An Ontology Driven approach for modeling a
Multi Agent Based Electricity Market

Geovanny Poveda and René Schumann

University of Applied Sciences Western Switzerland (HES-SO VS),
Rue de Technopole 3, 3960 Sierre, Switzerland
{geovanny.poveda, rene.schumann}@hevs.ch

http://silab.hevs.ch

Abstract. Model Driven Development has prompted domain experts
to use high-level languages for specifying, testing, verifying and code
final application. While Model Driven Development has had a signifi-
cant contribution to the development of Multi-Agent-Based Simulation,
it becomes more and more important to develop appropriate means for
representing the multi-disciplinary domain expertise dimension of com-
plex adaptive systems such as deregulated electricity markets. This paper
proposes an approach for modeling and simulating agent-based models
on the basis of an Ontology-Driven Conceptual Modeling approach in a
quite generic scenario for modeling electricity markets. The contribution
of this paper is focused on the creation of set of methods, mechanisms
and tools to support the design, implementation and experimentation of
agent-based models from the instantiation of an ontology-based concep-
tual modeling.

Keywords: Model driven, ontology driven, simulation, conceptual model, multi
agent based simulation

1 Introduction

Over the last years, several lines of research have allowed deregulated electricity
markets to be studied. Among others, Multi-Agent Based Simulation (MABS)
has been one of the most prominent approach for simulating decentralized elec-
tricity markets. While MABS has had a significant contribution to the deeper
understanding of complexity in the electricity market and guide the market prac-
tices in the real world, it becomes more important to develop appropriate means
for capturing and representing the cross-disciplinary domain expertise dimension
of complex social systems. Model-Driven Development (MDD) has become an
important approach in software discipline to link design and code. It is a soft-
ware engineering paradigm which uses models as a mean for specifying, testing,
verifying and generating code for a final application [13].

While MDD has enabled modelers to support the creation of agent-based
models from a conceptual design, it becomes more and more important to de-
velop appropriate means for improving the short-term design of conceptual mod-
els in terms of how much they can be extended from a cross-disciplinary domain

http://silab.hevs.ch

2 Geovanny Poveda and René Schumann

expertise dimension. Ontology-Driven Conceptual Modeling (ODCM) uses on-
tologies to drive the creation of simulation models and in doing so makes use
of an agreed upon set of terms and relationships that are shared by domain
experts, modelers, and model development tools. Most importantly, ontologies
provide foundations for enabling the extension of structural changes on models,
as well as, their automated extension.

In this article we introduce an integrated solution for modeling and simulat-
ing agent-based models on the basis of an ODCM approach. The contribution
of this paper is focused on the creation of a model to support the automatic
implementation of agent-based models from the instantiation of an ontology-
based conceptual modeling. The structure of this paper is as follows: Section 2
provides an overview into MDD approach for Multi-Agent System technologies.
Section 3 introduces our proposed ODCM approach by describing the concep-
tual model and simulation design phases. Section 4 describes the organizational
architecture of the MABS model. Next, Section 5 illustrates the advantages of
the contribution presented by a proof of concept. Finally, Section 6 concludes
and gives possible future research directions.

2 Background

Several studies for modeling Multi-Agent Systems by using Model Driven De-
velopment have been already proposed [5,14,6,7]. A comprehensive comparison
of these studies is out of the scope of this paper. However, a short overview on
most representative related works is given in the remainder of this section. In
[7] Garro and Russo have presented easyABMS, a full-fledged methodology for
the agent-based modeling and simulation of complex systems. The approach of
such study relies on both Agent-Oriented Software Engineering (AOSE) model-
ing techniques and simulation tools for ABMS. easyABMS is focused on system
modeling and simulation analysis rather than details related to programming
and implementation as it exploits the model-driven paradigm, making it possi-
ble the automatic code generation from a set of (visual) models of the system. In
[6], the authors propose the jointly exploitation of both Platform-Independent
Meta-models and Model-Driven approaches to define a Model-Driven process
named MDA4ABMS. The stated process is conforms to the OMG Model-Driven
Architecture (MDA) and enables the definition of Platform-Independent simula-
tion models from which simulation models and their code can be automatically
obtained.

In [14] Candelaria and Pavén propose a high-level conceptual modeling ab-
straction for simulation development, it includes transformation tools that facil-
itate the implementation of simulations on different simulation platforms. The
framework presented is based on the MDA pattern by means of a platform-
independent modeling language, a code generation process and templates, and
specific simulation platforms. In [5] the authors have present a model to bridge
the gap between the design and the application of Agent oriented systems. They
demonstrated how the MDA could be used to derive practical applications of

Geovanny Poveda and René Schumann 3

Agents from Agent oriented design. Their major contributions were in the defi-
nition of a common, agent-neutral model that applies to all the concepts required
by the FIPA-compliant agent platform.

Another line of research has highlighted the importance of using ontologies
for supporting the implementation of agent-based simulation through the de-
signing of conceptual model. In [16] Ying et al. describe MOMA, a methodology
for ontology-based multi-agent application development which focuses on the
development of an ontology as driving force of the development of Multi Agent
Systems for experimentation in the financial domain. MOMA consist of two main
development phases: Ontology Development and Agent Development. In the first
stage concepts and relations in the domain are identified and they are modeled
for a specific application, then code that can be used in the agent development
phase is generated.

3 An Ontology-Driven modelling approach for
Agent-Based Simulations

Following the approach mentioned in Section 1, an ontology-based model driven
has been designed. The proposed model employs a single and integrated for-
malism to define the MABS dimensions, in particular, the design of conceptual
modeling and the generation of agent-based models from instances of a con-
ceptual model. The basis of the stated model includes two major phases: (i)
conceptual modeling; and (ii) simulation design.

3.1 Conceptual Modelling Phase

In this phase, a set of high level abstraction of concepts and relations have to be
created for describing the domain in which MABS models will be defined in. The
basis of the proposed conceptual modeling includes an ontology which describes
the agent organizational structure of simulated electricity market models (capa-
bilities, behaviors, beliefs, actions), as well as, the vocabulary for describing the
set of fundamental concepts around the electricity market domain. The Elec-
tricity Market Ontology (EMO) has been created for describing the negotiation
mechanisms, actors, profiles and market dynamics.

3.2 Simulation Design Phase

The simulation design phase enables mechanisms for the automated construction
of agent-based models from instances of the ontology-based conceptual model-
ing. In this phase, a set of transformation rules, directives and design patterns
have been created to transform the axioms from the ontology-based conceptual
modeling (classes, object properties, properties, properties restrictions) to el-
ements of a MABS model (classes, attributes, associations, roles, plans, etc.),
and deploy it as an agent model. Figure 1 shows the components of the stated
phase. To derive agent models from the ontology-based conceptual modeling,
two models have to be performed:

Geovanny Poveda and René

Schumann

| Simulation design|

C

Model

Design Translator

RoF o Model v

Ontology Model

Generator

Model [Templateengine |
Object- Agent-
oriented based

| .| Multi Agent
Hacons template template

model

Writer
Model

Multi Agent System Framework|
(MASON -JASON)

Fig. 1: Simulation design phase overview

— Transformation model: In this model, axioms from the conceptual model
are classified into classes, object properties, and data properties and then,

the OWL API [8] is used for

translating Resource Description Framework

(RDF) subjects into OWL classes that relate predicates and objects as prop-
erty restrictions. The set of transformation rules used for keeping the de-
pendence between subjects and their properties are: (i) objects are con-
sidered as part of a <owl:Restriction> property through the use of the
OWLObjectSomeValuesFrom interface; and (ii) predicates are considered as
a restriction of subjects through the use of the getOWLSubClassOfAxiom in-
terface. Listing 1.1 shows a section of the algorithm used for transforming

the model.

Listing 1.1 A section of the algorithm used for defining the transformation

model.

String subLabel = subject.toString ();
OWLClass owlclassl = owlfact.getOWLClass(IRI. create (subLabel));

createOWLDeclarationAxiom (owlclassl);
OWLClass owlclass2 = owlfact.getOWLClass(IRI. create (objLabel));
createOWLDeclarationAxiom (owlclass2);

OWLObjectProperty hasRelation =

//create OWL Pattern

owlfact .getOWLObjectProperty (IRI. create (predicate. toString ()));

OWLClassExpression hasRelationSome = owlfact.getOWLODbjectSomeValuesFrom (hasRelation ,owlclass2);

OWLSubClassOfAxiom axiomPattern

= owlfact .getOWLSubClassOfAxiom (owlclass1 ,hasRelationSome);

owlmanager . addAxiom (ont , axiomPattern);

public void createOWLDeclarationAxiom (OWLClass owlclass){
OWLDeclarationAxiom declarationAxiom = owlfact.getOWLDeclarationAxiom (owlclass);
owlmanager . addAxiom (ont , declarationAxiom);

}

— Generation Model: In this model, a set of operations are used to write the
program structure of the agent-based model in terms of their organizational
structure. The basis of the stated model includes an object generator model
and rule-based template engine.

Generator Model. This model provides mechanisms for defining the high level
structure of artifacts (packages, classes, functions and relations) to be involved in
the serialization of files. It uses the transformed OWL-based conceptual modeling
and executes a set of mapping rules for representing the ontological axioms into
an internal model named Jmodel. A Jmodel is an intermediate programmatic
representation created to perform the expressiveness of OWL axioms into Java

Geovanny Poveda and René Schumann 5

oriented models. Among others, multiple inheritance, properties without type
and inverse properties are the most important. A Jmodel consist of a set of
instanced Java classes and Java objects assigned to specific packages instances.

In order to build the instances of Java classes, resources from the Jena data
structure [3] are located, and for all instances of that class, Java interfaces and
their respective implementing Java class are generated. In order to express the
multiple inheritance of OWL axioms, interfaces are embedded inside their cor-
responding Java classes and they are enabled to be included into an object-
oriented hierarchy composed of sub and supper-class relations. Once classes are
defined, both, object and data properties are retrieved from resources and they
are translated into object-oriented artifacts depending on the type of property.
In the case of object properties, that is, relation of a class to another class,
instantiated object-oriented methods are created recursively. Given that OWL
properties can be of multiple types, a list of multiple generic objects have to be
created for ensuring that object properties can be used in the specified range.
When annotation properties come from a <rdf :datatype> property, that is lit-
erals, they are transformed as global object-oriented attributes with accessors
methods (get and set) on the related OWL class.

Afterwards, subclasses from the Jena data structure resource are identified
and their cardinalities and values restrictions are checked. To be ensure con-
straints are satisfied, the range of the object properties acting as <owl:0nProperty>
property are associated to a Java interface named RestrictionManager to be
exposed to the classes acting as <owl:0nClass> property. Thus, classes acting as
restrictions can be instanced though a synchronized getByName () method that
use the Java reflection mechanism. Figure 2 shows the mechanisms involved in
the generator model.

aaaaaaaaaaaaaaaaaa

Templatefle

Fig. 2: Generator model overview

6 Geovanny Poveda and René Schumann

The object / agent template engine. To perform the process of writing
the programmatic structure of the model (skeleton, constructor, methods, and
headers) a rule-based template engine is involved. Template files use a set of high
level programming structures that describe the syntactic and semantic structure
to be used for serializing the model. Syntactic descriptions are used for describing
the skeleton structure of classes and headers. Semantic structures are used for
describing the methods and functions by using global identifiers from the stated
Jmodel. The use of templates files help to keep the transformation rules out of
the application code. Thus, new templates can be added and existing ones can
be customized without modifying the application code.

Listing 1.2 shows how syntactics and semantics structures are used for de-
scribing the content of Java classes. Syntactic structures are created by using
pre-defined language expressions for the Java identifiers and modifiers. Note
that semantic structures are created by using global identifiers variables that
use the Java reflection mechanism to create methods dynamically from values
of the Jmodel. In the case of object properties, a for-each velocity ! state-
ment enable the creation of Java object iterators and lists by using the global
jmodel.listclasses variable, which contains the set of transformed classes
from the conceptual model.

Listing 1.2 A section of a template file used for the generic-object oriented model.

public class \$cName extends Individuallmpl implements \$iName {

// syntactic structure
public static void main(String[] args)

{

// semantic / syntactic structure
#foreach (\$cls in \$jmodel.listJClasses ())
#set (\$clsName = \$cls.getJavaClassName ())
List <\${clsName}> \${clsName} = new ArrayList<\${clsName}>();
\${clsName} temp\${clsName} = new \${clsName}();
Iterator <\${clsName} > \${clsName}Itr;

As stated before, EMO Ontology provides a vocabulary that describes the set
of organizational agent building blocks and their relations with the fundamental
concepts around the electricity market. To provide the object-oriented model
the ability to be described in terms of their capabilities, behaviors, plans, beliefs,
interactions, protocols and communication mechanisms, a set of transformation
rules based on the previously mentioned template engine have been involved. To
describe how classes can be controlled and scheduled to access to the resources
and services of the model, a velocity template file is used to include the set of
fundamental functions and methods from the MASON APT [11]. The stated file
describes syntactic structures that include the Stepabble interface [11] as well
as, its hook method named Step [11]. Thus, agents are able to reason at runtime
the changes and updates on the environment.

! http://velocity.apache.org/

Geovanny Poveda and René Schumann

To provide a more understandable approach to enable the communication
among agents, the SimState object [10] has been involved to represent the overall
model. The SimState object is created to communicate agents in the model
via getter methods of the stated step method. The model object serves as a
communication device by holding information need by other agents. Finally, to
describe the behavioral, belief and capabilities descriptions, classes and interfaces
from the JASON API [2] are included. There is a template file which specify the
structure of the agent model in terms of the agent speak annotations. Listing 1.3
shows how the agent organizational is included. Note that an interface has been
created for providing classes the ability to extend the overall agent architecture

of the JASON APIL.

Listing 1.3 A section of a template file used to involve agent capabilities
package \S$testcasePkg;
import java.util.Iterator;

import com.hp.hpl.jena.ontology.OntModel;import com.hp.hpl.jena.ontology.Ontology;

import com.hp.hpl.jena.rdf.model. ModelFactory;import java.util.ArrayList;
import java.util.List;

public class \SelectricityMarketSimulation extends \$SimState implements \$Steppable {

private static String namePrefix = " ClassInstance”;
private static int nameCount = 0;

public \$electricityMarketSimulation (final long seed) {
super (seed);

@Override
public void step(final SimState state) {

OntModel ontModel = ModelFactory.createOntologyModel ();
Ontology ontology = ontModel.createOntology (base);

#foreach (\$cls in \$jmodel.listJClasses ())
#set (\ SclsName = \$cls.getJavaClassName ())

List <\${clsName}> \${clsName} = new ArrayList<\${clsName} >();

\${clsName} temp\${clsName };
Iterator <\${clsName} > \${clsName}Itr;
Iterator <\${clsName} > \${clsName}Itr;

}

public JasonAgent(String id, String aslFilePath, Logger logger)
throws SimulationException {

this.id = id;

this.logger = logger:

this.message = new ArrayList<Message >();

this.actions = new HashMap<String , Class<? extends JasonAgentAction>>();

this.configActions ();
try {
agent = new Agent ();
agent . init ();
agent.load (aslFilePath);
} catch (JasonException e) {

4 Multi Agent System Organizational Structure

This section describes the organizational architecture of the MABS model to
be generated. It describes a set of building blocks for defining the role, behav-

8 Geovanny Poveda and René Schumann

iors, capabilities and interactions of the agents on models. Such structure, has
been defined on the basis of an agent-based interaction model, where an agent
describes the capabilities that electricity market players have to perform for ne-
gotiation and the roles they play during the execution of bilateral contracts.
In that structure, agents are autonomous entities able to update their negotia-
tion knowledge by perceiving information from their market (environment) and
performing actions from the organization (norm, mission, cooperation, goals).
Figure 3 shows the concepts used for defining the agent organizational structure
of our model.

ggggggg

Belief — ’7 Percept Environment

organzaton
Message Agent e Domain Organization
‘
Behavior — Plan
- -
Capability " Action

Fig. 3: Agent organizational structure of model

4.1 Agent Model

The agent concept describes the capabilities agents have to perform negotiation
and the roles they play during the execution of bilateral contracts. In our model,
agents are autonomous entities able to update their negotiation knowledge by
performing actions from the organization (cooperation, organization) and per-
ceiving information from their market (resource). Agents update their plans by
performing roles and behaviors that depends the context the agent is acting and
the task to be achieved.

4.2 Role Model

The role model provides a definition of the roles and domains to be employed for
modeling the electricity market. The role model involves the actor definition, a
generic concept used for representing the parties that take places in the bilateral
transactions. It also involves the domain definition, a concept used for delimit-
ing the areas of negotiation for a particular purposes (consumption, distribution,
retailing). Last but not least, a role describe itself the external negotiation inter-
actions with other players / parties in relation to the goal to be achieved given
a bilateral transaction.

Geovanny Poveda and René Schumann 9
4.3 Interaction Model

The interaction concept describes how the intercommunication among agents
take place. To model agent interactions, a two-level system structure has been in-
volved. In such structure, the highest level enables the interaction among agents
each other and between agents and the environment through roles. Lowest level
concerns the environment. An interaction takes place when an agent performs
an action and such action is translated into an event that is notified to another
agent that exhibits the specific behavior [12]. The meta model of the interaction
concept is depicted in Figure 4. It is important to note that in our model, an
interaction it is not a just a message passing, it also includes protocol, a message
scope and actor definitions. In this aspect, the actors interact with the protocol
through a set of messages that are exchanged by the concerned parties.

Role level Actor 1 Actor 2

Role 1 Role 2

event event

Action Action

Resource level

Interaction

Message Protocol

Fig. 4: Meta model of the concepts used in the interaction aspect specification.

4.4 Organization Model

The organization model describes how the system organizations of electricity
retailer market is modeled and their relationships with another market system.
It describes how players from the electricity retailer market can cooperate and
participate in the market by considering their roles and capabilities. Organiza-
tional model also defines how the negotiation mechanisms of bilateral contracts
can be defined in terms of their interactions (communication). It involves proto-
cols, a concept used to establish a standard to interchange message during the
negotiations.

10 Geovanny Poveda and René Schumann

4.5 Behaviour Model

The behavior concept describes how the plans are performed by players of the
electricity retailer market and how the information flows among such actors. In
this aspect, a behavior describes an abstract representation that connects the
players with their behavioral features. Behaviors provide the basis of specifying
the internal activities of players through plans. A plan is a specialization of the
behaviors which defined a set of flows and activities. In this aspect, the activities
represent the actions to be performed in the plans and they are linked throw
flows [15].

4.6 Environment Model

The environment concept describes the resources that can be dynamically cre-
ated or shared by the agents in the electricity retailer market. In this aspect,
features for modeling how offers and contracts can be accessed have been consid-
ered. Environment concept is responsible of enabling and controlling the access
to the market and some negotiation services by using concrete means for agents.
It provides a set of inherited elements: observable and state to enable agents to
have access to resources and services. Thus, agents are able to reason at run-time
a new environment they are discovering [4].

5 Proof of Concept

This section presents how our proposed approach can be applied. We provide
here an example for modeling a strictly simplified negotiation in the electricity
retail market. In particular, a scenario for a simulated deregulated electricity
market focusing on bilateral negotiations [9] between a single retailer and mul-
tiple customers. The example to be presented in that section is focused on show
how the model proposed in Section 3 can be used for simulating agent-based
models from an ontology-based conceptual model. In this scenario, customers
negotiate a time of use tariff [1] under a set of specified terms and conditions,
including energy price, energy quantity and duration. Note that the proposed
proof of concept provides the foundations for showing how generic agent-based
models explained in section 3 can be generated rather than fully agent-based
models. In the following subsections, the processes involved in each phase are
presented.

Proof of Concept - Conceptual Modelling Phase In this step, we spec-
ify the concepts in the target of the scenario previously detailed and describe
it in the in the ontology-based conceptual model. In a first stage, the concep-
tual model is explored and high hierarchy classes are identified to perform the
correspondence between the conceptual model definitions and the concepts dis-
tinguished by domain experts during the analysis stage. By using the Protégé

Geovanny Poveda and René Schumann 11

tool 2, domain experts describe the classes, properties, data properties and in-
dividuals to be involved in the agent-based electricity model. Such description
includes participants, market features and strategic descriptions. The following
types of participants have been considered:

— Retailer: represents the business units that sell energy to a retail market.

— Customer: represents the players buying energy in the retail market. It in-
cludes households, commercial, industrial and other electricity consumers.

— Market: represents the resources created and shared by agents on the model.
It includes aspects such as contracts, trades, orders, bids, others.

Next, we describe some fundamental concepts around the bilateral negoti-
ations. Concepts such as market operation, methods of negotiation, as well as
strategic behavior of participants have been included:

— Bilateral negotiation methods: represents the set of negotiation methods to
be used. It includes (i) request for bid, (ii) offer method and (iii) announce
reward table.

— Protocol: represents the set of message flow that specify how the exchange
of messages is processed. It includes stacked alternating offer protocol and
monotonic conseccion protocol.

— Strategy: represents the set of strategies to be used. It includes logrolling
and compensation.

Proof of Concept - Simulation Design Phase In this step, the agent-based
electricity model is generated from instances of the previously designed concep-
tual model. To transform the conceptual model into an agent-oriented generic
model, we created a software utility to use the functions and methods proposed
in the simulation design phase (see Section 3.2). Listing 1.4 shows the main
two activities executed during the transformation model. In a first stage, the
RDF model is transformed into OWL axioms and rewritten to RDF /XML syn-
tax. Next, methods from the generator model are instanced and the RDF /XML
model is transformed into a object-oriented generic model. Finally, the generated
classes should be placed in the corresponding package and directory.

Figure 5 shows how the generic object-oriented model is generated automat-
ically after the execution of the stated class. Note that concepts and objects
properties from the conceptual modeling haven been transformed into JAVA
classes. Note that created classes do not involve the organizational structure of
agents since the writing activity of the model has been based on the object-
oriented template. Next section shows how the agent-oriented model is created.

2 http://protegewiki.stanford.edu/wiki/

12 Geovanny Poveda and René Schumann

Listing 1.4 A class to create the generic object-oriented model.
public class ElectricityMarketSimulation {

public static void main(String[] args) {

try {
File file = new File(”emordfinstances.rdf”)
String fileName = file .getName();
System . out . println (fileName);
ConvertRDFtoOWL convert= new ConvertRDFtoOWL ():
convert . transformRDFtoOWL (fileName);
File source = new File (" emordfinstances.owl/");
File dest = File (" emotransformed . owl /"):
try
FileUtils . copyFile (source , dest);
} catch (IO ption e) {
e.printStackTrace ();
}
ConvertOWLSyntax converter = new ConvertOWLSyntax ();
converter.SyntaxRewrite (" http://silab.hevs.ch/projects/simulation/testing /emotransformed . owl&format=RDF/XML");
OntModel ontModel = OntologyUtils.loadOntology (" file :emo.owl”);
JenaArtefacts artefacts = ne enaArtefacts ()
artefacts.generate (ontModel . "src”, "ch.hevs.silab.swisselectric.simulation.demo.emo.ns”);
}
}
}
va [& ElectricitySimulationjava X [€2 SILAB java X [&® ElectricitySimulationjava X [€2 Protocoljava x [#2 UtilityCompany.java * [&2 SilabGuijava % <rlivo
Source | History SE- RRSEN e e B ®
F=) 7
14 Yk |
15 g
16 * @author geo
17 */
18 public class UtilityCompany {
19
20 protected double maxPrice;
21 protected double expenses = 0;
22
23 List<ElectricityOrder> buyOrders = new ArrayList<ElectricityOrder>();
24 List<ElectricityOrder> sellOrders = new ArrayList<ElectricityOrder>();
25
26 public UtilityCompany(double price) {
27 super();
28 maxPrice = price;
29 }
30
31 public double getMaxPrice() {
32 T return maxPrice;
33 }
34
35 public double getExpenses() {
36 T return expenses;
37 }
38
39 public void updateExpenses(double change) {
40 T expenses += change;
41 }
42
43
44 public void orderTrades(AuctionMarket market) {
45
46 double surplus;
47
48 }

Fig.5: A class of the generated generic object-oriented model.

Proof of Concept - Agent System Organizational Structure In this
step the generic agent-oriented model is created. The stated model is created
from the set of transformation rules previously explained in the agent template
section. Agent-based model is generated in terms of the application programming
interface of the MASON framework. Figure 6 shows how the main class of the
package generated is expressed in terms of the MASON API. The picture also

Geovanny Poveda and René Schumann 13

shows how the concepts and relations previously defined in the conceptual model,
they have been created in the agent model.

ElectricityMarketsimulat

Ele Edit View Mavigate Source Refactor 8un Debug Brofile Team To w Help a
HEES <dehdteont. v @ F W b~
Projects | Files | Senices 5 va |8 ElectrictySimulationjeva x B2 SILAB java X B ElectrictySiml
v “ Sorce | History B B-B- ARFBE Fe B @ om &
1 package ch.hevs.silab.swisselectric.simulation.demo.emo.ns;
2
3
@7 import java.io.*;
5 import java.util.*;
6 | import sim.engine.SimState;
7 " import sim.engine.Steppable;
8

9 public class ElectricitySimulation extends SimState implements Steppable{

11 public static void main(String[] args)
129 {

13

14 String line;

1| 15| boolean strategic;

@ 9 List<UtilityCompany> companies = new ArraylList<UtilityCompany>();
17 List<UtilityCompany> shuffledCompanies = new Arraylist<UtilityCompany>();
18 UtilityCompany tempCompany;

19

20

21 Iterator<UtilityCompany> companyItr;

22 int lineCounter = 0;

23 AuctionMarket market = new AuctionMarket();
24 shuffledCompanies.addA11 (companies);

25 long seed = System.nanoTime();

26 Collections.shuffle(shuffledCompanies, new Random(seed));
27 companyItr = shuffledCompanies.iterator();
28 while(companyItr.hasNext()) {

29 tempCompany = companyItr.next();

30 tempCompany.orderTrades(market) ;

eOES & o

& B outpu

Fig. 6: The generated agent-based model.

6 Summary

In this article we have introduced an integration solution for modeling and sim-
ulating agent-based models on the basis of an ODCM approach. The proposed
solution has been envisaged to facilitate the creation of agent-based electricity
market simulations by using ontologies as the driving force of a MDD approach.
We have proposed a model which merge MDD and ODCM approaches to offer
a set of methods able to generate automatically agent-based models from the
design of a conceptual model. We have presented and explained the phases of
the model by distinguishing three main stages: (a) a conceptual model transfor-
mation; (b) an organizational agent architecture adaption; and (c) agent-based
generic code generation. The model is still under development, it is currently fo-
cused to generate generic agent-oriented structures for the agent system. Future
research efforts will be devoted to: (i) improving the algorithms used for trans-
lating the object-oriented generic model into agent-based simulation models. We
plan to include mapping strategies that involves the automatically generation
of object oriented methods from the annotation properties defined in the con-
ceptual model. (ii) our research will also provide techniques for supporting the
design and experimentation of the agent-based models by involving semantic-
based rules for adapting changes in the behavior of the agent model, in such

14

Geovanny Poveda and René Schumann

a way that conditional structures can be included on the generic agent-based
model and it can generate executable agent-based models.

References

10.

11.

12.

13.

14.

15.

Hugo Algarvio, Fernando Lopes, and Joao Santana. Multi-agent retail energy
markets: Bilateral contracting and coalitions of end-use customers. In FEuropean
Energy Market (EEM), 2015 12th International Conference on the, pages 1-5.
IEEE, 2015.

Rafael H Bordini and Jomi F Hiibner. A java-based interpreter for an extended
version of agentspeak. University of Durham, Universidade Regional de Blumenau,
2007.

Jeremy J Carroll, Tan Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: implementing the semantic web recommendations.
In Proceedings of the 13th international World Wide Web conference on Alternate
track papers € posters, pages 74—83. ACM, 2004.

Oguz Dikenelli, Marie-Pierre Gleizes, and Alessandro Ricci. Engineering Soci-
eties in the Agents World VI: 6th International Workshop, ESAW 2005, Kusadasi,
Turkey, October 26-28, 2005, Revised Selected and Invited Papers, volume 3963.
Springer Science & Business Media, 2006.

Mohamed Elammari and Zeinab Issa. Using model driven architecture to develop
multi-agent systems. Int. Arab J. Inf. Technol, 10(4), 2013.

Alfredo Garro, Francesco Parisi, and Wilma Russo. A process based on the model-
driven architecture to enable the definition of platform-independent simulation
models. In Simulation and Modeling Methodologies, Technologies and Applications,
pages 113-129. Springer, 2013.

Alfredo Garro and Wilma Russo. easyabms: A domain-expert oriented method-
ology for agent-based modeling and simulation. Simulation Modelling Practice
and Theory, 18(10):1453 — 1467, 2010. Simulation-based Design and Evaluation of
Multi-Agent Systems.

. Matthew Horridge and Sean Bechhofer. The owl api: A java api for owl ontologies.

Semantic Web, 2(1):11-21, 2011.

Filipa Lopes, Cristina Ilco, and Jorge Sousa. Bilateral negotiation in energy mar-
kets: Strategies for promoting demand response. In Furopean Energy Market
(EEM), 2018 10th International Conference on the, pages 1-6. IEEE, 2013.

Sean Luke. Multiagent simulation and the mason library. George Mason Univer-
sity,, 2011.

Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan.
Mason: A multiagent simulation environment. Simulation, 81(7):517-527, 2005.
Robert Meersman, Zahir Tari, et al. On the Move to Meaningful Internet Systems
2004: CooplS, DOA, and ODBASE. Springer, 2002.

Juan Pavén, Jorge Gémez-Sanz, and Rubén Fuentes. Model driven development of
multi-agent systems. In Model Driven Architecture—Foundations and Applications,
pages 284—298. Springer, 2006.

Candelaria Sansores and Juan Pavén. Agent-based simulation replication: A model
driven architecture approach. In MICAI 2005: Advances in Artificial Intelligence,
pages 244-253. Springer, 2005.

Michael Wooldridge. An introduction to multiagent systems. John Wiley & Sons,
20009.

Geovanny Poveda and René Schumann 15

16. Wier Ying, Pradeep Ray, and Lundy Lewis. A methodology for creating ontology-
based multi-agent systems with an experiment in financial application develop-
ment. In System Sciences (HICSS), 2018 46th Hawaii International Conference
on, pages 3397-3406. IEEE, 2013.

	An Ontology Driven approach for modeling a Multi Agent Based Electricity Market
	Introduction
	Background
	An Ontology-Driven modelling approach for Agent-Based Simulations
	Conceptual Modelling Phase
	Simulation Design Phase
	Generator Model.
	The object / agent template engine.

	Multi Agent System Organizational Structure
	Agent Model
	Role Model
	Interaction Model
	Organization Model
	Behaviour Model
	Environment Model

	Proof of Concept
	Proof of Concept - Conceptual Modelling Phase
	Proof of Concept - Simulation Design Phase
	Proof of Concept - Agent System Organizational Structure

	Summary

