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ABSTRACT

The analysis of large data sets can help to gain knowledge about specific organs or on specific diseases, just as
big data analysis does in many non–medical areas. This article aims to gain information from 3D volumes, so
the visual content of lung CT scans of a large number of patients. In the case of the described data set, only
little annotation is available on the patients that were all part of an ongoing screening program and besides age
and gender no information on the patient and the findings was available for this work. This is a scenario that
can happen regularly as image data sets are produced and become available in increasingly large quantities but
manual annotations are often not available and also clinical data such as text reports are often harder to share.
We extracted a set of visual features from 12,414 CT scans of 9,348 patients that had CT scans of the lung taken
in the context of a national lung screening program in Belarus. Lung fields were segmented by two segmentation
algorithms and only cases where both algorithms were able to find left and right lung and had a Dice coefficient
above 0.95 were analyzed. This assures that only segmentations of good quality were used to extract features
of the lung. Patients ranged in age from 0 to 106 years. Data analysis shows that age can be predicted with a
fairly high accuracy for persons under 15 years. Relatively good results were also obtained between 30 and 65
years where a steady trend is seen. For young adults and older people the results are not as good as variability
is very high in these groups. Several visualizations of the data show the evolution patters of the lung texture,
size and density with age. The experiments allow learning the evolution of the lung and the gained results show
that even with limited meta–data we can extract interesting information from large–scale visual data. These
age–related changes (for example of the lung volume, the density histogram of the tissue) can also be taken into
account for the interpretation of new cases. The database used includes patients that had suspicions on a chest
X–ray, so it is not a group of healthy people, and only tendencies and not a model of a healthy lung at a specific
age can be derived.
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1. INTRODUCTION

Medical imaging plays an important role in diagnosis and treatment planning. The number of images produced in
hospitals has increased strongly and actually covers a very large part of world storage.1 Image sharing for research
has been strongly encouraged2 and NIH–funded (National Institutes of Health) projects are usually required to
release research data after the end of projects. Many of the images related to cancer are for example made
available in the TCIA∗ (The Cancer Imaging Archive) or the TCGA (The Cancer Genome Atlas).3 One of the
problems with many data sets is that there is often limited annotation available, both in terms of regions of interest
marked in the images but also in terms of available clinical meta–data, as acquiring these is expensive. Often,
the data sets can only be used in a very specific way and can not be transferred to other areas of applications.
Another problem with data sets is that imaging modalities change over time and also the used protocols in
clinical routine are regularly adapted. This means that older data sets might be of interest scientifically but
besides main concepts the clinical usefulness can be limited.

Further author information: Send correspondence to Y.D.C. Email: yashin.dicente@hevs.ch
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Annotated data sets and scientific challenges have changed research both for the non–medical4 and also for
the medical field,5 as such challenges really allow to identify the best techniques on the same data and same
tasks, making quality of approaches really comparable. A problem with manual annotations of image data is
that these annotations are expensive to obtain and thus usually do not scale well for large data sets. They are
often only available for a small subset of the data. Crowdsourcing can help with the problem of the cost of
manual annotations and it has increasingly been used for medical imaging,6–8 as well. This can lower the costs
but requires very well defined tasks and also strict quality control.

Most existing data sets and scientific challenges concentrate on a single organ, for example the liver5 or
the brain.9 Such challenges have had a major impact in medical imaging and an increasingly large number
of challenges has been proposed. One of the few data sets available with region–based annotations for several
organs was made available in the context of the VISCERAL project.10 The fact that 20 organs were annotated
in four modalities (MR and CT with and without contrast agent) limited the total number of cases per modality
and organ to around 60 cases. A silver corpus could be created since a cloud–based evaluation was used and the
executables of the participating research groups were available to be run on more data sets. This silver corpus
is based on a label fusion of the algorithms.11 This scales also to extremely large data sets and limits the cost
of manual annotations. Comparisons showed that the quality of this annotation was high.

Lung CT images have been the target for analysis and decision support for a long period of time both for
nodule detection12 and also for the diagnosis of interstitial lung diseases.13 Many techniques have developed
texture descriptors to characterize lung tissue but only rarely clinical data such as age are also taken into
account.14,15 To the best of our knowledge no system analyzes the deviation from a healthy norm. Databases of
lung CT images for both nodule detection16 and interstitial lung diseases17 are available. For all these approaches
it could be interesting to analyze a reference of a healthy lung of the same age to analyze deviation from this
norm.

In,18 a model for a healthy organ and person was proposed at a specific age based on a study of a cohort
of patients. Such a model of healthy patients at a specific age can look at the deviation from the norm and
if longitudinal data are available then also the evolution of this deviation can be analyzed to develop patient–
specific trajectories. Other studies built age–related models for brain volumetry19 and Alzheimer diagnosis.20

The prediction of the age was also attempted using hand MRI images and applying deep learning in.21

The objective of this article is to explore a data set of CT images with a large distribution of age ranges,
something rare for lung CTs, as usually such studies include mainly older persons, for example for lung screening
of risk patients as in the NLST (National Lung Screening Trial) database†. Visual features linked to texture,
lung volume, shape and grey level distribution were analyzed and correlated to age and gender, the only two
meta–data that were available for this study. Prediction of age only from the CT scan is a secondary objective
and is described in the text. Overarching purpose of this article is to explore the visual content of large data sets
and what we can learn from such data sets even when limited meta–data are available. In this case the influence
of aging on a set of visual features of the image data is explored.

This article is organized as follows: section 2 describes the data set used for the study and the main techniques
used to analyze the data. Section 3 shows the results of the experiments and tries to visualize the obtained result
to make the main outcomes easy to understand. The article finishes with a discussion and then a conclusions
section.

2. METHODS

This section describes the details concerning the data set and the techniques employed to carry out the experi-
ments.

†https://www.cancer.gov/types/lung/research/nlst as of November 28 2016



(a) (b) (c)
Figure 1: Three examples of the lung segmentation obtained by the two segmentation methods (axial and
coronal views). The CIP segmentation is colored in dark blue (right lung) and light blue (left lung) and the DBC
segmentation in orange (right lung) and yellow (left lung). When comparing both segmentations, examples (a)
and (b) had a Dice coefficient of 0.9920 and 0.9943 respectively. On the other hand, (c) had a Dice coefficient of
0.6788 and was thus discarded from the final database.

2.1 Database

The database contains 14,285 volumetric CT series of 9,406 patients stored in 1,468,012 DICOM files. Images
are part of a national lung screening program in Belarus, where lung cancer rates have been high since the
Chernobyl disaster. They include a subset of consecutive cases referred to the Scientific and Practical Center
for Pulmonology and Tuberculosis, Minsk, Belarus over a period of 8 years. The use of the data for research
is approved by the institutional ethics commission. Imaging was performed using a LightSpeed Pro 16 scanner
from General Electric with typical slice thickness of 2.5 mm but with some variations. Screening is usually first
done with chest X–rays and persons with abnormal chest X–rays are getting a CT exam. Thus, the patients are
generally not healthy patients but do have some abnormal patterns in the chest X–ray. The age of the patients
at acquisition time ranges from 0 to 106. A subset of the data with tuberculosis patients are available from and
can be queried at‡. The number of slices per series varied between 1 and 688.

Preparation of the database For some patients several image series (original, primary, derived, etc.) were
available. We decided on the following rules for inclusion of series into our study to avoid some redundant
information and comparable complete lung volumes: The series has to contain images of the type original and
has to contain at least 30 slices. The threshold on the number of slices takes into account that there are young
patients with smaller volumes but also that we want to have only full lung volumes if possible. These limits were
based on the analysis of a subset of the data. After this preparation the database consists of 9,348 patients and
12,414 series.

2.2 Data analysis and age prediction

2.2.1 Lung segmentation

Two lung segmentation algorithms were used on the 12,414 series. The algorithm developped by Dicente et
al. in22 achieved the best lung segmentation performance in the VISCERAL Challenge23 and was thus chosen.

‡http://tuberculosis.by/, http://imlab.grid.by/ as of November 28 2016



This algorithm applies a binary clustering on the voxels of the CT. The two classes correspond to the two
peaks of the intensity histogram of the full CT volume. This clustering produces a binary image based on the
density of the material in each voxel. The algorithm then segments the largest non–dense 3D–connected region
corresponding to the lungs. The final segmentation is refined by morphological operations. We refer to this
technique as Density–based Binary Clustering (DBC) segmentation in the following subsections. The second
algorithm is part of the Chest Imaging Platform (CIP)24 of 3D Slicer§ and is commonly used in lung analysis.
Both segmentations provide right and left lung labels and are available as open source, so results can easily be
reproduced.

2.2.2 Subset of volumes analyzed

For the final selection of lung volumes we chose series where both segmentations provided left and right lung to
compare features on both lungs separately. In several cases such a separation was not done by the CIP. We also
only took lung volumes where the Dice coefficient between the two segmentations was at least 0.95 in each lung
(to avoid extreme cases and poor lung segmentations), and the full lung volume was covered in the CT volume.
This step removes cases with mistakes, that are incomplete and extreme cases, for example cases with a single
lung. Figure 1 shows three examples with the masks obtained from both methods. Example (c) corresponds to
a discarded case where CIP did not read the CT volume correctly. To ensure the full lung volume is present,
we checked whether any of the segmentations contained more than 0.5 % of the pixels in the superior or inferior
slice of the CT volume. This was also set heuristically and only a limited number of volumes were excluded in
this way. Two series were finally excluded because they presented an unusual lung segmentation volume of more
than 27 liters, and two other series were removed for not having the gender specified. It is also possible that the
remaining volumes contain a few mistakes in the data, so age or gender.

After this collection cleaning, the analyzed data set contains 6,395 patients and 8,034 series, with 3,491
males (54.59 %) and 2,904 females (45.41 %). The age range was still from 0 to 106 years. Figure 2 shows
the distribution of the number of patients with respect to the age, so very few patients above 85 years and a
smaller number of patients under 20 years with a peak population between 45 and 60 years. Considering this
distribution, all patients above 85 years were considered to belong to a single class (85+) in the following sections,
as otherwise too few cases are present for any proper visualization or prediction.
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Figure 2: Distribution of the number of patients with respect to age.

2.2.3 Visual characteristics extracted from the images

Several basic visual characteristics were computed on the final data set for each segmentation algorithm. The
visual features include texture, volume, shape and grey level distribution. The volume of each lung was calculated
in liters and the ratio between right and left lung volume was also used as a characteristic. For describing the grey

§https://www.slicer.org/ as of November 28 2016



level distribution, the mean, standard deviation, skewness, and kurtosis of the Houndsfield Unit (HU) histogram
inside each lung were computed. A limited grey level histogram of the HUs in each lung was calculated using
the following bins: [-1000,-950) characterizing emphysema, [-950, -650) and [-650, -300) characterizing generally
healthy tissue, [-300, 0) to detect the consolidation peak, [0, 100) to identify vessels, and [100, 600) for soft tissue.

Texture features based on Gray Level Co–occurrence Matrices (GLCMs)25 were used, such as contrast,
correlation, energy and homogeneity with four directions averaged and a displacement of a single pixel. They
were computed for each 2D–slice over the area segmented as lung and averaged across each full lung volume.

2.2.4 B–spline approximation

We chose the DBC segmentation to analyze the shape of the features extracted along the age. In the case of the
volume of the lungs we divided the data set by gender and right/left lung. We considered the value of the other
features aggregated on both lungs and did not differentiate by gender.

For each feature we computed the B–spline curve that best fits the distribution using the weighted least
square approximation as follows: For a feature F , let us consider yi,p the value of F for a patient p in a given
age xi. Patients with ages above 85 were collapsed into one age category, (85+), and thus xi ∈ [0, 85]. Let ni

be the number of values yi,p for a given age xi (that is equivalent to the number of patients with age xi) and let
Yi be the distribution of yi,p. We define ȳi as the mean of the values yi,p inside the first and third quartile (q1,i

and q3,i) of Yi. Then, for a given degree d, we find the B–spline Sd that minimizes the following error:

Ed =
∑
i

wi(ȳi − Sd(xi))
2 (1)

where the weight wi is defined as wi = |ni
ȳi

(q1,i−q3,i) |. wi encodes the sparsity of the data yi,p for a given xi. If

the difference between q1,i and q3,i with respect to ȳi is small, and the number of patients with age xi is high,
this means that the data yi,p are strongly centered towards ȳi, i.e. ȳi is a good estimator of yi,p. In this case, wi

is high, forcing the B–spline Sd to be close to ȳi.

We increased the degree d until |Ed−1−Ed

Ed−1
| < 1%. The later was considered the degree of the best B–spline

regression curve S. Finally, we added to our analysis the absolute correlation coefficient of S with respect to the
age, and the mean relative error of S with respect to ȳi. This is:

ME r = mean

(∑
i

∣∣∣∣ ȳi − S(xi)

ȳi

∣∣∣∣
)

(2)

2.2.5 Machine learning for age prediction

A Random Forest Regressor was used on the final data set. The 120 features were regressed against age. Feature
reduction was performed via inspection of correlation matrices to reduce the data set to 35 features without a
change in performance.

The cleaned data set of 8,034 scans was divided by gender and then further divided into a training and a test
data set. Training and test sets have equal number of patients at every age level. The separation into training
and test set is random. Some patients had multiple scans, so training and testing data sets keep each patients’
scans entirely in one group or the other. Again, ages above 85 were collapsed into one age category, (85+).
Training and test sets had approximately 1,800 and 2,200 scans each by the end of this process for the male and
female group respectively. The random forest algorithm was run 200 times with variable numbers of sub–trees
(10 times for each number of sub–trees, ranging from 1 to 20).

3. EXPERIMENTAL RESULTS

In terms of lung segmentation, the CIP algorithm in its standard form had frequent problems separating left
and right lung in 3,839 cases. An initial analysis showed that CIP did not identify each lung when the left and
right lung were connected by the parenchyma.
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Figure 3: B–spline generation for the feature measuring the ratio between right and left lung.

Figure 3 shows the elements involved in the generation of the B–spline regression curve explained in Sec-
tion 2.2.4 for the feature measuring the volume ratio between right and left lung. These elements are: the
data regarding the feature, the area and the mean between the first and the third quartiles, and the B–spline
regression curve generated. In the following figures, only the the mean values ȳi and the regression curve S are
shown.

Figure 4 shows the evolution of the volume of right and left lung for males and females. Each lung presents a
similar curve increasing until an age of 20 years, then remaining stable until approximately 60 years of age and
decreasing afterwards. As expected, male lungs are larger than female and right lungs are bigger than left lungs.
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Figure 4: Evolution of the average lung volume with respect to the age.

In the case of the GLCM features presented in Figure 5, the homogeneity behaves stable with respect to the age,
showing a slightly negative slope. On the other hand, the contrast shows a more unstable behavior. Between 25
and 80 years of age the contrast presents generally higher values than outside this range. The correlation feature
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has a clear negative slope from 2 to 14 years old. After 60 this slope becomes positive and from 14 to 60, the
tendency is almost flat. Finally, the energy presents trends for almost every age. Between 0 and 20 it shows a
positive slope with respect to age, while the slope is negative after 20 and until 85.
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age.

The evolution of the first four statistics computed on the HU distribution are shown in Figure 6. The mean
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Figure 7: Evolution of the HU histogram bins with respect to age. The different bins are grouped into three
subplots due to their different scales.

decreases between 0 and 20 years, and remains relatively stable afterwards. The standard deviation presents
a quite symmetric behavior in the intervals [0,40] and [40,85], with a softer slope in the second interval. This
seems like a good predictor for early and late age groups as there is a high gradient.

There are clear trends between 1 and 15 years of age when using the histogram of the HUs (see Figure 7).
The evolution of the consolidation peak is inversely proportional to the evolution of the healthy tissue bin ([-950,
-650) and [-650, -300)), the latter presenting a negative slope with respect to age. In the same range there is an
increment of the [-1000,-950) bin that continues until 20 years of age. The other bins (healthy tissue, vessels, and
soft tissue) present a negative slope in this range (0 to 20). Between 20 and 85 it is possible to see a slow positive
slope in the bins characterizing emphysema, [-1000, -950), and both bins identifying healthy tissue, [-1000, -950)
and [-650, -300). While in the same range the consolidation peak bin ([-950, -650)) presents a negative slope.
The behavior of the vessels and soft tissue bins remains very stable after 20 years of age.

Table 1 shows the degree, mean relative error and absolute correlation coefficient with respect to the age
of the B–spline approximation for each of the features extracted (see Section 2.2.4). In the case of the volume
features, the best degree of the B–spline S is between 9 and 10, with a mean relative error between 5.11 and
8.38 % and a correlation coefficient from 0.5008 to 0.6146 with respect to the age. When analyzing the behavior
of the ratio between lungs, a lower degree was needed to fit the data (6) and the mean relative error was of
only 1.28 %. However, as the ratio is almost constant along the ages, its absolute correlation coefficient is only
0.0189, this being the smallest value of all the features extracted. On the opposite site, the GLCM features
homogeneity and contrast present the highest correlation coefficients, 0.8899 and 0.7883 respectively. Moreover,
the homogeneity is the feature presenting the smallest mean relative error, 0.54 %, and the contrast is the feature
with the smallest degree, 4. Clearly each feature evolves differently with respect to the age, requiring B–splines
of degrees between 4 and 18 to fit their evolution. Figure 8 shows the basic Random Forest prediction, so on
one axis the real age and on the other the predicted age. Age prediction was very accurate in the first 12 years
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Female Right 9 0.0511 0.5502
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skew(HU) 10 0.0228 0.2137
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Bin [-1000,-950) 9 0.1080 0.7231
Bin [-950,-650) 8 0.0167 0.2586
Bin [-650,-300) 18 0.0534 0.4467
Bin [-300,0) 7 0.0482 0.3554
Bin [0,100) 13 0.0317 0.5594
Bin [100,600) 10 0.0294 0.6524

G
L
C
M

s Contrast 4 0.0367 0.7883
Correlation 5 0.0143 0.3167
Energy 6 0.0396 0.0488
Homogeneity 8 0.0054 0.8899

Table 1: Scores of the B–spline approximation method for each of the features extracted on the DBC segmenta-
tion. Except from the volume features, the features where averaged over both lungs, and no division by gender
was done.

of life, with an average error of 2.2 years. Ages from 13 to 35 and over 65 were the most difficult to predict
with prediction errors of 13.5 years and 18.4 years respectively. Accuracy was better from ages 36 to 64, with
an average prediction error of 7.4 years, which is relatively close looking at the wide range. Accuracy is not
significantly different between males and females.
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Figure 8: Random forest prediction results.

4. DISCUSSION

The results show that even with extremely limited meta–data, such as age and gender, it is possible to analyze
and visualize visual properties of lung CT images. When analyzing a large number of cases as in the work
described, the robustness of the segmentation algorithm is extremely important to work really on correct tissue



and not create a bias due to wrong segmentation algorithms. Even a comparison between the segmentation
algorithms is possible when only analyzing and judging those cases with large differences. In this study it was
only observed that CIP had trouble separating left and right lung. Manually analyzing a few other cases with
differences we found that they were due to dense tissue at the boundaries and other systematic differences
between the algorithms. To be on the safe side, for this study all critical cases were removed.

Several visual features such as lung volume present a strong correlation with respect to age. Lung volume
for example increases strongly at a young age and then slower until approximately 20 years of age when things
stabilize. At a later age, so between 50 and 60, the volumes starts to decrease first slow and then a bit faster.
Women have a smaller volume than men. The left lung is much smaller than the right. All these things can
easily be explained with the lung first growing and then at a later age decreasing. Men being taller also explains
the average size difference. The left lung surrounding the heart has only two lobes and is thus smaller than the
right. The ratio between the two decreases relatively strongly at a young age (before 12 years), which can be
explained with the proportion of the heart with respect to the size of the body at an early age. It decreases
again at a higher age.

Even when the GLCM homogeneity does not seem to have any major change in respect to age, the correlation
coefficient shows that it varies in concordance to the age. The latter combined with the small mean relative error
makes it a good candidate estimator of the age. Correlation strongly decreases until 20 and then slowly increases
again after around 60. Energy increases until 15 and then slowly after around 25, so an inverse correlation.
Contrast first extends faster, then slower until around 60 and then slowly decreases. Many of these processes
can likely be linked to the organs forming and the vessels inside the lung that change with age.

The four histogram statistics all follow a relatively similar pattern, even though in opposite directions, having
a high gradient from 0 to 15 or 20, then a relative stability until around 60 and then a degradation. This is also
linked to the bin histogram that shows that the less dense healthy tissue develops before 12 years of age and
is denser before this age. The emphysema range or air in the lung is low in the beginning and then increases
quickly until 20 years. This likely also covers large vessels in the lung, that only contain visible air, when actually
big enough. Denser areas similar to fibrosis is existent in children and then it decreases when grow up but later
it appear as denser areas again from around 50.

The errors in the age prediction that peak between 15 and 30 can likely be explained with the evolution of
the lung that has a different speed in different people. This might also depend on people doing sports, where
the lung can likely develop strongly for more years, even when already grown up. Then between 30 and 60 the
tendencies are relatively stable. There is high variability in the population itself but all global tendencies seem
stable. At a higher age the differences get much stronger as degradation can be very fast but healthy persons
might keep a lung at the same state as a much younger person. These effects are likely accentuated, as this data
set does not contain healthy persons. For healthy persons the differences might not be as marked. Disease onset
can be at many different ages, so patients with diseases will have change in pattern at very different ages, really
making a prediction difficult.

5. CONCLUSIONS

Analysis of very large data sets has started in the medical field and much can be learned from such large amounts
of images, even when the amount of available meta–data is limited, as in our case. Additional meta–data such as
diagnosis codes would have definitely been a very good addition to this data set, as it allows to detect also some
systematic patterns linked to disease groups and separate them. Basic tools such as segmentation tools can be
evaluated by comparing overlap and then manually checking differences but also looking at failed volumes, as in
our case. This allows to test the basic tools and avoid mistakes due to problems in the organ segmentation. The
clear correlation of several visual features with age shows interesting evolutions and can help in interpreting such
lung images. Much can be learned on a population even if the distance from the norm is known and obviously
even more when clinical data are available. It is clear that the data set described here does not include many
healthy persons and thus only tendencies can be analyzed and not a healthy model at a specific age, which would
be extremely interesting for the lung or other organs. Comparison between several cohorts should also help
to learn different trends in particular populations. Comparing for example the Belarus cohort with the NLST



cohort of mainly smokers and people at risk of lung cancer will be an interesting comparison. It is rare to have
such data sets that include a large number of young persons. Particularly the analysis of this age group shows
the evolution of the organs and how this can be measured with several visual features. Big data analysis has
several challenges in developing standardized pipelines but if well done, much can be learned from the data.
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