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Abstract—This paper presents an agent-based simulator for
examination of a secondary control market dominated by hydro
power producer as decision support for one of the market
participants. Proposed is a Q-learning algorithm for determining
possible strategic behavior. Adaptive learning is made possible
by application of certain characteristics to agents quantity-
price pairs bids. Considered are for each agent its portfolio of
different hydro power plants with their water values estimated
by a stochastic dynamic programming scheme. The simulator
is applied to the Swiss system where strategic behavior will be
shown. Additionally it is analyzed how single agents could make
use of strategic behavior in case of special occurrences in the
market.

Index Terms—Ancillary services market, price-maker, hydro
power, multiagent systems, stochastic dynamic programming,
self-scheduling.

I. INTRODUCTION

A. Motivation

In a deregulated electricity market environment the self
scheduling of a hydro power producer typically is a bidding
problem. Apart from selling of energy the offering of an-
cillary services is relevant for this problem. An optimal self
scheduling optimization therefore must comply with at least
two requirements:
1) Opportunity costs of stored water, the water values, have
to be calculated considering the available market products,
stochastic prices of these market products, stochastic water
inflows, sufficient time horizon and relevant technical con-
straints. In literature this multistage stochastic problem is often
solved by dynamic programming, reviewed e.g. in [1]. The
offering of ancillary services is usually neglected if a non
short-term perspective is considered. However for a pumped
storage plant in Switzerland a medium-term time horizon
of one year with hourly time steps have to be taken into
account because of the importance of seasonal and daily water
inflows. On the other hand a simplified optimization without
the possibility to offer ancillary services leads to unrealistic
results. In [2] we have shown how to tackle this problem and
how to compute realistic water values.
2) For Switzerland the most interesting ancillary services
market is the market for provision of secondary control power
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for frequency stabilization (spinning reserve, automatic one-
minute control). This market can provide significant income
for hydro power plants. However the market is relatively small
and dominated by a few big players. So this market is of
oligopolistic nature where strategic bidding is present and
additional profit could be obtained if considered.
Agent-based modeling is able to model such a problem. [3]–
[6] outline the research about this concept applied to energy
markets. Agent-based modeling is mostly used for analyzing
different market structures and not for self-scheduling. The
few other works consider thermal or hydrothermal portfolios
for an optimal bidding problem. This is similar to our problem,
where opportunity costs can be minimized. For example in [7]
game theory techniques were utilized to locate optimal Nash
equilibrium solutions to the electricity market auction. Con-
sidered were apart from the energy market spinning reserves
and reactive power markets with two players with thermal
production.
Apart from agent-based modeling, mathematical optimization
of estimated residual demand curves with market data can
be used to find optimal strategic bidding. For example the
authors in [8] use two estimated residual demand curves of
one player and its competition in order to find optimal bidding
considering day-ahead and intra-daily energy markets as well
as secondary reserve market.

In our case one secondary control bid consists of several
quantity-price pairs, from which the market operator can
choose one of these pairs. In all mentioned approaches there
is no solution to this problem. For standard agent-based
modeling the algorithm either quickly gets intractable or the
model has to be unrealistically simple, because of the large
freedom of quantity-price pairs bids. For residual demand
curves it would be possible to include such bids in the
optimization. However it is first very difficult to model the
demand curve of the competition and secondly it is even
more difficult to model their strategic behavior, thus resulting
again in an unrealistic setting.
If many quantity-price pairs would be present this could get
approximated by a marginal cost curve. In [10] deviated
slope and markup of such a marginal cost curve are used
to model discrete strategic choices. However this method is
not suitable here because there are not many pairs present,
as it will be shown later. Apart from that this method would



propose unrealistic strategic choices for this self scheduling
problem.

B. Objective and proposed solution concept

The overall goal is the determination of an optimal bid
of secondary control for a generation company with several
pumped hydro storage power plants. This bid consists of
quantity-price pair combinations. In order to comply with the
two requirements for an optimal self-scheduling the following
procedure is proposed: The secondary control market players
are aggregated into agents, each agent representing one of
the bigger market players. For all agents water values are
calculated. The agents are modeled from public available data,
water inflows are estimated based on typical inflows for the
respectively locations and market prices are taken from an
hourly price forward curve. The possibility to offer ancillary
services is considered, however with a quantity only bid for
a given estimated price. This multistage stochastic problem is
solved by a dynamic programming scheme and is not further
explained in this paper.1

After the water values are determined an agent based modeling
approach is used to model strategic behavior of the agents.
Depending on their production capabilities and water values
optimal quantity-price pair bids are found.

A novelty within this approach is the direct consideration
of several quantity-price pairs per bid without approximating
it in a marginal cost curve. This results in a more realistic
setting usable for a self scheduling of ancillary services in a
hydro dominated secondary control market. In order to remain
tractable the bids are characterized depending on marginal
costs of the respective agent. The performance of each bid trial
is determined by a profit simulation for each agent respecting
estimated spot prices and again the water values. The clearing
process itself is modeled as a binary linear problem.
With this novel approach of combining stochastic dynamic
programming with agent based modeling a hydro power pro-
ducer not only get an idea on how much secondary control he
should offer but also on which quantity-price pairs he should
focus. There should be stressed that although the bidding of
energy is considered the algorithm gives no optimal energy
bidding strategy in this respect. The idea is that this should be
done as a second step daily or hourly and not weekly as it is
the case for secondary control.

The paper is organized as follows: Section II explains the
secondary control market in Switzerland and introduces the
model. Section III outlines and explains the case study where
the input data is briefly motivated and interesting results are
shown. Finally section IV concludes the paper.

II. MODEL

The secondary control market in Switzerland (more details
can be found here [11]) is operated by the transmission system
operator (TSO). After a pre-qualification generation companies

1More details about this stochastic dynamic programming framework can
be found in [2].

TABLE I
VARIABLES

Variable Explanation
i ∈ I agents

ai ∈ A action a taken by agent i

Qi : A → R stored function of expected profit for given action

t game round

αi
t ∈ [0, 1] degree of correction

ri(a1t , . . . , a
n
t ) reward for agent i for actions a1t , . . . , a

n
t

b ∈ Bt bids, constructed out of k quantity-price pairs

sk ∈ St price, demand charged per quantity [Euro/MW/h]

qk ∈ Qt offered secondary control power quantity [MW]

wvpp water value for respective PP [Euro/MWh]

Agent 1Agent 1

profit calc.

learning

bid decision

market operator
market clearing

quantity / price pairs

accepted pair

quantity / price pairs

accepted pair

water values

turbines/pumpsturbines/pumps spot price

quantity / price pairs

accepted bid

Fig. 1. Overview of the algorithm with agents deciding on their bids and
the market operator who clears the market. The agents are each specified by
their water values and production capabilities. Illustrated is agent 1 whereas
two other agents only appear in outlines.

(GENCOs) are invited to bid provision of secondary control
power on a weekly basis. The power has to be provided for
the whole week in symmetrical capacity blocks of at least
5 MW with increments of ±1 MW. It is allowed to fulfill
this requirements from a pool of generating units. The bid
b ∈ B itself is defined as a number of combinations k of the
volume offered qk ∈ Q and demand charged sk ∈ S, so-called
quantity-price pairs. The number of combinations k are not
limited.
The TSO can select at most one of the quantity-price pairs
within each bid. This is done by a market clearing optimization
where those pairs are selected that meet control demand with
least costs.

The market participants are modeled as agents i ∈ I.
In order to simulate strategic behavior the agents should
be able to learn by acquiring knowledge from past actions
and decide for upcoming actions based on their experience.
Reinforcement learning (reviewed e.g. in [12]) models the
learning process through repeated interactions. Proposed in
this paper is an algorithm based on the well-known Q-learning
framework (introduced in [13], extended in various papers, e.g.
in [14]).

Fig. 1 shows an overview of the proposed algorithm. The
agents are characterized by their technical production capa-
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Fig. 2. a) Realizable amount of secondary control power per PP in an
agent’s portfolio vs. energy-power ratio. b) Cumulated power quantities and
associated marginal prices for this portfolio.

bilities and water values. For each agent three tasks have to
be done: bid decision, profit estimation for a given accepted
bid and memorizing of relevant knowledge. Apart from the
agents also the market clearing has to be simulated. The
algorithm is repeated until sufficient learning has occurred and
stable results are found. In the following all of these tasks are
explained in more details.

A. Agent model

Each agent should represent one of the most influencing
market participants. Typically those GENCOs have several
different PPs or certain shares of them in their portfolios
(see Fig. 2 a)). In order to get to the relevant information
for bidding of secondary control, the following procedure is
proposed:

1) Calculation of water values per PP
2) Determination of secondary control power per PP
3) Estimation of marginal costs per PP
4) Clustering of PP depending on marginal costs
5) Determination of power quantity for provision of sec-

ondary control per agent

First water values wvpp have to be calculated for each PP
in the agents portfolio. For this paper a stochastic dynamic
programming approach was used for this calculation (see also
[2]).
Secondly depending on technical properties a PP may provide
a certain amount of secondary control power (see Fig. 3).
Afterwards marginal costs are calculated, which means the
smallest remuneration for the provision of secondary control
which make this provision still beneficial. For this calculation
a profit estimation with provision of the secondary control bid
is compared with estimated profit without it. This calculation
is explained later. The PPs within a portfolio are then grouped
together depending on the marginal costs.
Finally it is now possible to construct for each GENCO a list of
secondary control power associated with their marginal costs.
Note, that this list would lead to the most profitable bidding
in a perfect market, which each quantity-marginal costs pair
forming one bid. Note also that there are not enough quantity-
price pairs in a typical portfolio in order to approximate a
marginal cost curve (e.g. Fig. 2 a)).
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Fig. 3. Production set-point of a hydro PP with technical minimum, provided
secondary control and unconstrained power range.
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Fig. 4. a) Factors for each characteristic and marginal cost type. b) Example:
increase of prices by application of characteristic 4.

B. Bid model

As already mentioned, secondary control bids are defined as
a number of quantity-price pair combinations. For a GENCOs
the question arises, what kind of bid they should focus on and
how to adjust the bid if new knowledge about the performance
of a bid is available. The idea proposed here is to adjust the
list of cumulated power quantities with associated marginal
costs (Fig. 2 b)) depending on certain characteristics.
It seems reasonable to bid secondary control based on its
marginal costs. However in an oligopolistic environment
higher prices for certain quantities could be beneficial. To
be able to learn this, bid characteristics are introduced. A
bid characteristic could be e.g. a strategy where the price for
the quantity with the highest marginal cost would be further
increased. Proposed are ten different characteristics which
construct the discrete action set A from which the agents
choose their actions ai ∈ A.

The question remains on how much each price has to be
increased. The following assumptions were made:
• each price sk is at least the corresponding marginal cost
• each price sk is at maximum the prices of the quantities

with higher marginal costs sk+1, sk+2, ...

The first assumptions seems clear and the second assumption
is due to the bidding of cumulated quantities. This leads to
adjusting the differences between the marginal prices based
on the chosen action a. Fig. 4 a) shows the factors by which
each difference is multiplied and added to each marginal cost.
On the right side it is shown for the forth factor how the prices



increase.
It should be noted, that similar characteristics are close and
that the first characteristic is also similar to the last one.

Whereas one bid will consists only of a few different
prices the offered quantity can vary much more because an
agent can bid each power quantity per PP individually or bid
even a fraction of it. This makes sense since the demanded
power is limited so that a bigger quantity is less probable for
being accepted. Therefore the corresponding cumulated power
quantity for each price (Fig. 2 b)) is split into increasing values
up to the full amount. This results in many quantity-price pairs
for each different marginal costs type.

C. Bid decision

In each game round the agents have to decide which
characteristic to apply on their secondary control bid, the
respective actions ai ∈ A. The actions are first sorted, so
that similar actions are close together and are given a number
j ∈ N+ (see also Fig. 4 a)). The agent i selects his action based
on normal distribution with some standard deviation and the
mean of the number jmax of the action which maximizes its
believed reward:

µ = jmax = argmax
a∈A

Qi
t

The result is then rounded to the nearest integer and the
respective action is taken.
With this procedure each agent chooses actions which are
similar to the one with the best reward. In order to introduce
some complete randomness actions are drawn for a certain
probability out of a uniform distribution.

D. Profit estimation

Each agent has to estimate the reward ri for the set of
actions for a game round t. From the market operator he gets
the accepted quantity-price pair qacc, sacc, if any. The provi-
sion of secondary control limits the production capabilities,
as depicted in Fig. 3. In order to be able to deliver negative
secondary control the PP has to be running at a certain set-
point. The remaining unconstrained power range can be used
for producing energy to bid in the pool market.
To model this pool market an estimated hourly priced forward
curve (HPFC) is used. The profit from this market depends on
the difference between market price and water values wvpp
of the respective PP. For the sake of simplicity a number of
simplifications are made:
• the water values wvpp remain the same for the whole

week.
• water inflows as well as water balance in the basins are

neglected.
• same water values are assumed for PP with similar

marginal secondary control costs
For bigger basins where weekly production and water inflows
does not influence the filling much the first two simplifications
are reasonable. However for smaller basins those simplifica-
tions would result in large errors.

The third simplification is only valid, if the PPs are technically
similar.

With these simplifications the PP-portfolio can be clustered.
To estimate the profit with this portfolio in the pool market
with given accepted quantity-price pair qacc, sacc, a linear
program can be formulated. For each PP in the portfolio there
is:

max (HPFC− wvpp)T · x
s.t.
0 ≤ x ≤ unconstrained powerpp(q

acc)

x denotes hourly bidding in the pool market, where it
is constrained depending on the accepted secondary control
quantity qacc as well as the technical minimum (Fig. 3). The
profits of all PP in the portfolio together with the remuneration
of the accepted quantity-price pairs (qacc)T · sacc leads to the
reward ri for each agent. Note that alternatively to the linear
program a direct computation would be also possible.

E. Memory / learning algorithm

In a Q-learning algorithm the agent i keeps in memory a
function Qi : A → R, which represent the expected profit
previously calculated for action ai ∈ A. The agent updates his
memory after each game round t. This is done as following:

Qi(ait)← Qi(ait−1) + αi
t

(
ri(a1t , . . . , a

n
t )−Qi(ait−1)

)
αi
t ∈ [0, 1] is known as degree of correction specifying how

much new knowledge change the memory. ri denotes expected
reward for agent i if actions a1t , . . . , a

n
t are performed with n

as the number of agents.
So if αi

t = 0 the agents leaves the memory unchanged, if
αi
t = 1 the agent doesn’t consider past observations at all. For

this paper we choose αt to be the same for all agents.

F. Market Clearing

The market operator collect the bids from the agents and
performs a market clearing. The operator can select at most
one of the quantity-price pairs within each bid. The sum of the
selected power quantities has to exceed the control demand.
This is a typical optimization problem, which can be modeled
as a binary linear program:

min sT · x · q
s.t.

qT · x ≥ control demand∑
b

x ≤ 1

x ∈ {0, 1}, s ∈ St, q ∈ Qt, b ∈ Bt

The binary variable x specifies which quantity-price pairs
get accepted. Within each bid b only one pair can get accepted.



TABLE II
DATA

Agent (Company) bid power quantity [MW] marginal cost [Euro/MW/h] total installed capacity [MW] tech. minimum [MW]
1: Alpiq 0 100 20 60 20 540 0 30 38 60 69 152 0 359 187 187 132 1260 0 70 43 19 38 126
2: BKW 0 20 40 20 80 100 0 38 44 57 74 154 0 84 260 55 593 253 0 42 59 5 167 25
3: Axpo 340 40 60 120 260 0 28 31 46 135 174 349 967 158 188 506 715 67 193 61 57 234 109 33
4: EWZ 0 0 0 120 80 0 0 0 0 31 47 94 0 0 0 386 330 54 0 0 0 89 77 27
5: ewb 0 0 0 0 20 0 0 0 0 0 94 188 0 0 0 0 204 27 0 0 0 0 59 3
6: iwb 0 0 20 20 40 100 0 0 31 57 67 154 0 0 81 48 256 253 0 0 15 5 73 25

III. CASE STUDY

A. Input Data

The proposed model is now applied to the Swiss system. In
Switzerland storage hydro PPs account roughly for one third of
total produced electrical energy. These plants are more than
enough to provide the needed amount of secondary control
power. The three biggest Swiss GENCOs and the three biggest
Swiss public utilities own more than 80% of total capacity. So
those six entities were chosen for modeling the agents. The
following simplifications were made:
• consideration only of hydro storage PPs with more than

50 MW.
• technical minimum: francis turbines: 50%, pelton tur-

bines: 10%
• further technical issues were disregarded
• water values calculated only for six reference PP
• minimum amount of 20 MW for secondary control pro-

vision
Water values are highly depending on the ratio of yearly

produced energy to installed capacity. That’s why the PP are
clustered based on this ratio and are allocated a water value
out of six reference ones. The six reference water values
are estimated based on a stochastic dynamic programming
optimization of six different typical PPs in Switzerland for
the last week of June. At this time point the storage basins
are usually half filled. The taken HPFC is also the estimated
price curve for this week done some days beforehand. The
resulting data is summarized in Table II.

Demanded are 400 MW of secondary control power. The
algorithm is iterated in parallel, but the knowledge is shared
repetitively. CPLEX is used for solving the linear and binary
program. Ten characteristics are modeled as already shown in
Fig. 4. The results are shown for 4000 game rounds which took
around 30 seconds on a standard computer, with a quad-core
2.3 GHz Intel Core i7 processor and 8 GB of RAM.

There should be noted, that the shown results depend
heavily on the estimated water values and HPFC. That’s why
we believe it is very important to estimate those carefully.

B. Results

In Fig. 5 a) the development of the market operators costs
for the market clearing is shown (brown curve). The orange
curve indicates the costs if every agent bid marginal costs. The
brown curve was smoothened by a moving average filter of
a window of 5 values in order to reduce spikes. Important to
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Fig. 5. a) Development of costs of the market operator for the market
clearing. b) Approved characteristic per agent in % of total number of game
rounds.
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note is the increase in costs which could be seen as proof that
strategic behavior is present.
On the right hand side in Fig. 5 b) for all agents the
characteristics are shown, which bids were accepted by the
market operator. The bids from agent 5 were seldom accepted
which is obvious if the data in Table II is inspected.

The other agents however each want to get their bids
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Fig. 7. a) Simulated prices of costliest awarded quantity. b) Historical values
of the average price of the costliest awarded 20 MW.
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Fig. 8. Market with reduced amount of secondary control quantity and only
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marginal cost types for agent 2.

approved and there are certain characteristics where this is
more probable. Those characteristics are then also chosen more
frequently, which can be seen in Fig. 6. After around 2000
game rounds the results stabilize. Agent 2 chooses character-
istic 4 (increased prices for medium and high marginal costs)2

and agent 3 characteristic 6 (increased prices for low and
medium marginal costs)2. Note, that the spikes in the figures
are due to frequent complete randomly chosen characteristics.

Fig. 7 compares simulated prices for the costliest awarded
quantity with historical values, the only public available data
about the market clearing in secondary control market in
Switzerland. The historical prices are around 20% lower than
the simulated ones which indicates either model inadequate-
ness and/or missing strategic behavior in the real market. If the
agents would bid their marginal costs, the costliest awarded
quantity would be around 30 Euro/MW/h (orange curve in Fig.
7 a)), which would fit historical ones well.

In the view of a self-scheduling problem of one of the
agents the question arises how an agent could make use of
this agent-based simulation. The results clearly suggest that
strategic bidding is only beneficial, if every agent pursues
this strategy. So if only one agent is given the opportunity
to bid strategically, he will choose to bid marginal costs. So
in reality there is a high probability that despite an existing
Nash-equilibrium no agent bids strategically.

However there could be special situations, where the sec-
ondary control amount offered by the agents is reduced (such
situations may have resulted in high prices in Fig. 7 b)).
Usually this is known before the actual market clearing is
performed and an agent could make use of this knowledge.
Fig. 8 shows the results of a simulation, where some PPs are
not available and therefore the amount of bided secondary
control quantity is reduced. Additionally only agent 2 is
learning. In this case agent 2 acts strategically although the
other agents bid their marginal costs. Further in comparison
with Fig. 6 b) one can see, that first the results stabilize
much faster. This was expected since there is only one agent
who adaptively changes his bidding strategy. Secondly agent
2 chooses characteristic 5 instead of characteristic 4, which

2See also Fig. 4 a)
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Fig. 9. Comparison of simulations with and without agent 2 acting
strategically. a) Expected return from bidding in % of expected return without
learning. b) Expected overall profit if pool market is also considered in % of
overall profit without learning.

means further increased demanded charges for the first two
marginal cost types. Accepted were in this case marginal cost
type 3 (see also Fig. 8 b)).
The same simulation was done without agent 2 given the possi-
bility to act strategically, so all agents bid their marginal costs.
Fig. 9 shows the comparison between this and the previous
simulation. The expected return from bidding increases for
agent 2 by more than 20%. If the profit out of energy bidding
in the pool market is also considered an increase of more
than 10% can be achieved. So it is indeed more beneficial for
agent 2 to act strategically in this case. It should be clear
that the costs for the market operator increases if agent 2
acts strategically. So most probable the operator would change
market rules if he detect this.

IV. CONCLUSION

This paper presented an agent-based simulator for exami-
nation of a secondary control market as decision support for
one of the market participants. Used were a Q-learning al-
gorithm for determining possible strategic behavior. Learning
was made possible by application of certain characteristics to
agents quantity-price pairs bids, which are based on marginal
costs. Considered were for each agent its portfolio of different
hydro power plants with their water values estimated by a
stochastic dynamic programming scheme. The simulator was
applied to the Swiss system where it was shown that strategic
behavior would be beneficially however would hardly be
applied in practice. This result was supported by real data. It
was also shown, that in case of special occurrences it would
be indeed beneficial for a single agent to act strategically even
if the other agents would bid their marginal costs.
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