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Abstract—This paper presents two algorithms for solving a

medium-term hydro optimization. Considered are risk-averse

operation, provision of spinning reserves as well as short-

term production flexibility. Proposed is a variant of stochastic

dual dynamic programming (SDDP) and stochastic dynamic

programming as a benchmark. A risk measure is introduced

in both methods. To deal with short-term production flexibility

a decomposition of the problem into inter- and intrastage

subproblems is performed. The provision of spinning reserves

leads to non-convex value functions. To deal with it in SDDP

a method based on Lagrangian relaxation was used which was

further enhanced by locally valid cuts in order to find realistic

water values.

Index Terms—hydro power scheduling, medium-term plan-

ning, stochastic programming, spinning reserves, risk measures,

intrastage subproblems, stochastic dual dynamic programming,

stochastic dynamic programming, convexification.

I. INTRODUCTION

In a deregulated market environment the self-scheduling
problem for a hydro storage power plant is a bidding problem,
where the producer can choose among several market products
to bid. Due to its complexity the problem is usually solved in
different steps: First a medium-term planning for determining
the monthly/yearly production strategy is formulated followed
by a short-term planning for optimizing the next days. For the
medium-term planning a coarser model with longer time steps
is used.
Such a medium-term planning neglects the profit which can
be achieved on a hourly basis. In previous works [1], [2]
we have shown how to tackle this problem. This was made
possible by decomposing the problem into inter- and intrastage
subproblems (term introduced in [3]). In [4] we analyze and
evaluate different techniques in this perspective.

In practice however operators are not only interested in
highest profit on average but also achieving it under acceptable
profit risk. It is therefore important to consider this production-
risk awareness in the estimation of the water values, i.e. such
that reservoirs are depleted earlier.
Note, that theoretically the risk could be managed solely by
using power derivatives, because under some mild assumptions
the production planning can be done independently from
hedging [5]. However in practice many operators do both:
(often implicit) risk-averse production planning as well as
hedging by financial instruments.

Therefore in this paper we are interested in profit-risk by
operational decisions without taking into account a possible
later hedging with financial products.

The typical method, which allows for risk-constrained
multi-stage stochastic programs for hydro power plants, is
stochastic dual dynamic programming (SDDP) [6]. However
such algorithms rely on the convexity of value functions. This
condition is not fulfilled in our case, particularly because a
market for spinning reserves is considered. However as it was
shown in [1], the remuneration of such markets contributes
to a substantial part of the revenue of hydro power plants (in
Switzerland) and is therefore important to consider.
For only a few interconnected reservoirs another possible solu-
tion method in this context is stochastic dynamic programming
(SDP) where the discussed non-convexities can be handled.
Time-consistent and coherent risk measures as discussed in [7]
for SDDP are not directly applicable in SDP. However, recent
works [8], [9] suggest using a construction out of single period
risk measures for SDDP. We will show in this paper that this
construction fits also well in a SDP formulation.

In summary the problem to approach is a risk-constrained
medium-term hydro storage operation optimization with
hourly production flexibility and non-convex value functions.
In this paper we propose an approach based on SDDP with
inter- and intrastage subproblems (as presented in [10] for
SDDP), extended by a coherent, time-consistent, nested risk
measure (as analyzed in [11]).
To deal with the spinning reserves market, the problem has to
be solved using approximations. Proposed is the application
of Lagrangian relaxation (as used in [12], [13]) enhanced with
concepts from approximate dynamic programming. The idea is
to approximate the value function locally with a better quality
than the Lagrangian relaxation method would allow. We will
show that this leads to more accurate water values.
Finally as a benchmark the problem is also solved with SDP
as presented in [2] extended by the risk measure.

Contributions of this paper
The major contribution of this paper is the presentation of

two algorithms for solving the medium-term hydro optimiza-
tion with consideration of three issues: risk-aware operation,
short-term production flexibility and provision of spinning
reserves. Whereas previous works have shown how to address



TABLE I
VARIABLES

Variables Explanations

t 2 T = {1, ..., T} time stages, T = 52 [week]
⇠
t

2 ⌅
t

realized data, possibly random
✓
t

(vseas
t�1 ) risk-aware profit-to-go functions [e]

⇢(Z),�,↵ risk measure function and tunable parameters
⌧ 2 {1, ..., 168h} hourly intrastage time steps [h]
Q

⇠t optimal value of intrastage problem [e]
cpool
t

hourly pool prices [e/MWh]
vseas(t), vdaily(t, ⌧) filling of seasonal/daily reservoir [m3]
s(t, ⌧) spill [m3]
a(t, ⌧) charges from upstream reservoirs / inflows [m3]
u(t, ⌧), p(t, ⌧) generating / pumping [MW]
m(t, ⌧) position on energy market [MW]
f
u

(u), f
p

(p) function of produced/used energy to water flow
q(t) binary: provision of frequency control [0/1]
qmin technical minimum [MW]
qmax maximum amount of frequency control [MW]
qc
t

remuneration for frequency control [e/MW]
ṽseas(t) trial of seasonal filling [m3]
µ(t) slope of a Bender cut [e/m3]
W

t

discretized water discharge [m3]

one of these issues at a time, this paper is the first one
which can deal with all of it simultaneously, resulting in more
realistic results.
Other contributions are: (i) introduction of the concept of
locally valid cuts for solving non-convex value functions with
SDDP, (ii) the combination of parts of the works [10], [11]
and (iii) the application of a risk measure within SDP.

References and structure of the paper
Notable references for stochastic programming in the energy

sector and SDP in particular are [14]–[17]. The same for
SDDP are [6], [18], [19]. For risk-constrained hydropower
scheduling [8], [20]–[24] can be recommended, for approx-
imate dynamic programming the textbook [25]. Finally SDDP
for non-convex problems were analyzed in [12], [13], [26].

The remainder of the paper is organized as follows: In
section II, the model is explained. Afterwards the proposed
solution method is discussed following with an evaluation in
section IV. The paper concludes with some remarks.

II. MODEL

The overall problem is about acquiring a reasonable operat-
ing policy for a hydro plant, i.e. the water values as production
opportunity costs. These water values shall take into account
both some profit-risk as well as revenue from provision of
spinning reserves. The latter can be also seen as some kind
of capacity payment whereas the main revenue is achieved in
the hourly energy market.
It is assumed that the power plant is built up out of two differ-
ent kinds of reservoirs: the ones operated in seasonal cycles
and the others in daily cycles. Further a valid assumption for
power plants in the Alps is that the yearly amount of water
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Fig. 1. a) Schematic overview of the considered hydro power plant. Reservoir
1 is the seasonal storage whereas reservoir 2 is the daily one. Turbines 3 and
4 are qualified to provide spinning reserves. b) Generation of a turbine with
spinning reserves provision. The presence of a substantial technical minimum
results to a mixed-integer problem.

inflows remains stable. Therefore a time horizon of one year
is considered.
The outlines of the modeled power plant are shown in Fig. 1 a).
As time duration for the main interstage time steps one week
was chosen, since the considered spinning reserves are pro-
cured weekly in Switzerland at the moment. However weekly
profit-to-go functions are also practicable for a medium-term
optimization of the chosen power plant. Note that with this
approach only for the seasonally operated reservoirs (reservoir
1 in Fig. 1 a)) water values are calculated.
In the next subsections some particularities of the proposed
model are explained more in detail:

A. Provision of spinning reserves
B. Inter- and intrastage subproblems
C. Nested single period risk measures

Finally the model is mathematically formulated and discussed.

A. Provision of spinning reserves
In Switzerland the most interesting spinning reserves market

is the one for secondary frequency control reserves. The
current market rules require the bidding of symmetric power
bands. If the bid is accepted the power band has to be provided
for the tendered period of one week. The actual demand is
requested automatically. It is assumed, that this request is
symmetric within the tender period so that the energy delivery
is balanced out. Considered profit out of this market is the
remuneration for holding the capacity whereas payments for
energy delivery is neglected.
Fig. 1 b) shows the segmented power range of a hydro power
plant in the Swiss system. The turbines have to be continuously
running at a certain set point when they provide control
reserves. To prevent, that the turbines are operated ineffi-
ciently, a technical minimum is introduced. So the provision
of secondary control reserves reduces the production flexibility
considerably.
This behavior can be modeled with mixed-integer constraints,
where one binary variable per turbine indicates if secondary
control reserves is provided or not. This results in non-concave
profit-to-go functions.

B. Inter- and intrastage subproblems
The problem is decomposed into inter- and intrastage sub-

problems (Fig. 2 a)). Pool market decisions, provision of



spinning reserves and hourly operational reservoir decisions
are modeled as part of the intrastage subproblem. This two-
stage stochastic problem can be formulated as a mixed-integer
linear problem (MILP).
Decisions about seasonal reservoir management are modeled
in the interstage problem which can be formulated as a multi-
stage stochastic program also called Markov decision process.
From the modeling point of view this decomposition means,
that the seasonal reservoir in the power plant is considered
for every interstage time step, i.e. weekly. However, the
operation of the daily reservoir is considered hourly in the
intrastage subproblems. The intrastage problems estimate the
profit which can be achieved on a hourly basis for a given
filling state of the seasonal reservoir. With this decomposition
the complexity of the problem is reduced significantly without
unreasonable valuation of short-term flexibility.
There are several approximations made here. First, the random
data is assumed to be known within each intrastage subprob-
lem. This means prices and inflows are known one week in
advance which is an optimistic view. Further, the filling of
the daily reservoir is neglected in the calculation of the profit-
to-go functions as well as the water balance is not respected
between consecutive weeks. Practically this means that the
daily reservoir is empty at the beginning and end of each week.
In [4] we have shown that despite these approximations the
quality of the obtained water values are reasonably good.
The water inflows are modeled as stochastic variables. The
hourly inflows uncertainty is higher than the weekly one.
Therefore two inflow scenarios for each interstage problem is
modeled and 100 scenarios, that are correlated to the interstage
scenario, for the intrastage subproblems.

C. Nested single period risk measures
In line with the authors of [8], [9] we consider as risk

measure a weighted sum of the expected profit and Average-
Value-at-Risk AV@R

↵

. The latter is also called Conditional-
Value-at-Risk, where with Value we actually mean profit. The
single period coherent risk measure ⇢(Z) for a profit Z [21]–
[23] is then:

⇢(Z) = (1� �)E[Z]� �AV@R
↵

[Z] (1)

where AV@R
↵

is:

AV@R
↵

[Z] = sup

◆

�
◆� ↵�1 E [(Z � ◆)�]

 
(2)

In other words an additional penalization term is introduced:
the lower ↵-quantile of the profit distribution. Tunable param-
eters are both � as well as ↵ where for this paper � = 0.5
and ↵ = 10% are used.
Consider now the sequence of future profits Z1, ..., ZT

which
arise in multi-stage programs. Then there is:

⇢(Z1, ..., ZT

) = ⇢ (Z1 + ⇢ (Z2 + ...+ ⇢ (Z
T

) ...))

Hence the (time-consistent) risk measure is formulated in
a nested and dynamic way, which makes it convenient for
dynamic programming. From the modeling point of view

this construction means, that the operator considers the con-
sequences of decisions less the further away in time the
consequences influence the profit risk. We believe that this is
a reasonable model. In [24] a more detailed discussion about
this risk construction is given.

D. Mathematical model
The hydro scheduling problem naturally leads to a mul-

tistage stochastic program which can be formulated in a
dynamic way. Let ✓

t

be the risk aware future profit, the profit-
to-go function, for the seasonal reservoir. Then it can be stated:

✓
t

(vseas
t�1 ) =max ⇢ (Q

⇠t) = (3)
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m
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= u
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� p
⌧
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+ qmax

) , 8⌧ (7)
3. spinning reserves provision:

q
t

· (umin

+ qmax

)  u
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 u� q
t

· qmax (8)
4. bounds:
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⌧
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t

u(⌧), p(⌧), s(⌧), vdaily(⌧) 2 Rnx⌧ , m(⌧) 2 R⌧

vseas
t

2 Rn, q
t

2 {0, 1}n

E[..] denotes the expected value over sampled random data
⇠
t

2 ⌅

t

. Note, that the stochastic data process ⇠1, ..., ⇠T is
Markovian, so the risk-averse profit-to-go function ✓

t

depends
only on ⇠

t

and not on the whole past process ⇠1, ..., ⇠t.
Q

⇠t is the optimal value of the deterministic intrastage prob-
lem. It is a function of the former state, time and realized
random data ⇠

t

. The purpose of the problem Q
⇠t is to estimate

the intrastage profit in a realistic way, by hourly operating the
power plant most profitably within the week. It is formulated
as a two-stage stochastic program. In the first stage the amount
of spinning reserves to bid is decided. This is done for each
turbine, which is qualified for this provision, with the help
of the binary variables q(t). Afterward ⇠

t

is revealed at once,
so the water inflows and prices for the whole week become
known. Then actual hourly production decisions take place.
As a consequence Q

⇠t is a deterministic, linear maximization
problem with binary variables.
In the intrastage problem the revenue from the energy market
is maximized, where the position on the energy market m

t

(⌧)
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Fig. 2. a) Decomposition of the multi-stage program into interstage and
intrastage subproblems. b) Illustration of an approximation of the profit-to-go
function. Solid brown lines show cuts generated by Lagrangian relaxation. The
cuts are valid however possibly not close to the actual profit-to-go curve. By
optimization of the Lagrange multipliers the cuts can be made more accurate
(up to the light brown lines). The curve can be approximated further by locally
valid cuts. Those cuts are locally accurate however not valid for all reservoir
fillings. Their use is primarily for estimating realistic water values, the slope
of the profit-to-go function.

is specified in the financial balance constraint (7). Also part
of the objective function is the remuneration of the offered
spinning reserves, which is based on the predefined value qc

t

.
When spinning reserves are provided constraint (8) reduces
the free generation capacity.
Constraints (5) and (6) of the intrastage problems ensure cor-
rect water balances. To keep notations simple a(t, ⌧) denotes
both water inflows as well as charge from upstream reservoirs.
Finally the variabel bounds follow, where n denotes respective
amount of turbines, pumps etc.

III. SOLUTION METHODOLOGIES

The problem to solve is a stochastic, dynamic problem
with non-convex value functions. Sought are realistic water
values that incorporate the above mentioned characteristics.
Two approaches are used to solve it:

A. Risk-averse SDDP with Lagrangian relaxation enhanced
with locally valid cuts

B. Risk-averse SDP without approximation of the profit-to-
go functions

The method based on SDDP has the potential to solve larger
problems than what is presented here whereas the scalability
of the SDP-method is limited. However due to its accuracy
SDP will act here as benchmark.

A. Risk-averse SDDP with Lagrangian relaxation enhanced
with locally valid cuts

The first method builds up out of several techniques, which
are now presented step by step:

1) Risk-averse SDDP: In [9] risk-averse SDDP is explained
thoroughly. The overall idea is to approximate the profit-to-
go function by hyperplanes. For the shown risk measure (1)
the additional effort of solving a risk-constrained instead of a
risk-neutral SDDP is modest. The critical problem is finding a
suitable stopping criterion where we consider the stabilization
of the upper bound which produces good results for our not
overly complicated problem.

2) Lagrangian relaxation for non-convex value functions:
For the application of SDDP or similar algorithms to problems
with non-convex value functions basically two strategies are
promising: (i) convexification of the value function and (ii) the
convexification of the problem itself. The latter strategy seems
to be of little avail here since one focus of this paper is the
detailed consideration of spinning reserves. Therefore the first
strategy was chosen.
We use Lagrangian relaxation to convexify the profit-to-go
functions in order to get valid Bender cuts [12]: The violation
of the coupling constraint, the first water balance (5), is
penalized in the objective function by a Lagrange multiplier
µ̃
t

, where ˜

(..) emphasizes that this multiplier is only an
estimate and probably not the optimal one:
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The multiplier µ̃
t

together with the optimal value of the
resulting mixed-integer problem ✓LR

t

(vseas
t�1 , µ̃

t

) forms a valid
Bender cut of the original problem.

3) Optimization of the Lagrange multipliers: The cuts
generated by the Lagrangian relaxation technique are possibly
not close to the actual profit-to-go function (see also Fig. 2
b)). In line with the authors of [13], we optimize the multiplier
using a sub-gradient method. Note that the search for a good
Lagrangian multiplier is not in order to solve the original
problem (3) but to find a more accurate Bender cut. It is
therefore interesting that the actual solution of the original
problem is known and therefore the updating of the multiplier
can be done in an elegant way.

The multiplier optimization has to be repeated for every
scenario, for all trials and every time stage. Since the problem
is similar for each scenario the optimal Lagrangian multipliers
are shared between them.

4) Locally valid cuts: As outcome of the optimization water
values are sought. With optimized Langrange multipliers good
approximations of the profit-to-go functions can be found
however they are of less use for calculating water values.
In Fig. 2 b) this is illustrated: the slope of the cuts from
Lagrangian relaxation can be quite inaccurate. With the yellow
cuts the slope is potentially closer to the real one, however
such cuts would be valid only locally.

In order to calculate locally valid cuts two possibilities
were evaluated: constructing them by numerical derivation
and secondly by solving a locally convexified problem. For
the first possibility problem (3) is solved twice for different
but close trial fillings. Doing so a locally valid cut can be
constructed with the profit ✓

t

(vseas
t�1 ) and the slope µ

t

as
numerical derivation:

µ
t

=

✓
t

(vseas
t�1 )� ✓

t

(vseas
t�1 +�)

�

(10)

where � denotes the difference of the tried reservoir fillings.
The second possibility solves the locally convexified problem,



i.e. problem (3) with fixed binaries, and use the dual variable of
the coupling constraint (5) as slope for the locally cut. In both
cases the problem is solved twice, two MILPs in the former
case and one MILP and one linear problem in the latter case.
Both methods produced similar results thus the latter one is
used from now on.
The usage of locally valid cuts complicates the calculation
of the intrastage subproblem (4) in the backward pass. This
is because at time point t the filling vseas

t

is not known and
therefore the valid cuts for ✓

t+1 can not be determined. To
solve this problem we propose a heuristic where the subprob-
lems are solved first with a trial ṽseas

t

and then iterated until
the filling converges to a value. In our set-up this procedure
results solving a MILP approximately 4 times.

5) Proposed model: The Lagrangian relaxation technique
and the technique with locally valid cuts complete each other.
The proposed methodology is as follows: For the first iterations
the Lagrangian relaxation technique is used to quickly find
a first approximation of the profit-to-go function. Afterwards
the technique with locally valid cuts is employed to refine the
approximation locally and to get to accurate water values.

B. SDP with risk measures
Since the considered hydro power plant has only one

seasonal reservoir there is the possibility to solve the problem
for all discretized realizations of the states instead of only for
some trial values. Given sufficient discretizations the result of
this optimization is exact and will act as a benchmark.
In order to use SDP for solving the original problem (3) a
water discharge W

t

is specified, which denotes the amount of
water release from the seasonal reservoir for one time stage.
The intrastage subproblems task now is to deploy this water
amount within the week for maximal profit (see also [2]). The
water discharge is discretized and is part of the decision vector
in the overall problem.
The problem (3) is therefore implemented with a slight change
in the water balance equation (5):

vseas
t
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t

(11)
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As a consequence the subproblems Q
⇠t(v

seas

t�1 ,W
t

) are solved
for each discrete value of the water discharge.
Note that the optimization is done risk-averse, with the same
single period risk measure (1) as presented for SDDP. Since
this risk measure is already formulated in a dynamic way it
can be used here directly.

IV. EVALUATION

In the evaluation first the water values proposed by SDP
are compared with the water values from the SDDP approach
with and without the extension of locally valid cuts.
Afterwards we apply the water values in a Monte Carlo
operation simulation study in order to evaluate the quality of
the operation policies as well as if they are indeed risk-averse.
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Fig. 3. Comparison of water values proposed by SDP, SDDP with Lagrangian
relaxation (LR) and with locally valid cuts. The water values for SDDP are
only meaningful where reservoir trials were taken, here for almost empty
fillings. The water values are in general lower in risk-averse optimizations that
means the reservoir is emptied earlier. The water values from the optimizations
with locally valid cuts are closer to the ones from the benchmark method SDP.
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Fig. 4. a) Flowchart of the Monte Carlo operation simulation. First one
of the optimization methods is performed. The proposed water values are
then used in the simulation part, where the hydro power plant operation is
mimicked over one year. This is done for several water inflows and price
samples, resulting to a profit distribution for each optimization method. b)
Filling of seasonal reservoir 1 for each of the samples for water values from
risk-neutral and risk-averse SDP optimizations. Note that with water values
form the risk-averse SDP the water release is earlier in time.

The optimizations were performed on a standard computer
with 4 physical processor cores. CPLEX dual simplex solvers
were used for the linear programs and a branch-and-cut
algorithm for the mixed-integer problems.
The number of backward/forward pass iterations for both
SDDP methods were limited in order to be comparable: 10
iterations for the Lagrangian relaxation method and 5 iterations
with Lagrangian relaxation extended by 5 iterations with
locally valid cuts. In both cases the upper bounds would have
been also stabilized.

A. Water value comparison

Fig. 3 shows the water values for the benchmark method
SDP as well as for the other two SDDP methods. Note, that
only values for trial fillings are meaningful for the SDDP
methods whereas SDP estimates for all filling levels water
values. The values from risk-averse optimizations are lower,
what was expected. The values from SDDP with the extension
of locally valid cuts are closer to the ones from SDP which
could show the benefit of this enhancement.

B. Performance of the optimization methods

The water values are now applied to an operation simulation
of the power plant in order to evaluate their quality. In a



TABLE II
COMPARISON OF OPTIMIZATION METHODS OUT OF 100 SCENARIOS

mean profit [Me] AV@R10% [Me]

perfect information 53.04 50.90
risk-neutral SDP 44.70 39.14
risk-averse SDP 43.54 41.90

risk-neutral SDDP with LR 43.54 37.31
risk-averse SDDP with LR 42.10 39.42

risk-neutral SDDP with locally cuts 44.32 38.04
risk-averse SDDP with locally cuts 43.49 40.21

Monte Carlo simulation the hydro power plant operation is
mimicked over one year for 100 samples of water inflows
and market prices (Fig. 4 a)). Fig. 4 b) shows the filling
of the seasonal reservoir 1 for all samples for an operation
simulation with water values from risk-neutral and risk-averse
SDP. As expected with lower water values the reservoir is
emptied earlier.
Finally Table II shows the resulting average profits as well
as the AV@R10% for all methods as well as for perfect
information when the unknown data is known in advance.
For simulations with risk-averse water values the AV@R10%

increases while mean profit is dropping. The enhancement
of SDDP with locally valid cuts results in slightly higher
profits compared with SDDP without the enhancement, which
is indicating the better quality of the calculated water values.
Note, that these results may change for different problem set
up as well as scenario constructions.

V. CONCLUSIONS

In this paper two different algorithms for solving the
medium-term hydro power scheduling were presented. Con-
sidered were risk aware operation, provision of spinning
reserves and short-term production flexibility with uncertainty
in both inter- and intrastage water inflows. To the best of our
knowledge it is the first work which considers all of these
issues simultaneously.
Further contributions were the enhancement of the Lagrangian
relaxation method with the concept of locally valid cuts
for using SDDP for non-convex value functions. Finally we
believe it is also the first application of a risk measure within
a SDP scheme for the hydro scheduling problem.

It was shown, how locally valid cuts can increase the
accuracy of the SDDP method for non-convex value functions,
especially for calculating water values. For the considered
hydro power plant, SDP produced similar results. Future work
has to apply the proposed methods on more complicated power
plant structures where SDP would not be applicable.
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