CV) schemes were used to estimate
the generalization performance. Classification accuracies and
confusion matrices were used to measure and analyze the
estimated predictive performance of our models.

A. Short- and long-time recurrence model

We implemented the previously defined kernel-based SVM
classifier in order to evaluate the feasibility and performance of
binary classification on nodule recurrence. A 10-fold CV was
used for parameter optimization and estimation of the general-
ization performance on 70% of the available data. We built the
recurrence classification models using the LibSVM software

package, taking into special account the library capabili-
ties for parameter learning in order to minimize the impact
of unbalanced data [48]. Finally, with the obtained model
hyperparameters, 5 Monte-Carlo repetitions of a 10-fold CV
partition on the remaining samples were run in order to
estimate the average accuracy of binary recurrence prediction
as gathered in Table I. Table I gathers the obtained results
for the classification of two recurrence annotation classes:
(i) recurrence versus non-recurrence on a 12-months follow-
up consideration; and recurrence versus non-recurrence on
24-months annotations. These results are also conditioned to
the nodule components considered for different 3-D Riesz-
covariance descriptor sets: GGO area, solid region, or the GTV
combining both components. In the latter, combining both
component features also encodes the different region ratio:
the second-order moments encoded in the covariance-based
descriptors provide signatures according to the Riesz-wavelet
responses for each region. Three model classification formula-
tions are tested: the Riemannian kernel-based SVM classifier
as presented in this paper fully exploits the geometric topol-
ogy of the presented 3-D Riesz covariance-based descriptors,
using the mean of the classified descriptor set on the Sym+

d
descriptor space as the kernel projection point. Second, a linear
SVM for plain vectorized 3-D Riesz-covariance descriptors
(according to Eq. (4), without the mapping to any tangent
space. Finally, a linear SVM using the mean of the features
obtained within each delineated region: although using the
average of a feature sampling set as an aggregation function
can filter out salient feature values we provide this experiment
as a straightforward step from our work presented in [18],
where the average of 2-D features on the CT slice of maxi-
mum diameter was used. We believe the better performance



2628 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 12, DECEMBER 2016

TABLE II

COMPARISON WITH OTHER STUDIES PREDICTING TUMOR RECURRENCE, AGGRESSIVENESS, STAGE, PATIENT SURVIVAL AND HAZARD

measurements found in Table I. A support the motivation of
the present work: using covariances of features in the 3-D
domain as discriminative signatures provides a more sensitive
data representation by means of its second-order statistics.
Furthermore, lying on a particular geometrical variety allows
the development of more accurate classification techniques.

B. Locality recurrence model

Besides temporal recurrence, there is also a particular
clinical interest in exploring the relationship of a particular
nodule texture and its potential correlation with a failure
re-localization. For this reason, a second experiment was con-
ducted to train the manifold-regularized sparse classifier with
the provided local annotation from the monitoring of these
patients suffering nodule recurrence. The computed descriptors
for this classification task were also conditioned by the nodule
components used (i.e., GGO, solid and GTV). In addition, we
built descriptors associated with a surrounding volume defined
as the closest isotropic cube containing the entire nodule
region. This cube contains both internal and external regions
of the nodule. The motivation to consider such a volume is that
for locality classification tasks, some Riesz-wavelet responses
belonging to the non-affected tissue around the nodule might
contain information on cancer invasiveness and external tumor
margin. We implemented the formulation proposed in the
previous section with a 5-fold CV scheme. The latter was used
in order to generalize as much as possible the method due
to the reasonably low number of patients (32 in total) in this
dictionary-based classification approach. Results are presented
in terms of classification accuracy and associated confusion
matrices in Figure 7. Finally, Table II compares the presented
model for short- and long-time recurrence prediction, as well
as locality recurrence classification, with a review of other
state-of-the-art studies. Please note the “reported performance”
values provide heterogeneous criteria according to each ref-
erenced approach, which are based on different datasets and
validation strategies.

IV. DISCUSSION AND CONCLUSIONS

This paper describes a novel framework for leveraging
rich 3-D texture information contained in modern radiol-
ogy imaging protocols such as CT. We focused on building
3-D imaging biomarkers of NSCLC nodule recurrence. The
proposed descriptors are based on feature covariance and

Fig. 7. Confusion matrices of the tests with several feature regions for
the manifold-regularized sparse classification method, for locality recurrence
modeling. Each matrix cell specifies the percentage of true positive elements
classified for local (12 cases), regional (13 cases), and distant (7 cases).
Different feature regions were tested in order to model and correlate the
texture at several nodule levels with the locality recurrence on the learning
set of control patients.

therefore leverage rich intra- and inter-variations of the feature
space, i.e., the local responses of 3-D Riesz-wavelets. These
descriptors lie on a manifold governed by Riemannian geome-
try, which allows geodesic measurements and differentiations
between tissue samples. The incorporation of the latter into
recent machine learning techniques (i.e., SVMs and sparse
regularized manifolds), led to families of manifold-aware
classifiers that could be used directly to map the imaging
biomarkers to disease outcomes. One major methodological
contribution of this work is to use a texture aggregation func-
tion that preserves spatial co-variations between features. This
represents an important solution to overcome the limitations of
classical aggregation functions (e.g., the average), where the
interactions between local responses of texture operator pairs
are mixed between distinct nodular components.

In a first step, the methods were used to predict NSCLC
nodule recurrence from pre-treatment CT scans. The exper-
imental results presented in Section III-A and Table I raise
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several interesting considerations for a clinical use of the
proposed methods. Choosing a binarization time window of
12 months enables to consider patients who have suffered
immediate recurrence. This allows to model the failure and
non-failure classes with a tighter correlation with respect to
the clinical information we gathered from patient monitoring,
and we can consider that there is a stable relationship within
texture information and follow-up labels. Accuracies close
to 83% place the proposed methodology amongst acceptable
performances regarding other methods (see Table II). With
a 24-month time span, we observed an expected behavior,
which means significantly lower classification accuracy. With
this temporal consideration the patient categorization varies,
considering numbers of samples and including patients with
possibly different biological processes than only the nodule
observations. Finally, regarding the kernel-based SVM imple-
mentation with respect to a simple descriptor vectorization
space as commented in Eq. (4), we observed slightly better
performance in the case that takes into account the Riemannian
geometry of the descriptor space (see Table I A versus B).
This is consistent with other approaches in the literature
using similar descriptor paradigms and validates the choice
of the 3-D Riesz-covariance descriptors for particular medical
imaging applications that can benefit from their 3-D, spatial
and rotation invariance. The importance of preserving spatial
co-variations between features is highlighted by large predic-
tive performance improvements between covariance- versus
average-based feature aggregation in Table I A, B versus C.
The results obtained with the average (see Table I C) are
consistent with our previous study where solid components
of the tumor yielded best results [18]. However, thanks to
the covariance-based aggregation, the use of larger ROIs
including heterogeneous tissue architectures (e.g., GTV and
GGO) improves the performance of the predictive models
(see Table I A and B), which was not the case when using
feature averages over the GTV or GGO (see Table I C).
Considering all these results, we conclude that the predictive
models of temporal recurrence from a binomial point of
view were encouraging and compare with the state-of-the-
art (see Table II). This is not at all a final study and it
leaves many continuation lines, particularly in a more formal
definition of recurrence time spans. This yields to consider
the exploration of continuous time models, such as using
the Cox-LASSO [50] or survival SVMs [51] based on the
proposed 3-D Riesz-covariance descriptors.

In a second step, the proposed methods were used to predict
the type of NSCLC nodule recurrence based on the manifold-
regularized sparse classifier. Unlike the previous experiment,
the performance of the predictive models was found to be
strongly dependent on the type of ROI used (see Figure 7),
which indicates that the nodule regions do not all carry
information about recurrence locality. In terms of nodular
components, it can be observed that the solid parts contain
more information than GGO, yielding accuracies of 88.8%
and 78.3%, respectively. However, the main observation was
that the morphological properties of the lung tissue external to
the nodule (i.e., surrounding cubic regions) contain precious
information about the type of recurrence. The latter has been

little investigated so far with the exception of the study
of Dilger et al. [52]. Our findings are in accordance with
theirs showing that texture properties computed from regions
surrounding lung nodules have value in the prediction of
nodule malignancy. These observations open new research
directions on how to leverage morphological tissue properties
to evaluate cancer invasiveness and require further validation
and investigations. Future experiments separating the three
regions, i.e., surrounding tissue, solid and GGO will be carried
out to better define the responsibilities of the latter in cancer
relapse. Since our approach focuses on texture properties of
nodular tissue, we plan to combine it with other features such
as tumor shape, intensity and size, modeling orthogonal infor-
mation. We recognize several limitations of the current work,
including a small number of patients in the three categories of
recurrence type, and no sensitivity analysis to the hand-drawn
delineation of nodular components.

REFERENCES

[1] S. Napel and M. Giger, “Special section guest editorial: Radiomics
and imaging genomics: Quantitative imaging for precision medicine,”
J. Med. Imag., vol. 2, no. 4, p. 041001, 2015.

[2] R. Lambin et al., “Radiomics: Extracting more information from medical
images using advanced feature analysis,” Eur. J. Cancer, vol. 48, no. 4,
pp. 441–446, 2012.

[3] M. Gerlinger et al., “Intratumor heterogeneity and branched evolution
revealed by multiregion sequencing,” N. Eng. J. Med., vol. 366, no. 10,
pp. 883–892, 2012.

[4] A. M. Rutman and M. D. Kuo, “Radiogenomics: Creating a link between
molecular diagnostics and diagnostic imaging,” Eur. J. Radiol., vol. 70,
no. 2, pp. 232–241, May 2009.

[5] R. Mirnezami, J. Nicholson, and A. Darzi, “Preparing for precision
medicine,” N. Eng. J. Med., vol. 366, no. 6, pp. 489–491, 2012.

[6] W. D. Travis et al., “International association for the study of
lung cancer/American Thoracic Society/European Respiratory Society
international multidisciplinary classification of lung adenocarcinoma,”
J. Thoracic Oncol., vol. 6, no. 2, pp. 244–285, 2011.

[7] K. Kodama et al., “Prognostic value of ground-glass opacity found
in small lung adenocarcinoma on high-resolution CT scanning,” Lung
Cancer, vol. 33, no. 1, pp. 17–25, 2001.

[8] K. Suzuki, H. Asamura, M. Kusumoto, H. Kondo, and R. Tsuchiya,
“Early peripheral lung cancer: Prognostic significance of ground glass
opacity on thin-section computed tomographic scan,” Ann. Thoracic
Surg., vol. 74, no. 5, pp. 1635–1639, 2002.

[9] H. Matsuguma et al., “Comparison of three measurements on computed
tomography for the prediction of less invasiveness in patients with
clinical stage I non-small cell lung cancer,” Ann. Thoracic Surg., vol. 95,
no. 6, pp. 1878–1884, 2013.

[10] M. Yanagawa et al., “Prognostic importance of volumetric measure-
ments in stage I lung adenocarcinoma,” Radiology, vol. 272, no. 2,
pp. 557–567, Aug. 2014.

[11] B. Ganeshan et al., “Non-small cell lung cancer: Histopathologic
correlates for texture parameters at CT,” Radiology, vol. 266, no. 1,
pp. 326–336, 2013.

[12] B. Ganeshan, S. Abaleke, R. C. D. Young, C. R. Chatwin, and
K. A. Miles, “Texture analysis of non-small cell lung cancer on
unenhanced computed tomography: Initial evidence for a relationship
with tumour glucose metabolism and stage,” Cancer Imag., vol. 10,
pp. 137–143, Jul. 2010.

[13] B. Ganeshan, E. Panayiotou, K. Burnand, S. Dizdarevic, and
K. A. Miles, “Tumour heterogeneity in non-small cell lung carcinoma
assessed by CT texture analysis: A potential marker of survival,” Eur.
Radiol., vol. 22, no. 4, pp. 796–802, 2012.

[14] T. Win et al., “Tumor heterogeneity and permeability as measured on the
CT component of PET/CT predict survival in patients with non-small
cell lung cancer,” Clin. Cancer Res., vol. 19, pp. 3591–3599, May 2013.

[15] M. Ravanelli et al., “Texture analysis of advanced non-small cell lung
cancer (NSCLC) on contrast-enhanced computed tomography: Predic-
tion of the response to the first-line chemotherapy,” Eur. Radiol., vol. 23,
no. 12, pp. 3450–3455, 2013.



2630 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 12, DECEMBER 2016

[16] R. A. Gatenby, O. Grove, and R. J. Gillies, “Quantitative imaging in
cancer evolution and ecology,” Radiology, vol. 269, no. 1, pp. 8–14,
2013.

[17] S. A. Mattonen, D. A. Palma, C. J. A. Haasbeek, S. Senan, and
A. D. Ward, “Early prediction of tumor recurrence based on CT texture
changes after stereotactic ablative radiotherapy (SABR) for lung cancer,”
Med. Phys., vol. 41, no. 3, p. 033502, 2014.

[18] A. Depeursinge, M. Yanagawa, A. N. Leung, and D. L. Rubin,
“Predicting adenocarcinoma recurrence using computational texture
models of nodule components in lung CT,” Med. Phys., vol. 42, no. 4,
pp. 2054–2063, May 2015.

[19] A. Depeursinge, A. Foncubierta-Rodríguez, D. Van De Ville, and
H. Müller, “Three-dimensional solid texture analysis and retrieval in
biomedical imaging: Review and opportunities,” Med. Image Anal.,
vol. 18, no. 1, pp. 176–196, 2014.

[20] C. Parmar et al., “Radiomic feature clusters and prognostic signatures
specific for lung and head & neck cancer,” Sci. Rep., vol. 5, p. 11044,
Jun. 2015.

[21] P. Cirujeda, Y. Dicente Cid, X. Mateo, and X. Binefa, “A 3D scene
registration method via covariance descriptors and an evolutionary stable
strategy game theory solver,” Int. J. Comput. Vis., vol. 115, no. 3,
pp. 306–329, 2015.

[22] P. Cirujeda et al., “3D Riesz-wavelet based Covariance descriptors for
texture classification of lung nodule tissue in CT,” in Proc. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2015, pp. 7909–7912.

[23] M. Unser, D. Sage, and D. Van De Ville, “Multiresolution monogenic
signal analysis using the Riesz–Laplace wavelet transform,” IEEE Trans.
Image Process., vol. 18, no. 11, pp. 2402–2418, Nov. 2009.

[24] Y. D. Cid, H. Müller, A. Platon, P.-A. Poletti, and A. Depeursinge,
“Locally-oriented wavelet transforms for 3-D solid texture
classification,” IEEE Trans. Image Process., to be published.

[25] N. Chenouard and M. Unser, “3D steerable wavelets and monogenic
analysis for bioimaging,” in Proc. IEEE Int. Symp. Biomed. Imag. Nano
Macro, Mar. 2011, pp. 2132–2135.

[26] M. Unser, N. Chenouard, and D. Van De Ville, “Steerable pyramids and
tight wavelet frames in L2(Rd ),” IEEE Trans. Image Process., vol. 20,
no. 10, pp. 2705–2721, Oct. 2011.

[27] O. Tuzel, F. Porikli, and P. Meer, “Pedestrian detection via classification
on Riemannian manifolds,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 10, pp. 1713–1727, Oct. 2008.

[28] D. Fehr et al., “Compact covariance descriptors in 3D point clouds for
object recognition,” in Proc. ICRA, 2012, pp. 1793–1798.

[29] R. Sivalingam, V. Morellas, D. Boley, and N. Papanikolopoulos,
“Metric learning for semi-supervised clustering of region covariance
descriptors,” in Proc. ACM/IEEE Int. Conf. Distrib. Smart Cameras,
2009, pp. 1–8.

[30] A. Sanin, C. Sanderson, M. T. Harandi, and B. C. Lovell,
“Spatio-temporal covariance descriptors for action and gesture
recognition,” in Proc. IEEE Workshop Appl. Comput. Vis., Jan. 2013,
pp. 103–110.

[31] W. Huang, Z. Lin, J. Yang, and J. Wang, “Text localization in natural
images using stroke feature transform and text covariance descriptors,”
in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 1241–1248.

[32] P. Cirujeda and X. Binefa, “Medical image classification via 2D color
feature based covariance descriptors,” in Proc. Working Notes CLEF,
2015.

[33] X. Pennec, P. Fillard, and N. Ayache, “A Riemannian framework for
tensor computing,” Int. J. Comput. Vis., vol. 66, no. 1, pp. 41–66, 2006.

[34] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Log-Euclidean
metrics for fast and simple calculus on diffusion tensors,” Magn. Reson.
Med., vol. 56, no. 2, pp. 411–421, 2006.

[35] W. Förstner and B. Moonen, “A metric for covariance matrices,” in
Geodesy-The Challenge of the 3rd Millennium. Springer, New York,
2003, pp. 299–309.

[36] H. Karcher, “Riemannian center of mass and mollifier smoothing,”
Commun. Pure Appl. Math., vol. 30, pp. 509–541, Sep. 1977.

[37] M. Moakher, “A differential geometric approach to the geometric mean
of symmetric positive-definite matrices,” SIAM J. Matrix Anal. Appl.,
vol. 26, no. 3, pp. 735–747, 2005.

[38] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27,
1964.

[39] Q. Tian, N. Sebe, M. S. Lew, E. Loupias, and T. S. Huang, “Content-
based image retrieval us ing wavelet-based salient points,” Proc. SPIE,
vol. 4315, pp. 425–436, Dec. 2000.

[40] Y. Huang, X. F. Zha, J. Lee, and C. Liu, “Discriminant diffusion maps
analysis: A robust manifold learner for dimensionality reduction and
its applications in machine condition monitoring and fault diagnosis,”
Mech. Syst. Signal Process., vol. 34, no. 1, pp. 277–297, 2013.

[41] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[42] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statist. Comput., vol. 14, no. 3, pp. 199–222, Sep. 2004.

[43] B. Schölkopf and A. J. Smola, Learning With Kernels—Support Vector
Machines, Regularization, Optimization & Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[44] F. Yger, “A review of kernels on covariance matrices for BCI
applications,” in Proc. IEEE Int. Workshop Mach. Learn. Signal Process.
(MLSP), Sep. 2013, pp. 1–6.

[45] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Classification
of covariance matrices using a Riemannian-based kernel for BCI
applications,” Neurocomputing, vol. 112, pp. 172–178, Jul. 2013.

[46] J. Wright et al., “Sparse representation for computer vision and pattern
recognition,” Proc. IEEE, vol. 98, no. 6, pp. 1031–1044, Jun. 2010.

[47] D. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative
representation: Which helps face recognition?” in Proc. Int. Conf.
Comput. Vis., 2011, pp. 471–478.

[48] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
May 2011.

[49] O. S. Al-Kadi and D. Watson, “Texture analysis of aggressive and
nonaggressive lung tumor CE CT images,” IEEE Trans. Biomed. Eng.,
vol. 55, no. 7, pp. 1822–1830, Jul. 2008.

[50] N. Simon, J. H. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for Cox’s proportional hazards model via coordinate descent,”
J. Statist. Softw., vol. 39, no. 5, pp. 1–13, Mar. 2011.

[51] L. Evers and C.-M. Messow, “Sparse kernel methods for high-
dimensional survival data,” Bioinformatics, vol. 24, no. 14,
pp. 1632–1638, May 2008.

[52] S. K. N. Dilger et al., “Improved pulmonary nodule classification
utilizing quantitative lung parenchyma features,” J. Med. Imag., vol. 2,
no. 4, p. 041004, 2015.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


