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Abstract—This paper presents a medium-term self-scheduling
of pumped hydro storage plants. A decomposition of the problem
into inter- and intrastage subproblems, where the intrastage
problems themselves are formulated as multi-stage stochastic
programs, allows the detailed consideration of short-term flex-
ibility. The method is presented together with three alterna-
tive approaches, where the short-term flexibility is considered
differently: (1) with aggregated peak and off-peak prices, (2)
with price duration curves and (3) with deterministic intrastage
subproblems. The approaches are compared and evaluated in a
Monte Carlo operation simulation study. The study is performed
on a realistic hydro power plant with consideration of revenue
from ancillary services.

Index Terms—hydro power, medium-term self-scheduling,
stochastic dynamic programming, multihorizon stochastic pro-
gramming, ancillary services.

I. INTRODUCTION

The goal of a medium-term hydro optimization is to find a
seasonal operation strategy. One way to do this is to estimate
future revenue, the profit-to-go, and to calculate production
opportunity costs out of it, the water values. In Switzerland
hydro power plants typically have storage reservoirs, which
are operated seasonally, connected to smaller daily operated
reservoirs. The future revenue is therefore influenced by short-
term decisions either operationally because of e.g. empty daily
operated reservoirs or because of the hourly energy market.
It is hardly possible to consider a hourly time resolution for
a medium-term optimization for a yearly time horizon, both
computationally as well as because of modeling issues. So
aggregations and/or simplifications have to be made where
it is difficult not to under- or overvalue short-term flexibility.
One important aspect here is how and when information about
uncertain variables is disclosed in the model.

A. Proposed model: Stochastic intrastage subproblems: A
multihorizon stochastic programming approach

The proposed modeling approach is based on two obvious
observations: First, that the water management in seasonal
operated reservoirs can be considered in a longer time scale
than in daily operated reservoirs and secondly, that the filling
of the latter one is less important for a revenue estimation.
The idea now is, that only for seasonal operated reservoirs
water values are calculated. The optimization is done for
weekly time stages where for each time stage water values are
calculated. This multi-stage stochastic program is decomposed
into interstage and intrastage subproblems (similar ideas were

TABLE I
VARIABLES

Variables Explanation
! ∈ T = {1, ..., $} time stages, $ = 52 [week]
%(!) state and decision variables
&! ∈ Ξ! realized data, possibly random
'!(%!−1) profit-to-go (function) [e]
(! objective function coefficients
A!, )! equality constraints (water and financial balances)
D!, *! inequality constraints (frequency control reserves)
+)!, ,)! lower / upper bounds

-(!), .(!) filling and spill of reservoirs [m3]
/(!) charges from upstream reservoirs/inflows [m3]
,(!), 0(!) generating / pumping [MW]
1(!) position on energy market [MW]
2"(,), 2#(0) used/produced energy to water flow (function) [m3/MW]
3(!) binary: provision of frequency control reserves [0/1]
3$%& minimum generation [MW]
3$'( maximum frequency control reserves capacity [MW]
()! remuneration for frequency control reserves [e/MW]

(#*'+! , (,--−#*'+
! aggregated peak and off-peak prices [e/MW]

4! discretized sum of weekly water discharges [m3]

pdc price duration curve (function) [e/MWh/h]
ℎ", ℎ# amount of generating/pumping hours per week [h]

6 ∈ {1, ..., 168ℎ} hourly intrastage time steps [h]
(#,,.! (6) hourly day-ahead prices [e/MWh]
7/! optimal value of intrastage problem [e]
-0*'0(!) weekly filling of seasonal reservoirs [m3]
-1'%.2(6) hourly filling of daily reservoirs [m3]

. ∈ $ scenarios in a scenario tree
%3 ⊆ $ bundle, same past intrastage decisions
Λ3 set of all bundles %3 in stage 6

8(%3 ) set of bundles for “children” of %3

applied in [1]–[3]). The weekly interstage problem, which is
the master problem, handles the water management of the
seasonal reservoirs. The intrastage subproblems on the other
hand take care of hourly water balances in the daily operated
reservoirs as well as day-ahead bidding.
In contrast to previous works the intrastage problems are
not modeled deterministically but stochastically. From the
modeling point of view this makes sense, since in a weekly
perspective hourly water inflows and market prices are not
known beforehand. This approach is called, as proposed in
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another context in [4], multihorizon stochastic programming.
Additionally the provision of spinning reserves is modeled as
a here-and-now decision within the intrastage problem, similar
as presented in our previous work [2].
Summarizing, the proposed model can be described as follows:

1) interstage problem (master problem):
∙ weekly water values depending on the filling of the

seasonal reservoirs
∙ decisions about water release from seasonal reser-

voirs without information about water inflows and
day-ahead prices

2) intrastage problem:
∙ hourly time steps
∙ decisions about provision of spinning reserves, day-

ahead bidding and production operation
∙ stochastic water inflows are revealed weekly
∙ stochastic market prices are revealed daily

Stochastic dynamic programming is applied for solving the
master problem: the problem is decomposed in time and
seasonal reservoirs as well as the amount of water discharge
from these reservoirs are discretized. The reasons for choosing
this solution method are threefold. First, the consideration of a
market for spinning reserves leads to non-concave profit-to-go
functions in the master problem (see also Fig. 1). Therefore it
is difficult to apply an iteration algorithm like stochastic dual
dynamic programming. Secondly, only a few basins have to
be considered in the master problem which eases one of the
curses of dimensionality in stochastic dynamic programming
[5]. Finally, since the goal of this work is to evaluate different
modeling methods, the actual solution method is primarily not
of interest.
The multi-stage stochastic program in the intrastage problem
is difficult to decompose. This is because the given weekly
discharge makes the hourly stages in the intrastage problem
depending on each other. The problem is therefore formulated
as the deterministic equivalent and a solver based on the
simplex method is used to solve it.

B. Evaluation of the proposed method against alternative
approaches

The second goal of this paper is the comparison and evalua-
tion of several methods of aggregations and simplifications for
being able to consider short-term flexibility in a medium-term
hydro optimization. Apart from the method with stochastic
intrastage subproblems, the approaches are:

1) neglecting hourly short-term flexibility with peak and
off-peak prices (usual approach)

2) price duration curves (e.g. [1], [6])
3) deterministic intrastage subproblems (e.g. [2], [3])

The methods are formulated in a similar way as before to
allow the application of stochastic dynamic programming.
An operation simulation evaluates the methods by applying
the suggested policies on a number of trial years. The outcome
of the evaluation depends on the market structure. Therefore
results with- and without the consideration of the revenue out
of spinning reserves provision will be shown for a typical
hydro power plant in Switzerland.

C. References and Contributions

Notable references for stochastic programming in the energy
sector and stochastic dynamic programming in particular are
[7]–[11]. The idea of inter- and intrastage problems for hydro
power planning were explicitly introduced in [1] and applied
in [2], [3], [12], focusing on bidding or operational feasibility
respectively.
The usual alternative modeling approaches are aggregation
and/or bundling of market products (e.g. peak and off-peak
products), as in [13], and to model different lengths of time
stages, as in [12], [14]. Another possibility is shown in [15],
where Lagrangian relaxation was used to incorporate long-
term guidelines into short-term and vice versa.
Instead of applying approximations to the model another idea
is to look for approximate solutions to a detailed model. In
[16] different techniques are reviewed on how to improve the
convergence speed of stochastic dual dynamic programming
algorithms and in [17], [18] water head effects were con-
vexified in order to use such methods. This would be also
applicable for this context. Especially for hydro plants with
many cascaded basins such a solution approach would be
better suited (see also [19]).

The contributions of this paper are threefold: First, to the
best of our knowledge the application of stochastic intrastage
subproblems is presented for the first time. Secondly, several
approaches for how to account for short-term flexibility in a
medium-term hydro optimization are evaluated and compared.
Finally the approaches are extended by considering revenue
out of the provision of spinning reserves.

The remainder of the paper is organized as follows: In the
next section the model is explained both conceptually and
mathematically for all four methods. Afterwards in section
III the methods are evaluated and applied in an operation
simulation. Some remarks conclude the paper.

II. MODEL

The overall problem is about acquiring a reasonable op-
erating policy for a hydro plant, i.e. the water values as
production opportunity costs. The focus of this paper is how
short-term flexibility could be modeled, where we describe in
this section four different methods. First model assumptions
and limitations are discussed. Then the basic mathematical
model is introduced which is then extended for each of the
four methods.

A. Model assumptions and limitations

It is assumed, that the power plant is built up out of two dif-
ferent kinds of reservoirs: the ones operated in seasonal cycles
and the others in daily cycles. Further a valid assumption for
power plants in the Alps is, that the yearly amount of water
inflows remains stable. Therefore a time horizon of one year
is considered.

As spinning reserves market the one for the provision
of secondary frequency control reserves is considered, since
economically it is the most interesting one in Switzerland. The
current market rules require the bidding of symmetric power
bands. If the bid is accepted, the power band has to be provided



for the tendered period of one week. The actual demand is
requested automatically. It is assumed, that this request is
symmetric within the tender period so that the energy delivery
is balanced out. Considered profit out of this market is the
remuneration for holding the capacity whereas payments for
energy delivery is neglected.
The turbines have to be continuously running at a certain
set point when they provide control reserves (see Fig. 1). To
prevent, that the turbines are operated inefficiently, a minimum
generation amount is introduced. The provision of secondary
control reserves therefore reduces the production flexibility
considerably.

As stochastic variables both water inflows and market prices
are considered. The time duration for the main steps is one
week, since at the moment the considered spinning reserves are
procured weekly in Switzerland. However weekly profit-to-go
functions make also sense for a medium-term optimization of
the chosen power plant.

B. Mathematical model

The hydro scheduling problem naturally leads to a multi-
stage stochastic program which can be formulated in a dy-
namic way. Let !! be the expected future profit, the profit-to-
go, a function of the fillings of the seasonal reservoirs. Then
it can be stated:

!!("!−1) = max #"! "! + !
#!∈Ξ!

[!!+1] (1)

subject to:

B! ⋅ "!−1 + A! ⋅ "! = $!
D! ⋅ "! ≤ %!
&$! ≤ "! ≤ '$!
"! ∈ ℝ$, {0, 1}

"! specifies the state and decision variables at time stage ),
i.e. the fillings of the reservoirs as well as production and
bidding decisions. *! := (#!,A!,B!, $!,D!, %!) defines the data
vector where #!, $! are random and not known in advanced,
the market prices and water inflows respectively.
![..] denotes the expected value over sampled random data
*! ∈ Ξ!. It is maximized in order to find the profit-to-go
function. Note, that the stochastic data process *1, ..., *" is
Markovian, so the profit-to-go function !! depends only on *!
and not on the whole past process *1, ..., *!.
The stochastic program is subject to equality constraints,
defined by B!,A!, $!. In more detail, these constraints ensure
correct water and financial balance. The water balance is
modeled as follows:

,! = ,!−1−-!−.%('!)+.&(/!)+0!−1!⋅.%(1'($+1')*) (2)

To keep notations simple 0()) denotes both water inflows as
well as charge from upstream reservoirs. The functions .%/.&
convert generation or pumping power to the respective water
flow.
The market position 3()) is maximized in the objective
function multiplied with the market prices. It is defined as

max generation
pos. sec. control

production set point free power range

neg. sec. control
min. generation

b)a)

price 

time duration

revenue
out of 
generation

cost
because of
pumping

hu 168h - hp 168h
0 MW

Fig. 1. a) Generation of a turbine with provision of secondary frequency
control reserves. Production flexibility is reduced considerably and the sub-
stantial minimum of generation results to non-concave profit-to-go functions.
b) Schematic example of a price duration curve. Revenue out of generation
as well as costs because of pumping are shown. Note that since the overall
water discharge is fixed, with more pumping more generation is possible.

another equality constraint:

3! = '! − /! + 1! ⋅ (1'($ + 1')*) (3)

The provision of secondary control reserves influences the
operation of the turbines. This is can be modeled as inequality
constraints (D!, %!):

1! ⋅ (1'($ + 1')*) ≤ '! ≤ '− 1! ⋅ 1')* (4)

Note that the provision of spinning reserves is approximated
by taking into account either no provision or the maximum
quantity for each turbine of the power plant. The remuneration
for holding a capacity #+! is assumed to be known beforehand.
It is estimated as the minimum one can expect to get accepted.
The remuneration is also part of the objective function.
Finally the lower and upper bounds are:

0 ≤ ,! ≤ ,, ,! ∈ ℝ, , 0 ≤ -! ≤ -, -! ∈ ℝ, (5)

0 ≤ '! ≤ ', '! ∈ ℝ% , 0 ≤ /! ≤ /, /! ∈ ℝ&

0 ≤ 1! ≤ 1, 1! ∈ ℤ% , 3 ≤ 3! ≤ 3,3! ∈ ℝ

The position 3! is bounded to some upper and lower values
to prevent extreme positions leading to unrealistic high risk
exposure.
In the following paragraphs the basic model (1) is adapted for
the four mentioned methods.

C. Method 1: Neglecting hourly flexibility with weekly peak
and off-peak prices

The first method neglects hourly flexibility. Water inflows
and market prices are estimated as expected values over the
respective week. Two different prices are assumed. Energy
is generated for peak prices #&-).! and pumping for off-peak
prices #/00−&-).

! . The daily operated basins are disregarded
and turbines and pumps are aggregated accordingly (see also
Fig. 3 b)). This result to problem (1), where the state vector
"! consists of one entry for each of the variables ,!, -!, 0!
per aggregated reservoir and one entry for '!, /!, 1! for each
turbine and pump respectively:

!!("!−1) = max
1!

!
#!∈Ξ!

[#&-).! '! − #/00−&-).
! /! ... (6)

+ 1! ⋅ 1')* ⋅ #+! ⋅ 168ℎ+ !!+1("!)]



subject to:
contraint (4) and bounds (5) as well as:

,! = ,!−1 −5! (7)

.%('!)− .&(/!) + -! − 0! = 5! (8)

Note, that by discretizing the weekly water discharge from the
reservoirs 5! it is possible to apply the stochastic dynamic
programming scheme. Note also, that random data consists of
peak and off-peak prices as well as water inflows 0!.
The advantage with this formulation is the moderate compu-
tational burden although stochasticity is considered. For every
time stage ) and 5! there is only one single constraint of (4),
(7) and (8) (for each scenario).

D. Method 2: Price duration curves

A price duration curve (example in Fig. 1 b)) is constructed
out of the proportion of hourly prices below a certain price
for some time duration. Since the revenue depends on price x
quantity of sold energy, it can be estimated by integration of
the price duration curve.
In [1] such curves are multiplied by quantity-price offers
and integrated in respect to prices. Here another approach
is followed, where the sum of the water discharge for the
next week is discretized. Then for a given water discharge
an optimization problem is formulated with the objective to
find the time durations of pumping ℎ&

! and generating ℎ%
! . The

expected short-term profit can then be derived.
It is assumed, that the power plant either generates or

pumps fully or not for each hour. Random data involves again
prices and water inflows. To estimate random price duration
curves the hourly price process itself is sampled and the price
duration curve is constructed out of it. The problem can now
be formulated as follows:

!!("!−1) = max
1!

!
#!∈Ξ!

[
'! ⋅

∫ ℎ"
!

0
pdc!(6)%6 ... (9)

− / ⋅
∫ 168ℎ

168ℎ−ℎ#
!

pdc!(6)%6 ...

+ 1! ⋅
(
(1')* + 1'($)

∫ 168ℎ

0
pdc!(6)%6 ...

+ 1')*#+! ⋅ 168ℎ
)
+ !!+1("!)

]

subject to:
bounds (5) as well as:

,! = ,!−1 −5!

'! = '̄− 1! ⋅ (1')* + 1'($)

ℎ%
!

∑
.%(max('!))− ℎ&

!

∑
.&(/) ...

+ 1!.%(1
')* + 1'($) ⋅ 168ℎ+ -! − 0! = 5!

The problem turns out to be challenging to solve. Therefore
the price duration curves are assumed to be pice-wise linear
which approximates the problem to a quadratic mixed-integer
problem.

From the modeling point of view there are several approxi-
mations with this formulation. The most severe is that, similar
to the first method, timing is not respected at all. This means
it is not considered when and in which order the decisions are
taken within a week.1

The advantage with this formulation is the consideration of
a reasonable representation of the opportunities in the hourly
day-ahead market.

E. Method 3: Deterministic intrastage subproblems

The idea of intrastage subproblems is already explained in
the introduction. For the third method these subproblems are
modeled deterministically.
Mathematically the multi-stage stochastic program with in-
trastage subproblems can be formulated in a similar way to
(1):

!!(,
3-)3
!−1 ) = max

1!

!
#!∈Ξ!

[7#!,1! + !!+1(,
3-)3
! )] (10)

where:

7#!,1!(,
3-)3
!−1 ) = max

%$ ,&$ ,3$ ,+!
(#&//5! )"3!(6) ... (11)

+ #+! ⋅ 1"! 1')* ⋅ 168ℎ

subject to:

1. water balances:

,3-)3! = ,3-)3!−1 −5!

,6)(578 = ,6)(578−1 − -8 − .%('8 ) + .&(/8 ) + 08 , ∀6
∑

8

[.%('8 )− .&(/8 )− 08 ] + -! = 5!

2. financial balance:

38 = '8 − /8 , ∀6
3. secondary control provision:

1! ⋅ (1'($ + 1')*) ≤ '8 ≤ '− 1! ⋅ 1')*

4. bounds similar to (5):

&$! ≤ '8 , /8 , -8 , 1!, ,
3-)3
! , ,6)(578 ,38 ≤ '$!

'(6), /(6), -(6), ,6)(57(6) ∈ ℝ$x8 , 3(6) ∈ ℝ8

,3-)3! ∈ ℝ$, 1! ∈ {0, 1}$

7#!,1! is the optimal value of the deterministic intrastage
subproblem. It is a function of the former state, realized
random data *! as well as the discretized water release 5!.
The purpose of the problem 7 is to estimate the intrastage
profit in a realistic way, by hourly deploying 5! most op-
timally within the week. It is formulated as a two-stage
stochastic program. In the first stage the amount of secondary
control reserves to bid is decided. This is done for each
turbine, which is qualified for this provision. Afterwards *!
is disclosed, so the water inflows and prices for the whole
week become known. Then actual hourly production decisions
take place. As a consequence 7#!,1! is a deterministic, linear
maximization problem with binary variables.

1It may happen, that e.g. high market prices occur all at the beginning of
a week where the reservoirs may be empty and generation not possible. Such
cases are not taken care of with the consideration of price duration curves.



Method 3:
deterministic intrastage problems

Method 4:
stochastic intrastage problems

Fig. 2. Decision trees with deterministic and stochastic intrastage subprob-
lems. Whereas random data in the third method is revealed once for each
intrastage problem in the forth method it is revealed daily. Note that interstage
decisions do not depend directly on intrastage decisions of previous stages.

Note, that the operation of the power plant is considered in
hourly resolution as opposed to the first and second method.
Approximations made are first, that the random data are
assumed to be known one week in advance. Further the fillings
of the daily reservoirs ,6)(57 are neglected in the calculation
of the profit-to-go functions as well as their water balances
are not respected between consecutive weeks. This results to
empty fillings of the daily reservoirs at the beginning and end
of each week.

F. Method 4: Stochastic intrastage problems

The model from the previous method 3 is now extended
by considering stochastic instead of deterministic intrastage
subproblems. This is one of the novel contributions of this
paper. The idea is depicted in Fig. 2. Whereas in the third
method the random data is disclosed at the beginning of a
week, the day ahead prices are now revealed daily for one
day. So the market prices are known only one day in advance.
The water inflows are still revealed weekly out of two reasons:
to give a hint about the modeling flexibility and to keep
computational burden low.
Note, that the stochastic intrastage problems cannot be for-
mulated in a dynamic way since the sum of the weekly
discharge 5! has to be fulfilled for each scenario. It is
therefore formulated as the deterministic equivalent.

The mathematical formulation changes in respect to how
random data is disclosed if compared to (10) and (11). To
keep notation simple the subproblems are described with the
help of scenario trees. A scenario is one possible realization
path of the random data. Let the set of all scenarios - be (
and consider a bundle )8 ⊆ ( a subset of ( with the same
intrastage decisions up to some stage 6 . Finally let Λ8 be the
set of all bundles in a stage 6 and therefore )8 ∈ Λ8 . Further
let the set of bundles 8()8 ) be:2

8()8 ) = {ℬ ∈ Λ8+1 ∣ ℬ ⊆ )8}

Now the mathematical formulation of the stochastic intrastage
subproblems resembles the deterministic ones. However in-
stead of having one variable per stage 6 there is one for each

2As an example consider Fig. 2: For each stochastic intrastage subproblem
the cardinality of $ is 4, which means there are 4 different scenarios. Λ4 is
consisted of two bundles: Λ4 = Λ5 = Λ6 = {{1, 2}, {3, 4}}. Consider now
the bundle %6 = {1, 2}. 8(%6) then specifies the children of %6, the set
of bundles 8(%6) = {{1}, {2}}.

reservoir 1

a)

reservoir 2
turbines 1&2pumps 1&2

turbines 3&4
b)

aggr. turbineaggr. pump

aggr. reservoir

Fig. 3. a) Schematic overview of the considered hydro power plant. Reservoir
1 is the seasonal storage whereas reservoir 2 is the daily one. Turbines 3 and
4 are qualified to deliver secondary frequency control reserves. b) Aggregated
hydro power plant for the first and second method. Note, that also water
inflows are aggregated and that an infinite lower basin for pumping is assumed.
The aggregated turbine is able to provide frequency control reserves.

bundle )8 . The problem can be written as follows:

!!(,
3-)3
!−1 ) = max

1!

!
#$∈Ξ$

[71! + !!+1(,
3-)3
! )] (12)

where:

71!(,
3-)3
!−1 ) = max

%$ ,&$ ,3$ ,+!
(#&//5! )" !

$$∈Λ$

[3$$ ] ... (13)

+ #+! ⋅ 1"! 1')* ⋅ 168ℎ

subject to:

1. water balances:

,3-)3! = ,3-)3!−1 −5!

,6)(57ℬ$
= ,6)(57$$−1

− -ℬ$ − .%('ℬ$ ) + .&(/ℬ$ ) + 0ℬ$ , ...

∀)8−1 ∈ Λ8−1, ∀ℬ8 ∈ 8()8−1), ∀6
∑

8

[.%('8 )− .&(/8 )− 08 ] + -! = 5!

2. financial balance:

3$$ = '$$ − /$$ , ∀)8 ∈ Λ8 , ∀6
3. secondary control provision:

1! ⋅ (1'($ + 1')*) ≤ '8,$$ ≤ '− 1! ⋅ 1')* , ...

∀)8 ∈ Λ8 , ∀6
4. bounds similar to (5):

&$! ≤ '$$ , /$$ , -$$ , 1!, ,
3-)3
! , ,6)(57$$

,3$$ ≤ '$!

'()8 ), /()8 ), -()8 ), ,
6)(57()8 ) ∈ ℝ$x

∑
$ ∣Λ$ ∣

3()8 ) ∈ ℝ
∑

$ ∣Λ$ ∣, ,3-)3! ∈ ℝ$, 1! ∈ {0, 1}$

The sizes of the variable vectors in the intrastage problem
depend on the sum of the number of bundles for each time step∑

8 ∣Λ8 ∣. For example consider two day-ahead price scenarios
per day. Each intrastage vector (for each reservoir etc.) then
has 24 ⋅ (21 + 22 + ... + 27) = 6096 entries. Note, that the
deterministic formulation would require only 24 ⋅ 7 = 168
entries.
Compared with the method 3 with deterministic intrastage
subproblems the method 4 is much more realistic from the
modeling point of view. Computationally the same amount
of subproblems have to be solved, however the size of these
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Fig. 4. a) Time duration needed for solving the different optimization
methods and memory requirement of the optimizations. b) Water values
(gradients of the profit-to-go functions) for the different methods for the first
time stage. They depend on reservoir filling and weekly time stages. Note that
the first two methods undervalue relatively the short-term revenue whereas the
third one overvalues it.

subproblems differ.3

III. EVALUATION

There are no standardized hydro power plant models avail-
able for optimization studies as it is the case e.g. for electricity
grid analysis. The outcome of the evaluation is however de-
pending on the considered power plant. It seems obvious, that
the more complicated structure and the more hourly dynamics
are present in the model, the better the proposed method with
stochastic intrastage subproblems should perform. Chosen was
therefore a typical Swiss hydro power plant (Fig. 3). This plant
is not overly complicated but still consists of two different
kinds of reservoirs, pumps and turbines. It is also qualified to
provide secondary frequency control reserves. Another option
would have been to consider several different kinds of power
plants, but this was beyond the scope of this paper.

The advantages and disadvantages from the modeling point
of view are explained in the previous section. Compared is
now the computational burden of the methods, their proposed
water values as well as a simulation study where the found
water values are applied for several samples of water inflows
and market prices.

A. Computational burden

The optimizations were done on a commercial computer
with 4 physical processor cores. CPLEXs dual simplex solvers
were used for the linear and quadratic programs. For the
mixed-integer problem a branch-and-cut algorithm was used.
In Fig. 4 the time durations as well as the memory require-
ments needed for the different methods are depicted. The first
method finishes in 15 seconds, which is 30 to 200 times faster
than the other methods. This would be a clear advantage in
daily use. Method four has higher memory requirements than
the other ones. Memory usage of this method (as well as
solving time) will further increase exponentially if the amount
of intra time stages, stochasticity or power plant complexity
(number of state variables) is increased.

3For example for two daily market price scenarios (which results to 27=128
weekly scenarios) one stochastically formulated intrastage subproblem was
constructed and solved in 0.41 s whereas the deterministic variant required
only 0.12 s.
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Fig. 5. a) Flowchart of the Monte Carlo operation simulation. b) Filling of
seasonal reservoir 1 for each of the samples for water values from method
3 and 4. Note that although the water values are similar the actual operation
varies more.

B. Water values comparison

The results of the optimization methods, the water values,
are shown and compared in Fig. 4 b) for the first time stage.
Notable is, that the more short-term dynamics are considered
the higher the water value is. However because the third
method assumes perfect weekly knowledge it overvalues the
water value. Therefore method 4 should give a more realistic
estimation. The water values for methods 3 and 4 are similar
not only for the first time stage but also for the others with
roughly 80% of them having a difference of less than 10%.

C. Simulation study

A Monte Carlo operation simulation study (Fig. 5 a)) is
performed in order to estimate the performance of the different
methods. In the simulation part, the power plant operation is
mimicked over one year based on the estimated weekly water
values. The procedure for each week in the simulation horizon
is as follows:

1) sampling of correlated water inflows and market prices
2) offering of secondary frequency control reserves
3) hourly production decision heuristic

Because of lack of sufficient amount of historical data, dis-
tributions are estimated out of the available data and water
inflows and market prices are sampled out of it. Then it is
decided, if secondary frequency control reserves are offered
for the next week or not. This is modeled as a mixed-integer
problem. After that a heuristic performs hourly production
decisions, which simulates what an operator would do in prac-
tice: First frequency control reserves obligations are fulfilled
and then energy is generated or used for pumping depending
on a comparison of the filling depended water values and
market prices. This procedure is repeated for every week
and for 100 samples in a receding horizon. Outcome of the
simulation is a profit distribution.
Fig. 5 b) shows for method 3 and 4 the resulting seasonal
reservoir filling for all samples. The reservoirs maximum
filling is exploited with both methods (without spilling). One
could argue, that the application of water values from method
4 leads to a more conservative strategy i.e. releasing water
earlier.

Table II shows the expected profit, the relative standard
deviation as well as the mean profit for the 10% worst



TABLE II
COMPARISON OF OPTIMIZATION METHODS WITHOUT / WITH PROVISION OF SECONDARY FREQUENCY CONTROL RESERVES

Method 1 Method 2 Method 3 Method 4
weekly peak & off-peak prices price duration curves deterministic intrastage stochastic intrastage

expected profit [Me] 34.24 / 34.99 29.13 / 30.44 34.80 / 35.85 33.40 / 39.14
rel. standard deviation 2.19% / 2.53% 1.95% / 2.47% 2.36% / 3.99% 2.57% / 4.10%

CV@R10% [Me] 32.66 / 33.27 27.90 / 29.03 33.27 / 33.47 31.82 / 36.28

scenarios (CV@R10%). The values are shown with and without
consideration of provision of control reserves.
Method 1 leads to astonishingly good results. However the
performance evaluation was based on market data, where peak
and off-peak price periods were clearly present which will or
already is not anymore the case.
Method 2 performs worse than expected. An explanation for
it could be, that although the price process is considered in a
detailed way the power plant itself is simplified considerably.
This leads to using non-existing resources more efficiently
which may result to less effective policies.
Method 3 outperforms method 4 for optimizations without
the consideration of secondary frequency control provision.
Interesting is also the increased robustness if compared with
method 1: the CV@R10% is considerably higher whereas the
relative standard deviation, as an alternative risk measure,
would indicate slightly more risk.
Finally the proposed method 4 outperforms the other methods
only if secondary control reserves provision is considered. But
in this case the increase of both expected profit and CV@R10%

is substantially by around 10 %.

IV. CONCLUSIONS

This paper presented four aggregation methods for a
medium-term self-scheduling of hydro power plants. The
methods were: (1) aggregated peak and off-peak prices, (2)
price duration curves, (3) deterministic intrastage subproblems
and (4) stochastic intrastage subproblems. Contributions were
first the application of stochastic intrastage subproblems to the
hydro power planning, second, the comparison and evaluation
of the different methods and finally the extension of the
methods by considering revenue out of provision of spinning
reserves.
The evaluation presented the computational burdens as well
as the quality of the proposed optimization outcomes, where a
Monte Carlo operation simulation study was performed. The
results suggest, that the consideration of stochastic intrastage
subproblems makes only sense if the market structure is
sufficiently complex. The results also indicate that another
reason could be more complex hydro plant structures, whereas
the evaluation on such plants is left for future work.
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