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Abstract—In a deregulated market, the operator of a hydro
storage power plant has to consider different market products
as well as uncertainties in its prices for optimal scheduling. A
suitable mathematical framework for such problems is stochastic
dynamic programming. The critical aspect there is modeling,
since efficient solution techniques are well known. We present a
modeling approach, where the actual available electricity market
products act as the basis for the modeling. Advantages of this
modeling approach are the natural consideration of power Future
products and Hourly Price Forward Curves. Further the model
is capable of unifying the short and medium-term optimizations.
A two-stage mixed-integer stochastic program with variable time
periods is obtained, with the first stage deciding on the amount
of power Futures to bid and the second stage as hourly recourse
action on the day-ahead market. The problem can be formulated
dynamically so that it can be efficiently solved in parallel.

Index Terms—Hydro power, scheduling, short-term planning,
medium-term planning, stochastic programming, power Future,
hourly price forward curve.

I. INTRODUCTION

If a hydro power plant is operated in a portfolio with thermal
power plants, a scheduling optimization typically deploys the
hydro plant in order to minimize the thermal production costs.
For generation companies with only hydro storage power
plants this is not possible. In this case the future profit,
which can be achieved with the water, is estimated. These
so called water values depend not only on the current amount
of stored water but also on the future electricity prices and
water inflows. Prices and water inflows are uncertain and not
fully known in advance.

Finally in a deregulated market environment a price-taker
power producer has to decide which products he wants to
offer so that a bidding problem arises. This bidding problem
for a hydro power producer is so complex that it is usually
solved in different steps: e.g. first a medium-term planning for
determining the monthly/yearly production strategy and then
a short-term planning for optimizing the production over the
next days.

This segmentation often leads to unnatural step-lengths,
driven by computational and modeling limitations. Although
theoretically a planning with great modeling detail for an
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Fig. 1. Water inflows for a storage power plant in the Swiss Alps for some
years to illustrate the strong seasonality.

optimization horizon of a year would be feasible, computa-
tionally this is not tractable. Further the meaningful parameter
modeling, e.g. of hourly market prices for months ahead, is
very difficult.

Questions which must be addressed are: what is a sensible
segmentation, how long are stages', how many stages are nec-
essary, how must scenarios be created in order to incorporate
uncertainties etc. Since efficient solution techniques for such
multistage stochastic problems are available these questions
indicate that it is the modeling part of the problem which has
become the most demanding part, as also shown in [1].

In order to answer these questions this paper proposes a
paradigm shift. Instead of choosing an arbitrary segmentation
with an afterwards adapted model, the available market prod-
ucts are used directly as modeling guidelines. The proposed
model shows that a segmentation into short- and medium
term optimization is no longer necessary, which has several
advantages.

In the Swiss system, and maybe in many other European,

UIn this paper the term stage is used for denoting both optimization level and
time point. There will be no explicit distinction made. However the meaning
should be clear in the context.



the following electricity products are available:

e over-the-counter (OTC)

o spot market

o day-ahead market

« physical and financial (German) power Futures

o (German) power options

« ancillary services
In this paper the in-transparent OTC, power options and an-
cillary services are not considered. The physical and financial
power Futures can be further segmented into Future products
with delivery periods of a week, a month, a quarter and a year.
These are the lengths of the stages which will be used in the
model proposed here.

Arguable this segmentation is also arbitrary, but it makes
sense from a modeling perspective in several ways: Firstly,
the Future products can be used directly as model of a
first-stage decision, since their delivery periods are consistent
with the stage lengths. Secondly the Hourly Price Forward
Curve (HPFC), which is consistent with the Future products
(arbitrage-free), can be used as estimation of the Future day
ahead market prices. Thirdly, the further ahead products are
considered, the more uncertain they are, which is reflected by
an increased stage length. Fourthly, this segmentation mimics
the actual bidding problem of a power producer.

The optimization is done for a typical Swiss storage power
plant with a large hydro head and high power / storage ratio.
The water level in the basins have negligible influence on
the production and it can be assumed that the power plant
is operated as peak power plant. Therefore startup costs,
water flow and dynamics, as well as non-linear, non-convex
efficiency factors, can be neglected without loss of accuracy.
The considered power plant is structured in such a way that
it can be aggregated into an upper and lower basin. However,
the algorithm can cope with more cascaded power plants.

The water inflows originate mostly from glacierized catch-
ment in the Swiss Alps. Therefore a strong seasonality in
inflows is present, and it is common to have a fully depleted
upper basin in late-winter (see also Fig. 1). The inflows
are therefore modeled deterministically and the optimization
horizon ends in late-winter.

Since the power plant model is relatively simple great detail
can be considered on the most influential variables: the market
prices. Proposed is a two-stage' stochastic program to model
the bidding problem. In the first stage the algorithm has to
decide on the amount of the Future peak product of the next
time period to bid without knowing the actual hourly prices. In
the second stage the algorithm can make hourly adjustments
on the day ahead market using the then known prices. The
second stage is modeled as a linear program consisting of
hourly stages with price scenarios. The overall optimization is
solved by a stochastic dynamic programming (SDP) approach.

For an overview of stochastic programming in the energy
sector [2] can be recommended. For SDP in hydro power
planning see [3], for a review [4]. Our work can be seen as
extensions and/or combinations of concepts appearing in [5],
[6] and [7].
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Fig. 2. Two-stage program with varying time length between stages and
therefore also varying amount of hourly wait-and-see decisions.

In [5] an hourly day ahead pool market and a financial Future
market for a yearly time horizon is considered. They bundle
the pool market to 72 different prices. Stochasticity on the pool
prices are introduced via scenarios. Large stochastic linear
programming, which has the advantage of easily incorporating
risk measures and minimizations, is used. Because of the well-
known “curse of dimensionality” [8], the model is limited to
72 bundled prices.

In [6] the focus is on constructing bid curves by a large
scale mixed integer linear program. A finer model is used
on near term and then a coarser one going forward. With 28
stages a time horizon of four to five months is achieved so
that it is claimed that the model unifies short and medium-
term optimizations.

In [7] SDP is used for finding an operating strategy for a
power plant portfolio. However a Lagrange relaxation scheme
is used to incorporate long-term guidelines into short-term
and vice versa. With this approach they are able to solve the
problem for a model case with one thermal and two hydro
generating units for 150 stages. It is therefore proposed that
this model is capable of unifying short- and medium term
optimizations.

This paper is organized as follows: Section II explains the
model and its characteristics, mathematical representation and
some computational remarks are given. Section III reveal the
case study and finally section IV concludes the paper.

II. THE MODEL

For the operator of a Swiss hydro storage power plant it is
typical that the company first decides on the medium-term
strategy. This decision is based on deterministic optimiza-
tions but builds heavily on experience and tacit knowledge.
After this the trading group tries to optimize this medium-
term schedule further by taking part in OTC, power Futures,
options, day-ahead and spot markets. The trading group is
assisted by optimization tools mostly depending on HPFCs
and the boundaries given by the medium-term strategy. Since
there is no Swiss Futures and options market the HPFCs are
constructed using Future products from Germany and France.

A. Model characteristics

The proposed model follows the in section I outlined
procedure in a two-stage' manner:
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Fig. 3. Discretization of the state and decision variables, the basin filling and
the turbined energy. The problem reduces to a shortest path problem which
can be solved recursively.

o Here-and-now decisions: Choose the optimal amount of
peak products with a delivery period of the whole time
stage afterwards, priced by the current Future product
price for this time period. These decisions are made with
respect to the uncertainty in the second stage.

« Wait-and-see decisions: Depending on the actual price
scenario and the actual here-and-now decision, optimal
hourly production for the whole time period is sought,
which is also known as recourse action. The price sce-
narios are constructed using given HPFCs.

Fig. 2 shows a graphical representation of this two-stage
program. Until the end of the calendar month the step size is
one day. Here-and-now decisions have to be made, daily which
means that one has the possibility to hedge against uncertainty
in the spot market by buying day-ahead peak products.

The step size is increased to monthly steps for roughly half a
year and then finally quarterly step sizes so that a time horizon
of a year is obtained. The uncertainty in the HPFC is increased
in parallel by assuming more scenarios.

Depending on the start date of the optimization around
30 stages have to be considered with hourly resolution of
the second stage. Uncertainty in the HPFC is introduced via
scenarios. The amount of scenarios varies between one for the
first three days (because the spot prices are then assumed to
be known) to 4 scenarios for the quarterly steps.

Because the cumulated profit of a power plant is strictly
increasing in time, a decomposition is meaningful. By also
discretizing the state and decision space (see Fig. 3) the well-
known SDP scheme is attained (introduced in [9] and [10],
first applied to hydro power planning problems in [11]).

So for all possible basin levels the most profitable case is
searched for recursively, which is similar to a shortest path
problem.

B. Mathematical model

For an overview and explanation of the variables see Table
I. As already stated the overall model can be made relatively
simple. Let 6, , be the future expected profit for a state x at
time ¢, also denoted profit-to-go. Then this profit-to-go can be

TABLE I

VARIABLES
Variable || Explanation
t Stage
T Discretized basin filling (state variable) [MWh]
0t Profit-to-go [€]
bids,x Discretized amount of Future bid [MWh]
cbidy Estimated Future bid price [€/MWh]
Fi » Valuing function for second stage
T Hourly stages within second stage
cspotr ¢ Estimated spot price (HPFC) [€/MWh]
hpd+ ., Hourly production decision [MWh]
hsdr t,z Hourly spill decision [MWh*€/MWh]
turbs, Discretized amount of available water to discharge [MWh]
infl Deterministic water inflows [MWh]

recursively calculated:

cspot

gt,ﬂ? = max {bldtﬁz . Cbidt + E [Ft,z + 9t+1,x}} (1)

with E . being the expected value over all spot price scenar-
cspo

10s.

F} , itself is a deterministic maximization problem depending
on time, state and also spot price scenario. For each scenario,
F} , can be stated as:

F,» =max {hpd; . -cspot,; — hsd:; .} (2)
subject to the following equality and bounds to the variable

Spaces:

> hpds i e = turby ; +infl, — bid;

—bidi, < hpdPTE < turbpee —bidi. (3
0 < hpdZ{TP < turbpas
hsd > 0

The discretized amount of available water to discharge turby ;
depends on the basin level and time stage in order to be
meaningful. The algorithm tries to deploy this available water
most profitable among the hourly stages within the second
stage by buying or selling power. At this point it is important,
that the expected HPFC is consistent with the power Futures
but modeled with different uncertainty across the hours.
Problem (2) is a mixed-integer linear problem for 7 stages
and bid; , as integer variable, which can be efficiently solved.
This is done for every basin level in order to get the expected
profit-to-go 6, . The whole procedure is repeated recursively
until the first stage is reached.
Out of the profit-to-go function for the first stage 0, . the water
values can be constructed through its derivative.

C. Computational Remarks

All optimizations were done in Matlab R2011a with the
standard optimization toolbox. The stochastic dynamic pro-
gram problem can be formulated embarrassingly parallel, so
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Fig. 4. Profit-to-go for all basin levels and stages. Note, that the first 20

stages have daily step size and therefore the profit relatively does not change
much.

that the optimizations took no longer than 15 minutes with
a standard computer, with a quad-core 2.3 GHz Intel Core i7
processor and 8 GB of RAM. However, if the special structure
of the dynamic program is not exploited in the algorithm, it
can easily take hours to solve.

Effective actions for optimizing the algorithm are for in-
stances to make sure, that the number of steps for the basin
discretization is a multiple of the available computing units and
that the work can be equally distributed across these units.

III. CASE STUDY

The model is applied to a Swiss hydro storage power plant
with installed generation and upper basin capacity of 240 MW
and 200 GWh respectively. The hydro inflows are estimated
out of historic values for about 6 years. A HPFC, constructed
by the industry partner, is used to model the spot price
with its uncertainty. The EEX Phelix German peak Future is
taken as estimation of the future bid price. This Future with
financial settlement is much more liquid than the one with
physical settlement, as such it is assumed that the financial
one estimates the future prices better.

Since the Phelix power Futures are also used for the
construction of the HPFC, the Futures should be consistent
with the HPFC without any further modifications.

March 13, 2008 was arbitrarily chosen as optimization start,
and it ends on March 31, 2009 with no value given to the
residual water in the upper basin. Both the power Futures as
well as the HPFC is in respect to the start date.

For the first three days only a single spot price scenario is
modeled. For the daily step sizes two scenarios, for monthly
three and for quarterly step sizes four scenarios are modeled.
This modeling would have to be adapted in real application,
if the optimization is done with a receding horizon depending
on the start date. The amount of Future bids are discretized in
50 steps. The basin is discretized in twelve steps.

Fig. 4 shows the profit-to-go in respect to all basin levels
and stages. One recognizes the concavity of the profit-to-go
within each stage as well as the strictly increasing profit with
more stages. Since the first roughly twenty days have a daily
step size, the profit-to-go relatively will not change much. Also
mentionable are the winter months (stages 25 and 26), where
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Fig. 5. Water values out of the profit-to-go function at the first stage.
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Fig. 6. Optimal Future bids for all stages and basin levels.

because of essentially zero water inflows the profit-to-go stays
the same. Nevertheless for the profit-to-go the later bigger
stages are more important which would also correspond to a
medium-term optimization.

The derivation of the profit-to-go function at the first stage
in respect to the basin level results in the main output of this
simulation: the water values. Fig. 5 show these water values
normalized to its maximum value. If the basin is full the
marginal water is roughly one quarter less valuable than it
is when it is empty. These values can be used as decision
support by the traders in their daily business.

Fig. 6 shows the optimal Future bids. Clearly in the last
stage the optimization would like to discharge everything,
since the remaining water in the basin has no value anymore.
However in the stages before only in few monthly peak power
Futures was invested and in no daily ones. This is due to
the fact that for flexible hydro power plants it is much more
economical to take part in the spot market than in Future
markets.

The same effect is also depicted in Fig. 7, where the
hypothetical optimal offered power is shown. Hypothetical,
because the optimization assumed no already purchased mar-
ket products. However it also shows, that only in the very
peak hours around midday and in the evening maximal power
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Fig. 7. Optimal (hypothetical) offered power for all basin levels for the first
three days.
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Fig. 8.  Profit-to-go difference between a model with and without the
possibility to hedge stochastic spot prices. The difference is relative to the
maximal profit-to-go value.

is offered and that in the third day, which falls on a Saturday,
no power at all is offered because the spot price is too low.
Fig. 8 finally shows the difference between the profit-to-go
functions with and without the possibility to hedge stochastic
spot prices by Future products. At the first stage this difference
is around 10%, which clearly shows the need of considering
stochastic spot prices and its hedge by Future products.

IV. CONCLUSION

In this paper a stochastic dynamic programming model
is proposed, where the discretization of the time is made
according to available market products. This choice makes
sense not only from a modeling point of view but has also
several practical advantages like being able to use market
products and Hourly Price Forward Curves directly without
further modifications and the possibility to unify short and
medium term optimization.

However it is important to note that only a snapshot of
the whole market bidding process is made. So the algorithm
doesn’t take into account, that one could trade the Future
products every day with different prices. Further, the results
suggest that a simpler model, where the algorithm can only
choose between maximal and zero production, might also be
satisfactory.

No special technical constraints and no pumping capability
was introduced, however the inclusion of these constraints is

not problematic and is point of current work.
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