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Abstract. This article presents a novel graph–model approach encod-
ing the relations between the perfusion in several regions of the lung
extracted from a geometry–based atlas. Unlike previous approaches that
individually analyze regions of the lungs, our method evaluates the entire
pulmonary circulatory network for the classification of patients with pul-
monary embolism and pulmonary hypertension. An undirected weighted
graph with fixed structure is used to encode the network of intensity
distributions in Dual Energy Computed Tomography (DECT) images.
Results show that the graph–model presented is capable of characteriz-
ing a DECT dataset of 30 patients affected with disease and 26 healthy
patients, achieving a discrimination accuracy from 0.77 to 0.87 and an
AUC between 0.73 and 0.86. This fully automatic graph–model of the
lungs constitutes a novel and effective approach for exploring the various
patterns of pulmonary perfusion of healthy and diseased patients.
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1 Introduction

In an emergency department, a patient with a pulmonary vascular pathology
requires a quick and reliable diagnosis to proceed with the corresponding treat-
ment and symptoms for many diseases are often unspecific. Currently, health
professionals face a difficult task to distinguish between the different types of
pathologies, such as pulmonary embolism (PE) and pulmonary hypertension
(PH) [9]. Both pathologies present similar symptoms and visual radiological
defects but require completely different treatments. The current gold standard
for diagnosing pulmonary hypertension requires an invasive catheterism proce-
dure [11, 12, 22]. In addition, most patients in the emergency department un-
dergo a routine Computed Tomography (CT) thorax scan with contrast agent.



The visual interpretation of the latter is challenging as it involves a holistic
analysis of the pulmonary perfusion. Schickert et al. [18] confirmed that CT
image analysis allows detection of chronic thromboembolism. PE and PH have
similar visual signs, showing in some cases mosaic patterns due to the hypo–
and hyper–perfused regions as a consequence of clots in the vascular tree. Dual
Energy CT (DECT) scans have shown to allow quantifying perfusion defects of
the lung parenchyma [2, 13, 14, 19, 20] using iodine components derived from CT
attenuation at two energy levels of 80 and 140 keV. Several studies have pre-
sented region–based approaches to analyze the parenchyma [6, 7]. However, to
the best of our knowledge, no work has tried to detect pulmonary vascular dis-
eases based on the comparison of the regions, allowing a holistic analysis of the
pulmonary system. This article is based on the hypothesis that when a region is
hypo–perfused due to a clot, another region or regions may absorb the excess of
blood–flow, creating hyper–perfused regions [1]. Our method consists of dividing
the lungs into 36 geometrical regions and comparing the perfusion of each pair
of regions. In the case of healthy patients, the hypothesis is that the distribution
of the perfusion should be similar across patients, presenting a radial pattern
with maximum perfusion in regions close to the heart and minimum perfusion
in the peripheral regions.

The selected technique to characterize these relations is an undirected weighted
graph with a fixed structure. Graph–models have been widely used in medical
imaging [15, 17, 21, 24], particularly in functional brain analysis. Some graph–
methods on brain image analysis consist of dividing the brain into fixed func-
tional regions. Then, the relations between the activation of these regions are
compared [16]. In this work, we use a similar approach for the lungs where geo-
metric regions are used instead of the functional regions, and instead of analyzing
the co–activation of different zones, we compare their perfusion. To the best of
our knowledge, this work constitutes a first attempt to provide holistic charac-
terizations of the lung perfusion based on anatomical graph models from CT
image analysis.

2 Methods

2.1 Dataset

Experiments were carried out on contrast–enhanced chest DECT images of 56
patients, 17 with diagnosed PE, 13 with diagnosed PH and 26 control cases
(CC). The institutional ethics committee agreed on the study. PH patients were
taken from an ongoing PH study, PE and control cases were taken from clinical
routine cases in the emergency department and control cases were chosen to be
similar in terms of age distribution to the other categories. DECT images were
obtained with a Discovery CT750 HD from General Electric Medical Systems.
11 energy levels were chosen from each DECT image, from 40 keV to 140 keV in
steps of 10 keV, yielding 4D data with intensities measured in Hounsfield Units
(HU). The resolution of the DECT slices varied from 0.6289 to 0.9766 mm, while
the inter–slice distance was 1.00 mm.



2.2 Graph–Model

The lung volumes were automatically segmented from the DECT images us-
ing the method explained in [8]. This method achieved the best results in the
lung–segmentation task for CT images in the VISCERAL Anatomy Challenge
2015 [10]. Only the 70 keV level of the DECT images was used to compute the
lung segmentation. Once the lungs were segmented, the atlas presented in [6] was
computed on the segmented lung mask (see Figure 1). The same atlas mask was
used for all the energy levels of the DECT image. The atlas contains 36 geomet-
ric regions produced by intersecting four axis segmentations: coronal (right/left),
sagittal (anterior/posterior), vertical (apical/central/basal), and axial (periph-
eral/middle/central). These locations are based on the 3D model of the lung pre-
sented by Zrimec et al. [25]. This atlas provides adequate partitioning, grouping
areas with vessels of similar size, and thus, similar texture. Moreover, it considers
the peripheral regions separately, which are mainly affected by PH. An anatomic
separation based on lobes would be another possibility but it is sometimes dif-
ficult and error prone in patients with strong pathologies, such as the patients
we are analyzing. It is also much slower to compute.

Fig. 1: Three axial views of the same DECT image at different heights showing
the 36–geometrical–region atlas used to divide the lungs. The example corre-
sponds to the 70 keV energy level of a PH patient DECT scan. Please refer to
Figure 2a for a 3D visualization of the atlas.

Every region was characterized using the first four statistical moments of
the HU distribution, i.e. mean, variance, skewness and kurtosis. The mean and
the variance have a direct interpretation considering our hypothesis. Hypo– and
hyper–perfused areas have high and low mean HU, respectively. A region with a
clot has a vessel partially well perfused, and hence, a high variance in the region.

These measures were computed for each of the 11 energy levels of the DECT
images. Each energy level corresponds to a reconstructed image generated from
two mother images acquired at 80 and 140 keV. However, since the attenua-
tion curve of each component is not linear, the information contained in the
11 levels cannot be reduced to two single values. The feature vector describing
a single region was defined as the 44 dimensional vector (11 energy levels × 4
statistics) containing the concatenation of the four statistical moments of ev-
ery energy level. Let HU (r) be the HU in a region r, m(r) = Mean(HU (r)),



(a) (b)

Fig. 2: Prototype visualization of the graph–model based on the 36–region atlas.
2a) 3D visualization of the 36–region atlas corresponding to the same PH patient
as in Figure 1. Six regions are not visible in the visualization to show the interior
atlas divisions. 2b) Undirected complete graph built from the 36–region atlas.
The color of the vertices correspond to the color of the respective region in
Figures 1 and 2a. vi and vj are the vertices corresponding to regions ri and
rj respectively. ei,j is the edge connecting the vertices vi and vj . As it is an
undirected weighted graph, ei,j = ej,i. The edge weights are defined in the
adjacency matrix A as Ai,j = d(f(ri), f(rj)), where f(r) is the statistics–based
feature vector of the region r (see Equation 2). All the edges between vertices
are shown in light gray.

v(r) = Var(HU (r)), s(r) = Skew(HU (r)), and k(r) = Kurt(HU (r)). The fea-
ture vector of a region (f(r)) is defined as

f(r) = (m40(r), v40(r), s40(r), k40(r), . . . ,m140(r), v140(r), s140(r), k140(r)) , (1)

where the sub–index corresponds to the energy level in keV.
The 36 regions of the atlas were considered as a fixed set of vertices V allowing

comparisons between patients. The Euclidean distances between the respective
feature vectors of region pairs (ri, rj) were considered as weights on a set of
edges E. This allows the construction of an undirected complete weighted graph
G = (V,E), with adjacency matrix A ∈ R36×36 defined as

Ai,j = d(f(ri), f(rj)) = ‖f(ri)− f(rj)‖. (2)

A is symmetric because Euclidean distances were used (Ai,j = Aj,i). Figure 2
contains a 3D visualization of the construction of the graph from the 36–region
atlas. A visualization of five adjacency matrices for each class in the dataset
(CC, PE, and PH) is shown in Figure 3.

The use of a complete graph provides a full holistic characterization of the
lungs. This is particularly useful when only one lung is healthy and the other



CC-01 CC-02 CC-03 CC-04 CC-05

PE-01 PE-02 PE-03 PE-04 PE-05

PH-01 PH-02 PH-03 PH-04 PH-05

Fig. 3: Patient–wise graph adjacency matrices A containing the Euclidean dis-
tances between feature vectors of each region pair. Five matrices per class (CC,
PE, and PH) are shown. The distances were normalized between 0 and 1 accord-
ing to the maximum and minimum distance found in the 12 example matrices. In
some cases, it is possible to see patterns characteristic of each class (e.g., PE–02
and PE–04 present a characteristic red cross), but visually it is difficult to find
a common discriminative pattern across entire classes.

one is homogeneously affected. The edges between regions on different lungs will
highlight the affectation in this case.

2.3 Graph Classification

As we are working with graphs with a fixed number of vertices, we do not require
any graph–specific measure. The comparison between two graphs can be reduced
to the comparison of the edge–weights encoded in the adjacency matrix. Since
the vertex ordering is the same for all patients and the adjacency matrices are
symmetric, they are fully characterized by their upper triangles. Hence, we use
the vectorized upper triangle of the adjacency matrix as a descriptor vector of
the patient. The diagonal is not used as it contains zeros only (see Equation 2).
The resulting vector is then 35 + · · · + 1 = 630 dimensional. The vectors are
subsequently used in a 2–class support vector machine (SVM) [4] classifier with
a linear kernel. The LIBSVM library [3] is used in all our tests. The feature space
spans R630, where every dimension corresponds to one edge in the graph.



Four experiments are described in this article: a) CC vs. PE, b) CC vs. PH,
c) PE vs. PH, and d) CC vs. non–CC, where the non–CC were composed of PH
and PE.

2.4 Experimental Setup

Linear SVMs only have the cost parameter C requiring optimization. The opti-
mization phase is not straightforward when working with small datasets due to
the high influence of the random division of the patient set into train, validation,
and test sets. Experiment a) contained 43 patients, experiment b) 39, experiment
c) 30, and experiment d) 56. For each experiment, a global leave–one–patient–
out (LOPO) cross–validation (CV) was used. For each fold of the LOPO, an
inner 10–fold CV was used to find the optimal value of C with a grid–search on
C = [2−10, 210] and a logarithmic step of 0.5. At the end of the LOPO loop, all
patients were classified. The accuracy and the area under the receiver operating
characteristic (ROC) curve (AUC) based on the decision function of the SVM
are used as performance measures.

3 Results

Figures 4 and 5 show the results for the four experiments performed. For every
experiment, the accuracy and the AUC are shown in each image respectively.
Because the dimension of the feature space (630) with respect to the size of the
dataset is relatively high, the performance when using a randomly–generated
630–dimensional feature vector was evaluated to test the bias linked to the large
feature space. The method called “Random” in Figures 4 and 5 corresponds
to 10 Monte–Carlo (MC) repetitions of every experiment using random feature
vectors and then the same learning procedure. In this case, the measures shown
correspond to the accuracy and AUC values averaged over the 10 executions, and
are referred to as random accuracy and random AUC, respectively. The ROC
curves corresponding to each experiment are shown in Figure 5a. Moreover,
Figure 4b shows the one tailed p–values when comparing our method against
the random experiment.

The best accuracy was achieved in experiment b), PE vs. PH, with an ac-
curacy of 0.87, while the random accuracy of this experiment was the lowest.
Moreover, the p–value in this case is 2.9e−10, highlighting statistically significant
results. In experiment a), CC vs. PE, the difference between the random and the
graph–model accuracies was smaller, from 0.57 to 0.79, but it is still significant
with a standard confidence interval of 5 % (0.0025). Finally, experiments b) and
d) had low accuracy when compared to the random accuracy, achieving 0.77 and
0.61 respectively. In these cases, the p–values are of 0.0632 and 0.0651 and are
thus not significant with a confidence interval of 5 %. The small data set makes
it harder to reach significance. In addition, the AUC provided information about
the reliability of the classification. In this case, experiments a), b) and c) had a
high AUC with respect to the random AUC. When comparing PE vs. PH and vs.
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Fig. 4: Results obtained in the four experiments: a) CC vs. PE, b) CC vs. PH,
c) PE vs. PH, and d) CC vs. non–CC (PE+PH). 4a) Accuracy for all four
experiments. The results of the graph–model are depicted in green while the
performance of a random approach is in red. The random accuracy correspond
to the accuracy averaged over of 10 executions with randomly generated feature
vectors. In this case, the standard error is also shown. 4b) One tailed p–values
when comparing our method against the random approach.

CC, the graph–model achieved an AUC of 0.86 in both cases, while experiment
b), PH vs. CC, achieved 0.73. As expected from the results, experiment d) was
the least reliable achieving an AUC of 0.65.

4 Discussion

Basic statistical features were used to encode HU distributions as regional de-
scriptors of the perfusion. Features were extracted from 4D DECT images, con-
taining the attenuation of 11 energy levels for each voxel and providing rich
information of HU intensity distributions. Results show that the analysis of the
relation between these statistical descriptors contained sufficient information to
build a graph–model able to differentiate between PE, PH, and healthy pa-
tients. The 36–geometrical–region atlas shows to be a suitable division of the
lungs to build the graph. The advantage of using a geometrical atlas instead
of an anatomical atlas, e.g., based on lobes, is the possibility to build it auto-
matically, quickly and reliably. Although some anatomical atlases based on lung
lobes can be computed automatically [23], the methods often do not work for all
kind of patients (i.e., with diseases or older patients).
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Fig. 5: Results obtained in the four experiments: a) CC vs. PE, b) CC vs. PH,
c) PE vs. PH, and d) CC vs. non–CC (PE+PH). 5a) ROC curves. 5b) AUC for
all four experiments. The results of the graph–model are depicted in green while
the performance of a random approach is in red. The random AUC correspond
to AUC values averaged over of 10 MC executions with randomly–generated
feature vectors. In this case, the standard error is also shown.

The presented technique describes the relations between regions, not consid-
ering the absolute perfusion of the region. This property can be an advantage
when comparing CT scans acquired with different protocols because it provides
a holistic analysis of the lungs. Moreover, any other perfusion descriptor, such
as texture, can easily be added as a property of a region (graph vertex).

Every patient was described with only one single vector, the vectorized upper
triangle of the adjacency matrix A (Section 2.3). Due to this procedure, the small



size of the dataset was an inconvenience when splitting the dataset during the
evaluation step (Section 2.4). However, DECT is not the most common imaging
diagnostic choice for PE and PH patients and finding specific patients was not
an easy task. To the best of our knowledge, there is no previous automatic
classification–work using PH patients and no comparison with previous work
was easily possible. The results of this article are an initial step in the automatic
classification of PH patients based on image data alone. In the case of PE, other
classification–approaches have been presented but the methods usually provided
classification of local regions and the methods were designed based only on PE,
while the graph–model presented may be applied to any pulmonary vascular
disease.

PH experts are currently unable to identify PH patients only using DECT.
A catheterization to diagnose/discard PH is required but invasive and thus not
always done, missing to find the correct diagnosis for several patients. Therefore,
comparing the performance of our approach against randomly generated feature
vectors is a viable baseline of human diagnosis by visual inspection. We gen-
erated random vectors with the same dimensionality and with the same range
of values as the features used and classify them using the same SVM. This is
a reasonable comparison to learn on random feature vectors as this takes into
account potential bias linked to the large feature space.

5 Conclusions and Future Work

In this article we present a novel, fully automatic graph–model of the lungs
capable of discriminating between PE, PH, and healthy patients with an ac-
curacy above 0.77, and an AUC above 0.73. The results confirmed the initial
hypothesis that a graph–model encoding the perfusion distribution across lung
regions characterizes PE and PH patients effectively. Graph–modeling is a com-
plete framework widely studied that opens new possibilities for lung modeling.
First of all, graphs enable inclusion of other regional features such as texture
to encode the local morphological properties of lung tissue. It is also possible
to generate 3D colored graph–models to help physicians in their diagnosis (Fig-
ure 2b). These 3D models can reveal information about the abnormal relations
and localize the regions affected.

The method presented is simple and with very small computational cost and
it would therefore scale very well. The small number of patients is a limitation
of this work and we intent to further validate our model on a larger cohort. As a
next step, we plan to analyze which relations in the graph best characterize each
patient–class, providing more synthetic graphs for each pathology. We also plan
to use the graph models to differentiate interstitial lung disease, where holistic
image analysis of thoracic CT showed promising results in [5].
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8. Dicente Cid, Y., Jiménez-del Toro, O.A., Depeursinge, A., Müller, H.: Efficient
and fully automatic segmentation of the lungs in CT volumes. In: Goksel, O.,
et al. (eds.) Proceedings of the VISCERAL Challenge at ISBI. No. 1390 in CEUR
Workshop Proceedings (Apr 2015)

9. Farber, H.: Pulmonary circulation: Diseases and their treatment. 3rd edition. Eu-
ropean Respiratory Review 21(123), 78–78 (2012)
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