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Objective 
The natural control of robotic prosthetic hands with sEMG techniques is still a challenge: current 
methods give some control capabilities but these are limited, often not natural and require long 
training times. The application of pattern recognition techniques recently started to be used in 
practice, however scientific literature methods can still be improved to reach the real life needs. 
Clinical, anatomical and external factors (as additional data sources) can allow to improve the 
control of myoelectric prosthetic hands through adaptive computational methods and multimodal 
data acquisition systems. In this paper we describe the new opportunities in this field, that can 
lead to naturally controlled robotic hands through a proper integration between surgical 
procedures, computational analysis of multimodal data and robotics. 
 
Methods 

The data used in this paper come from the second and the third NinaPro database1–3. The 
considered exercises include a total of more than 50 hand and wrist movements plus rest. 
Muscular activity is measured using 12 double differential sEMG electrodes (Delsys Trigno 
Wireless System) including three-directional accelerometers. Myoelectric signals are sampled at a 
rate of 2 kHz with a baseline noise of less than 750 nV RMS.  During the acquisitions, subjects 
were seated at a desk resting their arm comfortably on the desktop. A laptop in front of the 
subject provided visual stimuli for each movement while at the same time recording data from the 
measurement devices. The intact subjects were asked to imitate movies of movement shown on 
the screen of the laptop with their right hand, while amputated subjects were asked to imitate the 
movements shown on the screen of a laptop with the missing limb as naturally as possible. The 
set of movements was selected from the hand taxonomy, robotics, and rehabilitation literature 4–7. 
Each movement repetition lasted 5s, and it was alternated with a rest posture lasting 3s. The 
sequence of movements was not randomized in order to encourage repetitive, almost unconscious 
movements. sEMG and multimodal data are analyzed with statistical and computational 
techniques from signal processing and machine learning. 

 
Results 

We show that clinical, anatomical and external parameters can strongly improve the 
performance of modern robotic hand prostheses. In particular, clinical and anatomical parameters 
that can affect sEMG signal include usage of myoelectric prosthesis (thus muscle fitness), body 
mass index, phantom limb sensation intensity, forearm percentage and years passed by the 
amputation. External factors and data sources that can easily improve the performance of robotic 
prostheses include computer vision and accelerometer data. 

 
Conclusions 

This paper shows that clinical, anatomical and additional data sources can strongly improve 
myoelectric prosthesis control and it suggests that a proper integration between medical procedures 
(finalized to better exploit clinical and anatomical data) and multimodal data analysis can improve 
current prosthesis performance, leading to better performing naturally controlled robotic hands.  
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