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Abstract

Hydro power planning problems are well known in academia. However,
due to modeling and computational di�culties, not many suggested
concepts are applied in practice. Additionally, the recent deregulation
of electricity markets initiated di↵erent markets, which increased the
need for better decision support tools for hydro operators.
Therefore, as a main contribution of this thesis, a novel modeling frame-
work is proposed, the multi-horizon modeling approach. This approach
allows a very detailed and transparent modeling of many problems in
hydro power planning by simultaneously being computationally very
e�cient. The models are applied in the thesis to pumped storage hy-
dro power plants in a liberalized market environment in order to give
decision support for the self-scheduling of them.

In the thesis, first, the manyfold challenges in hydro power planning
are discussed. Then, state-of-the-art modeling and solution methods to
such problems are evaluated, focussing on problems with non-concave
value functions and risk averse optimizations. Afterwards, multi-horizon
models are analyzed, evaluated, and applied for di↵erent medium-term
hydro power planning problems:

• consideration of ancillary services,

• risk-averse optimizations,

• long-term evaluations, and

• price-maker bidding in forward and electricity markets.

It is shown how such models outperform traditional methodologies in
di↵erent ways.
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vi Abstract

Further, an extension of a solution method, dualized stochastic dual
dynamic programming, with locally valid cutting planes is proposed.
This approach allows to solve problems with non-concave value func-
tions more appropriately. Furthermore, a measure of the severity of
non-concavity is introduced in this context, which can lead to reduced
computational requirements.
In addition, the bidding into ancillary services markets is discussed and
it is presented how delta-hedging can be used to mitigate bidding risk.
Finally, short-term planning for hydro power plants is analyzed and
decision support tools for the bidding in electricity markets and for
strategic bidding in ancillary services markets are given.

With the modeling, solution algorithm, and decision tools presented in
this thesis, the planning problems in hydro power can be formulated
in a more transparent and meaningful way. Further, the problems can
be solved by less computational requirements. Therefore, using such
tools, hydro power producers are able to operate their power plants in
a more profitable and robust way taking into account multiple markets
simultaneously.



Kurzfassung

Die Einsatzplanung von Wasserkraftwerken ist ein altes und bekann-
tes Problem in der Forschung. Viele der dort entwickelten Konzepte
werden jedoch nicht oder nur teilweise in der Praxis verwendet, auf-
grund schwieriger Modelle und hohem Rechenaufwand bei der Benut-
zung dieser. Zusätzlich sind die Anforderungen an Entscheidungshilfen
für Wasserkraftsbetreiber gestiegen wegen dem Aufkommen verschied-
ner Märkte durch die Ö↵nung des Elektrizitätsmarktes.
Aus diesen Gründen wird in dieser Arbeit eine neue Modellierungsme-
thode vorgeschlagen, das multi-horizon Modellierungskonzept. Es er-
laubt ein sehr detailliertes aber transparentes Modellieren von vielen
Planungsproblemen im Wasserkraftsbereich, bei gleichzeitig e�zienter
Nutzung von Rechenkapazitäten. In dieser Arbeit wird das Konzept an-
gewendet auf Speicherwasserkraftwerke im liberalisierten Energiemarkt,
um Entscheidungshilfen in der Einsatzplanung zu geben.

In dieser Doktorarbeit werden zuerst die zahlreichen Probleme bei der
Einsatzplanung von Wasserkraftwerken diskutiert. Die state-of-the-art
Modellierungs- und Lösungsmethoden für solche Probleme werden eva-
luiert mit speziellem Fokus auf nicht-konkave Nutzenfunktionen und
risiko-aversen Optimierungen. Danach werden multi-horizon Model-
le analysiert, evaluiert und für verschiedene mittelfristige Einsatzpla-
nungsprobleme angewandt:

• Berücksichtigung von Systemdienstleistungsmärkten im mittel-
fristigen Einsatz

• Risiko-averse Optimierungen

• Langfristige Bewertungen

• Bidding in Forward- und Elektrizitätsmärkten

vii



viii Kurzfassung

Es wird gezeigt, wie solche Modelle den üblichem Methoden überlegen
sind.
Des weiteren wird eine Erweiterung einer Lösungsmethode, von duali-
zed stochastic dual dynamic programming, mit locally valid cutting pla-
nes vorgeschlagen. Diese Erweiterung erlaubt ein zielführenderes Lösen
von Problemen mit nicht-konkaven Nutzenfunktionen. In diesem Zusam-
menhang wird auch ein Mass für die Stärke der Nicht-Konkavität ein-
geführt, welche für eine Reduktion des Rechenaufwandes benutzt wer-
den kann.
In dieser Arbeit wird auch das optimale Anbieten von Systemdienstleis-
tungen diskutiert. Es wird präsentiert, wie man das Delta-hedging be-
nutzen kann, um die Risiken aufgrund von Unsicherheiten beim Bieten
zu reduzieren. Schlussendlich wird die kurzfristige Einsatzplanung von
Wasserkraftwerken analysiert und Entscheidungshilfen werden vorge-
schlagen für das Bieten in Energie- und Systemdiensteistungsmärkten.

Die in dieser Arbeit präsentierten Modellierungsmethoden, Lösungsver-
fahren und Entscheidungshilfen erlauben eine transparente Bearbeitung
der Planungsprobleme von Wasserkraftwerken, und dies bei tendenziell
geringerem Rechenaufwand. Betreiber von Wasserkraftwerken können
somit bei Verwendung dieser Konzepte ihre Kraftwerke profitabler und
robuster in den verschiedenen Märkten positionieren.
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List of symbols

The notation in this thesis follows mostly the one in mathematical
programming. The list of symbols is segmented thematically.

Dynamic programming:

t 2 {0, ..., T}, time stage

Q(t, z) Value function

x 2 X, (here-and-now) decision vector

z 2 Z, state variable vector

�(x, z) Contribution function, e.g. immediate revenue return

Scenario trees and sample average approximation:

⇠ = (�, A,B, b),2 ⌅, data observation

⌅ = {⇠1, ..., ⇠N}, set of sampled data observation

s 2 S, scenarios
A

t

✓ S, bundle of scenarios with the same decisions up
to some stage t

⇤
t

Set of all bundles in a stage t

U(A
t

) Set of bundles, i.e. children of the bundle A
t

Approximate dynamic programming:

z

0 Post decision state

Q

0(t, z0) Post decision valuing function
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Chapter 1

Introduction

Background and motivation

The optimal operation of hydro power plants (HPPs) for the purpose of
delivering electric energy is not a recent problem. It is well treated in
academic literature. In practice, however, not many academical con-
cepts are applied. One of the reasons for this is the troublesomeness of
such methods in modeling and computational requirements.
Therefore, one of the first goals of this thesis is to provide a meaning-
ful and transparent modeling approach, which can be well applied in
practice as well as keeps computational burden as low as possible.

Further, with the advent of liberalized electricity markets, the way HPPs

are operated has changed. Instead of providing electricity for least costs
in an integrated way, markets were established, where di↵erent services
can be o↵ered by the generation companies (GenCos). So another goal
of this thesis is to give decision support in how to exploit these markets,
which requires both better modeling and optimization tools.

In contrast to most of the academic literature, this thesis deals with
the self-scheduling of hydro GenCos and not with a hydro dominated
system. The proposed methods are tested on typical Swiss pumped
storage HPPs, however, they are mostly also applicable to other type
of power plants. The overall goal of the thesis is to provide decision
support for GenCos in order to assist them in operating their HPPs in a
more profitable and robust way.

1



2 Chapter 1. Introduction

Main contributions

The main contribution of this thesis is the introduction and the evalua-
tion of a novel modeling concept, the multi-horizon modeling approach.
This approach is especially well applicable for hydro power planning
problems.
The application of multi-horizon models allows both very detailed and
computationally e�cient formulations of many di↵erent planning prob-
lems. It outperforms traditional modeling technics considerably. The
reasons are manyfold, but the most important ones are that both dy-
namic programming and mathematical solvers are combined in an e�-
cient way, and that physical di↵erences of reservoirs are exploited.
Part of this contribution is also the application of multi-horizon models
to di↵erent hydro power planning problems, which involves long-term
valuation problems, price-makers in forward markets, risk-aware opti-
mizations, as well as the consideration of ancillary services in a medium-
term optimization.

Another contribution of this thesis is about bidding problems. Tools
to assist hydro GenCos in short-term bidding of electricity and ancil-
lary services markets, and to hedge uncertain cashflows from ancillary
services markets in the electricity spot market are presented.

Additionally, this thesis provides a comprehensive review about state-
of-the-art stochastic programming methods, their applications and algo-
rithms. Some of these methods are further developed in order to better
cope with non-concave value functions with locally valid cutting planes,
where also a novel measure of non-concavity is introduced.

Structure of the thesis

The thesis is divided into two parts. The first part introduces the chal-
lenges and state-of-the-art methods in hydro power planning. The sec-
ond part is dedicated to the evolution of the methods and their appli-
cations.

Part I: Hydro power planning: challenges and methods:

• Chapter 2 gives a brief outline of the challenges in hydro power
planning without discussing how to tackle them.
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• Chapter 3 describes stochastic programming methods. The
mathematical notation for this thesis is explained and the basic al-
gorithms are analyzed. The chapter concludes with an application
of the methods to a generic HPP.

• Chapter 4 extends the stochastic dual dynamic programming
algorithm, a well-known solution algorithm especially applicable
to hydro power planning problems, in order to cope with some of
its shortcomings.

• Chapter 5 introduces risk measures and their application in a
stochastic multistage setting.

Part II: Model developments and applications:

• Chapter 6 introduces multi-horizon models. They are analyzed,
evaluated, and finally applied in two test cases.

• Chapter 7 proposes an extension to dualized stochastic dual dy-
namic programming, locally valid cutting planes, in order to cope
better with non-concave value functions. Additionally, a measure
for non-concavity is presented.

• Chapter 8 presents new ideas on how to hedge uncertain cash-
flows from the ancillary services market with adapted positions in
the electricity spot market.

• Chapter 9 proposes decision tools to assist GenCos in bidding
problems.

• Chapter 10 concludes the thesis with a summary and outlook.

List of publications

The list of peer-reviewed publications, which lay the basis for this thesis,
is as follows:

• H. Abgottspon, M. Bucher, and G. Andersson, “Stochastic dy-
namic programming for unified short- and medium-term planning
of hydro power considering market products,” in 12th IEEE In-
ternational Conference on Probabilistic Methods Applied to Power
Systems (PMAPS), Istanbul, Turkey, 2012. [1]
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• H. Abgottspon and G. Andersson. “Approach of integrating an-
cillary services into a medium-term hydro optimization.” in XII
SEPOPE: Symposium of Specialists in Electric Operational and
Expansion Planning, Rio de Janeiro, Brazil, 2012. [2]

• H. Abgottspon and G. Andersson. “Stochastic scheduling for
a price-maker hydro producer considering forward trading.” in
IEEE PowerTech, Grenoble, France, 2013. [3]

• H. Abgottspon and G. Andersson. “Strategic bidding of ancil-
lary services for a hydro power producer.” in 10th International
Conference on the European Energy Market (EEM), Stockholm,
Sweden, 2013. [4]

• H. Abgottspon and G. Andersson. “Medium-term optimization of
pumped hydro storage with stochastic intrastage subproblems.”
in Power Systems Computation Conference (PSCC), Wroc law,
Poland, 2014. [5]

• H. Abgottspon, K. Njálsson, M. A. Bucher, and G. Andersson.
“Risk-averse medium-term hydro optimization considering provi-
sion of spinning reserves.” in 13th IEEE International Conference
on Probabilistic Methods Applied to Power Systems (PMAPS),
Durham, UK, 2014. [6]

• H. Abgottspon and G. Andersson. “Multi-horizon modeling.”
submitted to Energy Procedia, 2015. [7]
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Hydro power planning:
challenges and methods
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Chapter 2

Modeling challenges in hydro
power planning

In this chapter the challenges in self-scheduling of hydro power plants
are discussed. Further, two hydro power plants are introduced which are
used to evaluate the proposed concepts in this thesis.

The challenges in hydro power planning problems are well known, but
nevertheless are still di�cult to approach, because many di↵erent com-
plications are simultaneously present.
For the self-scheduling of hydro power plants (HPPs) these challenges
are partly mitigated. That is because the whole electricity system with
all producers, consumers, and the transmission grid have not to be
analyzed altogether, but rather the system can be approximated by as-
suming exogenous market prices. This allows more detailed modeling of
the actual HPPs and their assets, which on the other hand requires the
modification of some of the traditional methods used in hydro power
planning.

In self-scheduling problems for hydro generation companies (GenCos) the
challenges are typically as follows:

• short time scales of markets and water inflows,

• non-linear and non-continuous production functions,

• long time horizons,

7



8 Chapter 2. Modeling challenges in hydro power planning

• unknown and/or di�cult to model data processes,

• multiple markets with di↵erent rules, and

• risk-averse behavior of GenCos.

Since electricity demand changes at least hourly the markets for it have
a similar time scale. Water inflows into storage reservoirs are due to
melting snow and glaciers or precipitation and therefore have short time
scales as well. Given short time scales, the consideration of non-linear
and non-continuous production functions is required because of varying
head and not well-behaved e�ciency curves of turbines, pumps, and
penstocks.
Storage reservoirs typically are used to balance out dry seasonal peri-
ods. Therefore, the periods are coupled and time horizons of such HPPs

require to be up to a few years. For such long time horizons, water
inflows and market prices are di�cult to predict and have to be consid-
ered as stochastic variables.
Further, hydro GenCos o↵er their services in multiple markets, most no-
tably electric energy production and control power for grid frequency
stabilization. These markets have typically di↵erent rules and time
scales and are di�cult to formulate in a mathematical way.
Finally, it is often required to find operation strategies which are risk-
averse in some sense, which can complicate the problem further.

These challenges are next described in more details giving partly also
solutions. Then, additionally, two actual Swiss HPPs are briefly scruti-
nized, which are used to evaluate the proposed concepts in this thesis.

2.1 Challenges in hydro power self-schedu-
ling

In order to tackle the di↵erent time scales in hydro optimization, the
problem is usually divided into subproblems. A short-term hydro power
planning (STHP) problem tries to find optimal dispatch for the next
day(s) and can also include market bidding. As boundaries for this
problem a medium-term hydro power planning (MTHP) optimization
provides opportunity costs, also called water values, or alternatively
target filling values.
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The challenges for the two subproblems di↵er because di↵erent simpli-
fications are applicable to them. They are now discussed briefly.

Aggregations

Whereas for STHP optimizations aggregations are not often applied, in
MTHP optimization they are of vital importance. A temporal aggre-
gation leads to time steps of typically weeks or even months which
allows computational tractability for MTHP optimizations. Given such
an aggregation, also a spatial one has to be performed, for instance an
aggregation of turbines and reservoirs into representative ones.

The problem of finding a good compromise between the number of time
steps, hence computational complexity, as well as accuracy of the model
is discussed in more detail in chapter 6.

Production function

The production function relates water flow to energy. It depends on
various factors, is non-linear, and non-continuous. It can be approxi-
mated by a piecewise linear model as e.g. shown in [8], which is often
done for STHP optimizations.

For MTHP optimizations the discussion is a bit more subtle. For in-
stance, if the production function is modeled as dependent on the water
head, then some methods are troublesome to use.
In this thesis, non-continuous production functions are assumed which
have forbidden operating zones for some turbines and pumps. How-
ever, the dependence on the water head is neglected. This is reasonable
for HPPs in the Alps with a relative high water head compared with
its maximum variation. Additionally, constant e�ciencies are assumed,
which don’t depend on the water flow, which is also reasonable in a
medium-term perspective.

Unknown and di�cult to model data processes

From a STHP optimization perspective, data processes typically can be
modeled well. On the contrary for longer time horizons, some data
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processes like water inflows and market prices are very di�cult to pre-
dict and have to be considered stochastically. However, it is often not
clear how to do that. Further on, a comprehensive model will introduce
tractability issues.

In practice, GenCos have some models for important data processes.
Those processes are used as basis for a number of analyses. Therefore
in order to facilitate an introduction of an optimization tool within such
a company, the modeling of processes is not considered endogenously as
a part of the tool.
Therefore, in this thesis it is assumed that data processes are already
su�ciently modeled and are given as input data.

Multiple markets

Hydro GenCos participate in many di↵erent markets. The most impor-
tant ones are bilateral over-the-counter markets, day-ahead and intra-
day energy markets, forward markets, and ancillary services markets.
Except for the one for ancillary services, the markets are based on pro-
viding energy for di↵erent time periods under varying rules. Bilateral
contracts are mostly based on cleared market products and can there-
fore be substituted by them in a model. Forward markets, consisting
of power futures, forwards, and options, are used for hedging purposes
whereas the day-ahead and intraday spot markets balance out physical
production with the market position.
From the modeling perspective, the day-ahead market is the most im-
portant one. This is because it is agreed for most applications that
its price describes the price of electricity energy best. Depending on
the application, the other markets can also be important, e.g. in STHP

planning the intraday market is often reasonable to consider. Whereas
in MTHP problems the markets are typically represented only by their
prices, in STHP the actual bidding is often important to model, which
can be a di�cult task.
In chapter 6, 8, and 9 di↵erent concepts are shown, which assist GenCos

to cope with the challenges in energy markets.

Ancillary services markets are an additional opportunity for hydro Gen-

Cos. Theses services can contribute substantially to the revenue of HPPs,
at least in Switzerland. Therefore, it is important to include this oppor-
tunity in a MTHP optimization and to consider its obligations in STHP
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Figure 2.1: Generation of a turbine with provision of SFC reserves. Pro-
duction flexibility is reduced considerably leading to trou-
blesome problems if considered in MTHP problems.

planning, which both can be troublesome to do.
The most important ancillary service for hydro GenCos is the provision
of secondary frequency control. The rules for such markets can di↵er
a lot from system to system and therefore they are described next in
more detail for the Swiss system.

Secondary frequency control (SFC) market in Switzerland

In Switzerland, the most valuable ancillary services market is the mar-
ket for provision of SFC for frequency stabilization (spinning reserve,
automatic one-minute control, more details can be found in [9] and for
other countries in [10, 11]). It is operated by the Swiss transmission
system operator swissgrid. After a pre-qualification, GenCos are invited
to bid provision of SFC for a tender period of one week. The power has
to be provided for the whole week in symmetrical capacity blocks of
at least 5MW with increments of ±1MW. It is allowed to fulfill these
requirements from a pool of generating units. A bid itself is defined as
a number of combinations of the volume o↵ered and demand charged,
so-called quantity-price pairs. The number of combinations are not lim-
ited.
The transmission system operator can select at most one of the quantity-
price pairs within each bid. This is done by a market clearing optimiza-
tion, where those pairs are selected that meet control demand with least
costs. For Switzerland the control demand is at the moment ±400MW.
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The actual energy demand is requested automatically and is almost
symmetric and therefore not much energy is delivered or used on aver-
age.

For hydro GenCos there are a few requirements which have to be taken
into consideration in order to take part in this market. To provide a
symmetrical capacity block the turbines have to be continuously run-
ning at a certain set point (see figure 2.1). To prevent that the turbines
are operated ine�ciently, a minimum generation amount is introduced.
This is also true if the capacity is provided by pumps or with both tur-
bines and pumps simultaneously (e.g. in a hydraulic short-circuit). The
provision of SFC reserves therefore reduces the production flexibility,
which justifies its remuneration.

Consider the Kraftwerke Oberhasli AG power plant (more details in
the appendix A) as an example, why SFC is important to consider in a
MTHP optimization. This plant can o↵er maximally 280MW of SFC. For
a very conservative average capacity remuneration of 20CHF/MW per
hour this results in a maximum possible revenue of almost 50MioCHF,
compared with the typical turn-over in the electricity market of the
plant of around 140MioCHF 1.
However, the consideration of such a market in a MTHP optimization is
di�cult. In chapter 6, a solution to this problem is presented.
In a short-term optimization on the other hand, the fulfilling of ancillary
services obligations is more important to consider, that is the actual
delivery of the unknown energy demand from SFC, as well as the bidding
of it. These issues are discussed in chapter 9.

Risk-aware optimization

In practice HPPs are operated risk aversely. The most important risks,
apart from operational risk, are currency, cashflow, and volume risks.
Currency risks can be well hedged by financial products. Volume risks
refer to the risks that a contract can not be fulfilled due to e.g. empty
basins. Cashflow risks are the risks of having during a too long period
too low cashflows, which could result in liquidity problems for a com-
pany. In hydro power planning, these two risks have to do with price

1Kraftwerke Oberhasli AG, “KWOKennzahlen2013.pdf”, Retrieved from http://

grimselstrom.ch/info/grimselstrom/kennzahlen-und-geschaeftsbericht, March
2015.

http://grimselstrom.ch/info/grimselstrom/kennzahlen-und-geschaeftsbericht
http://grimselstrom.ch/info/grimselstrom/kennzahlen-und-geschaeftsbericht
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and inflow uncertainties and can be mitigated by adapted operation
decisions.

Theoretically, such risks could be managed solely by using power deriva-
tives, because, under some mild assumptions, the production planning
can be done independently from hedging [12]. However in practice,
many (hydro power) operators do both: (often implicit) risk-averse pro-
duction planning as well as hedging by financial instruments. This has
also to do with the limited availability of suitable financial instruments
or because of their high transaction costs. Therefore, it can be relevant
to consider some of the risks in an optimization, primarily for MTHP

problems, where it is usually quite di�cult to define appropriate risk
measures as well as to solve the resulting problems. These problems are
addressed in chapters 6 and 8.
On the other hand, in STHP, risk-aware optimizations are more straight
forward to formulate and mostly have to do with operational risks.

2.2 Evaluation of optimization models and
methods

There are no standardized HPP models available for optimization stud-
ies, as it is the case e.g. for electricity grid analysis. However, the
outcome of an evaluation of a method is depending on the HPP model
considerably. It seems obvious that, the more complicated structures
are present in a case study, the better a detailed modeling method will
perform, and vice versa.
The evaluation in this thesis is therefore based on two HPPs which have
di↵erent but somewhat typical characteristics for Swiss HPPs. Both
plants are real ones located in the Swiss Alps. The first one belongs
to Kraftwerke Mattmark AG (KWM), operated by Axpo Trading AG
and is from now on called KWM. The second one belongs to Kraftwerke
Oberhasli AG (KWO) which is operated by BKW Energie AG, from now
on called KWO.
Practitioners from these companies helped with their modeling, so that
their respective characteristics were taken into account realistically.
Some of the data are partly confidential and therefore cannot be shown.
Nevertheless, the overall ideas and conclusions should be reproducible.
In the appendix A a more detailed discussion about these HPPs is given.
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The models are also compared regarding their computational require-
ments. They were solved on a computer with two Intel Xeon E5 pro-
cessors at 2.2GHz. 16 individual processor cores were available in total
but only 8 of them were used. The computer was usually also occu-
pied by other simulations, therefore, some results have to be taken with
caution.

The models are implemented in Matlab and for the applications the
mathematical solver IBM ILOG CPLEX 12.4 was used to solve linear,
quadratic, and mixed-integer linear programs.

2.3 Summary

In self-scheduling problems of hydro power plants (HPPs) there are many
di↵erent challenges. A decomposition of the problem into short-term
hydro power planning (STHP) and medium-term hydro power planning
(MTHP) already allows to address many of them. The cost of this de-
composition is to have to define an appropriate linkage between the
di↵erent optimization parts where water values can be used adequately.
In STHP planning, the most di�cult issues are to model the production
function and to consider multiple markets simultaneously, especially to
model market rules in bidding processes. Additionally, the handling of
operational risks can sometimes be troublesome.
In MTHP planning the challenges arise typically because of the long
time horizon. Thus, appropriate aggregations and simplifications have
to be found, both for the HPP model and for markets. It is di�cult
to model data processes in a meaningful way while maintaining com-
putational tractability. The consideration of multiple markets, like sec-
ondary frequency control markets together with an energy spot market,
can be troublesome because it complicates the problem in a way that
traditional solving methods do not work anymore. Finally, it is also
non-trivial to model appropriate risk measures for a risk-aware MTHP

problem.

The methods introduced in this thesis try to tackle some of the chal-
lenges presented here. In order to evaluate their usefulness from the
modeling, computational, and practical point of view, they are evalu-
ated on two di↵erent HPPs, which have typical properties for Switzer-
land.



Chapter 3

Stochastic programming

In this chapter, the mathematical notation and basic algorithms of this
thesis are illustrated on generic examples. After the bibliography, multi-
stage programs are introduced based on scenario trees. Then, dynamic
programs and their stochastic counterparts are described and the algo-
rithms are presented. Further, stochastic dual dynamic programming is
explained and its algorithm is discussed. After discussing alternative
methods, the chapter concludes with an application example.

3.1 Historical developments and bibliogra-
phy

Medium-term hydro power planning (MTHP) problems can be formu-
lated in several di↵erent ways and can be solved with even more di-
verse techniques. References [13–15] are some of the few reviews about
di↵erent algorithms applied to hydro power planning. Some of these
techniques became standard in solving of MTHP problems.

Stochastic programs

Research about stochastic programs dates back to the 50’s and early
60’s of the last century, contributing to a rich literature. It evolved from
the mathematical community when trying to introduce uncertainty into

15
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mathematical programs.
Some more recent and also relevant literature about this field are
a number of rather technical books like the ones from P.Kall and
S.W.Wallace [16], J.R. Birge and F. Louveaux [17], P.Kall and J.Mayer
[18], A. Shapiro, D.Dentcheva, and A.Ruszczynski [19], and also the col-
lection edited by A.Ruszczynski and A. Shapiro [20].
From the modeling point of view, the hydro power planning problem fits
very well into the concept of multistage programs. This was (partly) re-
alized very early in stochastic programming research, e.g. in 1946 in [21]
and 1955 in [22]. A more recent book about the modeling of stochastic
programming is the one from A.King and S.W.Wallace [23].

(Stochastic) dynamic programming

Dynamic programming (DP) was also part of research primarily after
the second world war, dealing with solving sequential decision processes.
Such problems arise in many di↵erent applications. Additionally, the
basic concepts are quite obvious and feel natural to apply. So it is no
surprise that several research communities discovered many findings in
parallel and independently.
This is the reason why this research is named in many ways: the math-
ematical community calls this field (multistage) (stochastic) DP, the
computer scientists call it reinforcement learning and in operations re-
search it is known as Markov decision processes.

The term dynamic programming itself was proposed by R.Bellman.
Bellman described the framework in [24], which made DP popular.
Nowadays the field of Markov decision processes is very well treated
in the book of M.L. Puterman [25], the same in computer science by
D.P.Bertsekas [26]. DP techniques are usually also treated in stochastic
programming literature, which was already mentioned in the previous
section, as well as of course in literature about approximate DP, like
stochastic dual dynamic programming, which will be discussed in the
next section.

Hydro power scheduling was used as an application example for stochas-
tic dynamic programming (SDP) from the beginning. Nevertheless, it
was actually solved first more than one decade later for a single reservoir
problem in [27]. The reason for this was the computational troublesome-
ness of such problems.
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In the 70’s and early 80’s of the last century, SDP for hydro power prob-
lems was an active field in research. The basic algorithms were extended
to cope with stochasticity, multi reservoirs, hydro thermal systems, re-
liability constraints, and improving the model for water inflows.
It is out of the scope here to reference all of these publications. Instead
the comprehensive review [28] as well as the introduction of [29] can be
used to dig deeper into this early research.

(Stochastic) dual dynamic programming

Stochastic dual dynamic programming (SDDP) is a DP algorithm which,
based on multi-stage stochastic Benders’ decomposition, approximates
some of the problem’s elements. Therefore it belongs to the approximate
dynamic programming (ADP) algorithms.
Again, research in the field of ADP is almost as old as the one in DP. In
line with the increase of computing power, it gained a lot of attention
in the 90’s of the last century, focusing on implementable algorithms.
The book [30] of W.B.Powell as well as [26] of D.P.Bertsekas describe
many of these algorithms.

SDDP itself was proposed by J.R.Birge [31] and applied by M.Pereira
and L. Pinto [32, 33]. An approach with the same expression was also
published in [34] as well as in [35]. However, the former algorithm is
more suitable for higher dimensional problems that is why it became
popular for applications on multi reservoir scheduling problems.

Only a few years ago, SDDP was analyzed both mathematically as well
as from the computational point of view in more detail. In [36–39]
techniques to improve the performance of SDDP are shown. A. Shapiro
discusses in [40] convergence and statistical properties of SDDP. A re-
view about applications of SDDP in the Nordic countries is given by
A.Gjelsvik et al. [41], the same for Brazil in [42], and for New Zealand
in [43].

3.2 Multistage stochastic programs

In literature, multistage stochastic programming is usually approached
by first analyzing single and then two-stage programs, before going to
the multistage ones. For the sake of brevity, only multistage programs
are discussed here.
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When formulating a multistage program, variables and constraints are
divided into groups corresponding to stages. The term stage most often
relates to time periods, as it is also the case for this thesis, but it can
be used di↵erently.
In each stage, a decision has to be taken, after which some previously
unknown data is revealed. This is repeated several times, thus the term
multistage programming. Let x

t

be a decision vector corresponding to
stage t = 1, . . . , T and ⇠

t

the observation at this stage. The course of a
multistage stochastic programs then looks as follows:

x

1

, ⇠

1

, x

2

, . . . , ⇠

T�1, xT

⇠

t

are denoted as the data, which become known at stage t and are
possibly unknown before. Hence ⇠

[1,t]

= ⇠

1

, . . . , ⇠

t

is the information
available up to time t. Finally ⇠

1

, . . . , ⇠

T

is called a random or stochastic
process.

The decisions x(t) are often rearranged and separated into two types.
The first one are decisions at stage t, which have to be done under
uncertainty regarding the next data observation ⇠

t

. They are called
here-and-now decisions. The second type are decisions, which can react
on the realized data so they are aware of it. However, they still belong
to stage t and not t + 1. Those decisions are called wait-and-see or
recourse decisions. Whereas mathematically this construction would
not be needed, it can be very meaningful from the modeling perspective.

In stochastic multistage programs, it is very important to respect the
flow of information, i.e. that decisions depend at most only on ⇠

[1,t]

,
therefore act non-anticipative. Practically this can be achieved either
by introducing additional equality constraints (to force decisions to be
equal for identical history), or by setting up the problem with the help
of scenario trees.
In order to formulate stochastic multistage programs correctly, typically
a filtration F of �-algebras is defined. This construction allows a nota-
tion where variables depend only on already disclosed information, i.e.
on random variables which are measurable for some filtration. In this
thesis this notation is avoided by formulating such problems for sampled
random data in scenario trees.
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Figure 3.1: Example 3.1: Mathematical notation for scenario trees.

Scenario trees

A scenario tree contains the information about a random data process,
i.e. at which stage which information is disclosed. A scenario is one
possible realization path of this information for the whole time horizon,
i.e. possible sequences of data observations ⇠

[1,T ]

.
Let the set of all scenarios s be S and consider bundles A

t

,B
t

, C
t

, · · · ✓ S
as a subset of S with the same decisions up to some stage t. Then let
⇤
t

be the set of all bundles in a stage t and therefore A
t

2 ⇤
t

. Further
let the set of bundles U(A

t

) be:

U(A
t

) = {B 2 ⇤
t+1

| B ✓ A
t

}

With these definitions scenario trees can mathematically be described
in an appropriate and well defined way.

Example 3.1. Scenario tree: Consider figure 3.1: The cardinality
of S is 3, which means there are 3 di↵erent scenarios s

1

, s

2

, s

3

. ⇤
2

consists of two bundles: ⇤
2

= {{s
1

, s

2

}, {s
3

}}. Consider now one of
these bundles, A

2

= {s
1

, s

2

}. U(A
2

) then denotes the children of A
2

,
the set of bundles U(A

2

) = {{s
1

}, {s
2

}}. ⌅

Modeling of the (random) data process

The modeling of data processes is a topic by itself. It is out of the scope
here to describe and evaluate methods in this respect. Nevertheless,
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since this modeling is crucial for the success of stochastic programs a
few important references are given.

A data process is usually modeled by using historical observations of it
or of other processes which influence it. So one can fit some function or
process simulation model (e.g. a fundamental model) to these observa-
tions. More information on this can be found in [44, chapter 2,3].
The resulting model is called the probability model, which can be con-
sidered also ambiguously. The probability model can typically not be
used directly in an optimization model. Therefore a scenario model (e.g.
a scenario tree) tries to represent the probability model in a tractable
way.

The book by G.Pflug and A.Pichler [45] describes some recent find-
ings about how to construct scenario trees, e.g. by minimizing a nested
Wasserstein distance. An alternative is to use reduction techniques for
already built but large scenario trees [46, 47], e.g. based on the expected
value of perfect information, or to expand a simple tree [48, 49], e.g. by
the contamination method.

Solving stochastic multistage programs

Stochastic multistage programs can be very di�cult to solve. One way
to solve them is to formulate their so-called deterministic equivalent :
The random data process is first sampled to finitely many outcomes
per stage. Then a mathematical program is formulated. The objec-
tive function maximizes or minimizes all future decisions for all possible
outcomes of the random variables, weighted by their conditional prob-
abilities and costs. The resulting problem can then often be solved by
commercially available solvers, e.g. for linear problems based on the
simplex or interior point solution algorithms.
This approach is very powerful for many stochastic programs. However,
the size and complexity of problems formulated as deterministic equiv-
alents grow exponentially with the number of stages. This makes this
approach applicable only for a modest number of it.

Depending on the type of stochastic program, other methods can be
more e�cient. E.g. in [18] di↵erent specialized solvers are presented for
the class of stochastic linear programs.

Example 3.2. Deterministic equivalent: In this example the
scheduling problem of the simple hydro power plant in figure 3.4 is
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formulated as its deterministic equivalent. The formulation is made
with the help of scenario trees. The notation follows the application
example at page 42.

max c

1

(u
1

� p

1

) +
TX

t=2

X

A
t

2⇤
t

⇢A
t

c

t

(u
t,A

t

� p

t,A
t

) (3.1)

s.t.:

8
>>>>>>>><

>>>>>>>>:

v

1

t,B
t

= v

1

t�1,A
t�1
� u

t�1,A
t�1

+ p

t�1,A
t�1

�o1
t�1,A

t�1
+ a

1

t�1,A
t�1
8t22,...,T , 8A

t�12⇤t�1 , 8B
t

2U(A
t�1)

v

2

t,B
t

= v

2

t�1,A
t�1
� o

2

t�1,A
t�1

+ a

2

t�1,A
t�1

8t22,...,T ,8A
t�12⇤t�1 , 8B

t

2U(A
t�1)

lb

t

u,v,o,aub
t

u,v,o,a2R

Note, how the conditional probabilities of a bundle ⇢A
t

enter the ob-
jective function. This allows the weighted summation of all energy gen-
eration decisions. The only constraint is the water balance constraint
(see page 42 for more details). Since the variables (and also an actual
implementation) are based on nodes in a scenario tree, there is no need
for additional non-anticipaty constraints. ⌅

3.3 Dynamic programming (DP)

Dynamic programming (DP) problems can be seen as sequential decision
problems. If a problem is modeled as a DP, powerful solving tools can
be applied. Those solvers typically exploit the characteristic structure
of a DP in order to find solutions more time and memory e�ciently. One
idea is to break down the original problem into simpler subproblems.
It is then often the case that solving the simpler subproblems can be
performed more e�ciently than solving the original complex problem.

Bellman’s equation: a path to find optimal decisions

Sequential decision problems inherently have a decomposable structure,
since the problem to find one of the decisions can be formulated as a
subproblem. In order to find the optimal decisions, there are several
di↵erent strategies. One way of doing this is expressed in the well
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known Bellman’s equation [24]. In mathematical programming, it is
formulated as follows (for a maximization problem as well as for explicit
state variables):
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where:

• t: stage (time period);

• z

t

: state variables;

• x

t

: decision variables: one set of decisions per stage and state;

• �

t

(x
t

, z

t�1): Contribution function, e.g. immediate revenue return
for time step t;

• B

t

, A

t

, b

t

: System matrices specifying system behavior and state
transition; and

• Q

t

(z
t�1): Value function (profit-to-go): total expected future in-

come from time step t to terminal time T .

The equation (3.2) expresses that the value of being in a state z

t�1 is
composed of the immediate return of this state plus its future value. In
the context of cost minimization problems this value function Q

t

(z
t�1)

is called cost-to-go, in the context of profit or revenue maximization it
is called profit-to-go.
A sequential decision problem can be formulated in the form of (3.2),
if two conditions are satisfied. First, the objective function has to be
separable (e.g. by introduction of state variables). Second, the value
functions � are monotonically nondecreasing in time, which is fulfilled
in most practical problems. Note that for the hydro power planning
problem both conditions are fulfilled.
If the contribution function � returns a monetary value, then the value
function is discounted by the risk-free interest rate. In this thesis this
is omitted in the formulations.
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Figure 3.2: Dynamic program as finding the shortest path from nodes
(discretized state points) at t to t+ 1.

If one can formulate the problem in the form of (3.2), optimal decisions
can be found recursively, i.e. backwardly in time. This was expressed
by R.Bellman in the following way:

“An optimal policy has the property that whatever the ini-
tial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state
resulting from the first decision.”

This quote introduces the terminology in DP1:

• State variables describe the state of the system for a given time
point. A state is the (minimum) information one needs to know
at some time in order to be able to make the next decision.

• Decision variables are the variables which are under one’s control.
They are also called actions or control variables.

• Policies are a set of decisions. The typical goal is to find the (op-
timal) policy which leads to a maximized or minimized objective
value.

Bellman’s (somewhat obvious) principle allows the problem to be solved
recursively for each subproblem, which can be advantageous over solving
the whole problem (e.g. as a large mathematical program). The solution

1See also [30] for a thorough discussion.
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Algorithm 1 Dynamic programming (DP)

Require: Discretization of time t = 1, 2, . . . T
Require: Discretization of states space Z(t)
Require: Profit-to-go function Q

T+1

// often zero value

1: for t = T ! 1 do
2: for all z

t�1 2 Z

t�1 do // for all discretized state points

3: x
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// store profit-to-go

5: end for
6: end for

algorithm is similar to finding the shortest path between nodes (see
figure 3.2). For being able to do so, the state of the system has to
be discretized to finitely many elements for each also discretized time
period.

The shown algorithm 1 is one possible implementation. Going back-
wardly in time from terminal time point T , all discretized state points
z

t�1 are visited. Given a state point a subproblem is formulated in order
to find optimal sub-decisions and objective values. This optimization
can be solved in many ways. One simple possibility is by discretizing
also the decision space and to test all of them.
The optimal decisions x

t,z

t�1 and values Q
t,z

t�1 are stored in a look-up
table. Then, for a given starting state z

0

, the optimal policy can be
inferred out of this table.

3.4 Stochastic dynamic programming (SDP)

The power of DP is revealed fully only for sequential decision problems
under uncertainty. The formulation and the algorithm of stochastic dy-
namic programming (SDP) is similar to what was presented beforehand.
Let ⇠

t

= (�
t

, A

t

, B

t

, b

t

) be the data, which is possibly random and gets
revealed at time point t (as before) and ⌅

t

be the set of all possible
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real-valued outcomes of the data so that ⇠

t

2 ⌅
t

. Then the recursive
optimality equation is as follows:

Q

t

(z
t�1) =max

x

t

,z

t

E
⇠

t

2⌅
t

[�
t

(x
t

, z

t�1) +Q

t+1

(z
t

)] (3.3)
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In contrast to (3.2), the problem is maximized for the expected future
profit-to-go. The most optimal policy will therefore maximize the objec-
tive on average. If the set ⌅

t

has only one element 8t, then the problem
coincides with the deterministic case.
Note that the stochastic data process ⇠

1

, . . . , ⇠

T

is Markovian. This is
the reason why such problems are also called Markov decision processes.
In other words, the problem has to be stage-wise independent, which is
made possible with the introduction of state variables.

The expected value operator E[..] is linear. Suppose now that the prob-
lem would be also linear in the random elements of the data vector
⇠. The expectation can then be moved into the contribution and state
transition function. The problem would be reduced to the deterministic
one (3.2) for the expected data vector E[⇠]. So instead of computing a
supposedly di�cult expectation over a function one would only need to
compute it over a random vector.
However, realistic problems are seldom linear on the random data pro-
cess and that’s why a stochastic viewpoint can be beneficial (see also
example 3.3 on page 47).

Sample average approximation (SAA) problem

As for the algorithm for deterministic DP, the time and state variables
have to be discretized in order to apply the ordinary SDP algorithm.
Similarly, the possible random data outcome space ⌅ does not necessar-
ily have to be discretized. However, practically, it is often di�cult to
estimate the expectation with respect to the random data, if ⌅ is not
sampled.

Suppose from now on sampled random data, i.e. N
t

number of samples
⇠

1

t

, . . . , ⇠

N

t

t

of the data process ⇠
t

are generated at stage t, and let ⌅
t

be
the set of these samples so that ⌅

t

= {⇠1
t

, . . . , ⇠

N

t

t

}. A problem, where
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the data process is approximated in such a way, is called sample average
approximation (SAA) problem.
The generated samples are typically independent within each time stage
i.e. they are independent and identically distributed random variables.
However, they can be conditional on samples at the previous time stage.
Nevertheless, in our case, we consider a stage-wise independent process.
Note that the total amount of scenarios in a SAA problem is N =Q

T

t=1

N

t

and can thus be very large.

Algorithm for solving stochastic dynamic programs

Consider a SAA be given. The stochastic optimality equation (3.3) can
now be reformulated, with the expectation operator being simply aver-
aging:

Q

t

(z
t�1) = max

x

t

1

N

t

N

tX

j=1

h
�

j

t

(x
t

, z

t�1) +Q

t+1

(zj
t

)
i

(3.4)

It can still be computationally expensive to calculate this maximization
problem. Therefore the decision space X(t) is also often discretized.
The problem can then be solved by the algorithm 2 by going through all
combinations of time, state, decision, and sampled random data points
and calculate the associated optimal values Q

t,z

t�1,xt

,j

. In line 7 of the
algorithm the expected value over all possible random data realizations
define the value for a given decision. By taking the maximum value
of these values Q

t,z

t�1(xt

), 8x
t

2 X

t

, the optimal value and associated
decision, given a state point z

t�1, is found.
Note that because of the nested “for loops”, a possibly enormous amount
of subproblems in line 5 have to be solved. These subproblems are
usually very small, since state, decision, and sampled data are given.
Further note that for such an implementation decisions which depend
on realized data, the wait-and-see decisions, can not be considered.

Forward simulation

When the decision space is discretized, the application of the found
optimal policy may be di�cult. Consider for instance a situation, where
the system happens to be between states. Whereas a profit-to-go value
could be estimated by interpolation, the optimal decision is very di�cult
to find.
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Algorithm 2 Stochastic dynamic programming (SDP)

Require: Discretization of time t = 1, 2, . . . T
Require: Discretization of state space Z(t)
Require: Discretization of decision space X(t)
Require: SAA // Sampling of data ⇠(t) = (�, A, B, b) 2 ⌅(t)

Require: Profit-to-go function Q

T+1

// often zero value

1: for t = T ! 1 do
2: for all z

t�1 2 Z

t�1 do // for all discretized state points

3: for all x
t

2 X

t

do // for all discretized decision points

4: for j = 1! N

t

do // for each sampled data element ⇠

j

t

2 ⌅
t

5: Q

t,z

t�1,x

t

,j

=

8

>

>

<

>

>

:

max

x

t

,z

t

�

j

t

(x

t

, z

t�1) + Q

t+1(zt)

s.t. B

t

z

t�1 + A

j

t

"

x

t

z

t

#

= b

j

t

6: end for
7: Q

t,z

t�1,x

t

 1
N

t

N

t

P

j=1
Q

t,z

t�1,x

t

,j

// store profit, given decision

8: end for
9: x

t,z

t�1
 argmax

8x

t

2X

t

Q

t,z

t�1
(x

t

) // store decisions

10: Q

t,z

t�1
 max

8x

t

2X

t

Q

t,z

t�1
(x

t

) // store profit-to-go

11: end for
12: end for

This issue can be addressed by performing a forward simulation as in
algorithm 3. There, for a given scenario of the data process, optimal
decisions are computed by going forward in time while a continuous
decision space is considered.
Note that the model used in this simulation does not necessarily have to
be identical to the one used in the SDP algorithm, but should preferably
be more detailed.

Such a forward simulation can be repeated for di↵erent scenarios and
thus a Monte Carlo simulation study is performed. This procedure
results in a distribution of values of the policy. This distribution can be
used to show the e↵ectiveness of the policy, as well as for risk analysis.

Link to approximate dynamic programming (ADP)

In the field of approximate dynamic programming (ADP), the objective
function in (3.3) is usually formulated di↵erently using, what is called,



28 Chapter 3. Stochastic programming

Algorithm 3 Forward Simulation

Require: Discretization of time t = 1, 2, . . . T
Require: Discretization of state space z(t)
Require: Sampled data process ⇠(t) = (�, A,B, b) // only one scenario

Require: Profit-to-go function Q(t, z(t)) // look-up table or analytical function

Require: Initial state z

0

Require: Initial value of the optimal policy v

0

1: for t = 1! T do

2: {x
t

, z

t

} 

8

>

>

<

>

>

:
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, z
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t+1(zt)

s.t. B

t

z

t�1 + A

t

"

x

t

z

t

#

= b

t

3: v

t

= v

t�1 + �

t

(x

t

, z

t�1)

4: end for

the post-decision state z

0. This state describes the state of the system
after a decision was taken, but before uncertainty occurs.
Consider now that the conditional probability of the state transition
P(z

t

|z0
t

) is given. Equation (3.3) can now be formulated equivalently as:

Q

t

(z
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(3.5)

Let Q0
t

(z0
t

) be the function of the value being in the post-decision states.
Then we obtain:
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t+1

(z0
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(3.6)

Equations (3.5) and (3.6) are mathematically equivalent. The latter
can lead to a computational advantage, since the expectation operator
associated with the state transition is now outside of the maximization
problem.
Note that the state transition can depend on the actual decision taken
beforehand. In this case, the decision has to be part of the post-decision
state vector. This leads to the problem which was formulated earlier in
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(3.4) for discretized decision spaces. The post-decision value function
Q

0
t

(z0
t

) would in this case have been calculated in algorithm 2, line 7.
However, the way of thinking in ADP can be meaningful for processes
where the state transition and its probability are important.

Usability of dynamic programming algorithms

Most practical (decision) problems can be formulated as a DP. This
allows a much more e�cient implementation compared with a general
multistage stochastic program. The main advantage is that the com-
plexity scales linearly with the amount of time steps.
Solving DPs requires the solution of many subproblems. These sub-
problems are independent of each other (for one time point). So DPs

are, what the computer science community calls, embarrassingly parallel
problems. Such problems are promising candidates to make use of high
performance computing e.g. parallelized computation across CPUs and
even GPUs.

DP also has its downsides. The most severe one are the so-called curses
of dimensionality : The complexity (number of subproblems to solve)
increases exponentially with the number of discretizations of

• state space Z,

• decision space X, and

• outcome space of (random) realized data ⌅.

Typically, fine discretizations of all of them are needed for an appropri-
ate model. Mathematically it can be shown (see also [19, section 5.8]):
If a problem with continuous distributions is approximated by an SAA,
then the number of samples required is large (tend to go to infinity) in
order to approximate it reasonably well.
On the other hand, in practice, these theoretical findings are often not
that relevant. This is because the original problem itself is the result of
many simplifications and often arbitrary modeling decisions. Therefore,
it can be more interesting to find an implementable and transparent so-
lution with reasonable e↵ort rather than solving the original problem
as exactly as possible.

Some of the curses of dimensionality can be mitigated as discussed ear-
lier. The discretization of the decision space can be avoided if the
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subproblems can be formulated as a mathematical program, e.g. as a
mathematical program. Then the number of subproblems to solve can
be reduced significantly, however, at the cost that these are more com-
plex (see also example 3.3 on page 46).
The same is also true for the outcome space of the data, whereas the
discretization of the state space typically is necessary.

3.5 Stochastic dual dynamic programming
(SDDP)

As mentioned in the previous section, SDP su↵ers from the curses of
dimensionality. Stochastic dual dynamic programming (SDDP) is a
method that tries to overcome one of theses curses, i.e. the reduction
of the computational complexity for larger state spaces. The basic idea
is to find approximations for the valuing function Q(t, z) in such a way
that not every discretized state combination is needed to pass. SDDP

therefore belongs to the class of ADP algorithms.
In SDDP, these approximations are done by a collection of linear hyper-
planes, forming an polyhedral outer approximation of the value func-
tion. For a profit-to-go function Q

t

(z
t�1) being concave (or cost-to-go

function convex) with respect to the state space z(t), each hyperplane is
an upper (lower) bound to Q

t

(z
t�1). The hyperplanes are close to the

actual unknown value function only near the states which were visited
to construct them (see also figure 3.3). Therefore, it is necessary to find
the states which correspond to the optimal policy.
Such states are found in SDDP by performing a forward simulation, sim-
ilar to the already presented algorithm 3. In this forward simulation,
only an approximation of the value function can be used. Therefore, the
states found there are called trial states since they are not necessarily
the ones corresponding to the optimal policy.

As stated earlier, reasonably sized SAA are often too large to be solved
exactly. The second advantage of SDDP is that it inherently allows to
find feasible policies for possibly much more di�cult models with e.g.
continuous distributions.
SDDP is an iterative algorithm, where the approximation of the value
function is improved after each iteration. Unlike many other algorithms,
however, the accuracy can be checked against both an upper and lower
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Figure 3.3: Approximation Q̃

i

t

(z
t�1) of the (unknown) value function

Q

t

(z
t�1) by the minimum of a collection of hyperplanes Q

t

for a one dimensional state space Z

t�1

bound (under some conditions even for the original problem), which
could be considered as its third advantage.

The SDDP algorithm is best described if it is separated into two parts,
the approximation of the value function, i.e. the backward step, and the
searching of the trial states, i.e. the forward step. In order to formulate
the algorithm mathematically, many di↵erent variables and indices are
necessary. The notation used here follows basically the one in [50]. A
possible implementation of SDDP is given in algorithm 4.
For the demonstration of the SDDP algorithm the problem is first as-
sumed to be stage-wise independent with continuous distributions given
for random variables. The problem is then sampled as a SAA. Further,
the recursive optimality equation shall be as follows:
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Note that in contrast to (3.4) the expectation operator is now outside of
the maximization problem. This means that the decisions xj

t

are wait-
and-see decisions. Such a formulation is more streamlined. Here-and-
now decisions can be considered in SDDP by its discretization similarly
as it was done in algorithm 2 (see also the discussion about multi-cut
SDDP in the next chapter 4).

Backward step: the outer approximation

In SDDP, finding approximations for the valuing function is called back-
ward step or outer approximation.

Assume the i-th iteration of the SDDP algorithm. Suppose, that trial
states z̃

k

t

, t = 0, . . . , T � 1, k = 1, . . . ,M are given, for each time stage
M di↵erent trials.
The profit-to-go function Q

t

(z
t�1) is approximated by the minimum of a

collection of a�ne hyperplanes, also called cutting, supporting planes or
Benders’ cuts. Let Q

t

be this collection and Q̃

i

t

(z
t�1) the approximation

of the value function Q

t

(z
t�1). In each iteration i of the algorithm, M

cutting planes with intercepts �k

t

and vectors of slopes �k
t

are added to
the collection Q

t

, which refines the approximation of the value function
Q̃

i

t

(z
t�1). So there is:

Q̃

i

t

(z
t�1) = minQ

t

= min
k=1,...,i·M

�

k

t

+ �

k

t

z

t�1 (3.8)

In order to construct the intercept �

k

t

of a cutting plane the recursive
optimality equation (3.7) is solved, however, only for a given trial state
z̃

k

t�1:
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Because the approximation of the value function Q̃

i

t+1

(z
t

) is given as a
minimum of a set of a�ne functions, one can insert (3.8) directly into
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(3.9):
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Consider now ⇡

j

t,k

as the dual variables of the complicating constraints
in (3.10), i.e. the ones which specify the state transitions. Qualitatively,
these variables are measures of the sensitivities of the profit-to-go value
for varying states. The vector of slopes �

k

t

of a cutting plane can be
found as the subgradient of Q̃j

t

at the point z̃

k

t�1. It is calculated as
follows:

�

k

t

= � 1

N

t

N

tX

j=1

(Bj

t

)T⇡j

t,k

(3.11)

Thus, in the backward step, for each trial state a supporting hyperplane
is added to the collection Q

t

. Therefore, the subproblems (3.10) grow
in size after each iteration of the algorithm.

Note that by the dualization of the state transition constraints one
applies a nested Benders’ decomposition (also called L-shaped method).
That is why the supporting hyperplanes are also called Benders’ cuts.
Since SDDP solves a multi-stage problem, the method is also known as
a multistage nested Benders’ decomposition algorithm.

Upper bound

Since the approximated value function Q̃

i(t, z) is the minimum of a
collection of cutting planes of the value function Q(t, z), it is also an
upper bound of it. At time point t = 1 the approximated value function
at the initial state Q̃

i

1

(z
0

) is therefore an upper bound r̄ to the optimal
value of the SAA:

r̄ = minQ
1

= Q̃

i

1

(z
0

) (3.12)

This bound is deterministic, i.e. it is not based on sampling. Since the
optimal value of the original problem with continuous distributions of
the random variables is lower or equal to the one from the SAA, r̄ is also
an upper bound (on average) to the original problem.
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Forward step: the inner approximation

The forward step is sometimes also called forward simulation or inner
approximation. It serves primarily two purposes: to find trial states as
well as to calculate a lower bound.

Consider approximations Q
t

, t = 1, . . . , T as well as the initial state
z̃

k

0

= z

0

, k = 1, . . . ,M be given. In the forward step, first one realization
of the data process, a scenario ⇠

k = ⇠

k

1

, . . . , ⇠

k

T

, is sampled or chosen.
After that, the trial states for the backward step {z̃k

1

, . . . , z̃

k

T�1} can be
found by going forward as follows:
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The forward step can be repeated by taking another scenario, resulting
in an additional set {x̃k

, z̃

k}, because the policy depends on the real-
izations of the random data.
A policy {x̃k

1

, . . . , x̃

k

T

} is non-anticipative, feasible, and implementable
in respect with the chosen scenario. If the sampling is restricted to
scenarios from the SAA, then the policy becomes feasible and imple-
mentable for the SAA (similar to policies found by SDP). However, if the
samples are drawn from distributions from the original problem then
the policy is feasible and implementable for it and not only for the SAA.

Lower bound

Given the policies for equally probable scenarios, a lower bound for the
optimal value can be found with the following:

r =
1

M

MX

k=1

TX

t=1

�

k

t

(x̃k

t

, z̃

k

t�1) (3.14)

Note that r is a statistical bound to the SAA or original problem, de-
pending on which distributions the scenarios were constructed from.
The bound is stochastic and is a function of the considered scenarios.
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Therefore, it can vary from one iteration to the next.
Additionally, with the central limit theorem one can show that, pro-
vided that the number of scenarios M is large enough, the returnsP

T

t=1

�

k

t

(x̃k

t

, z̃

k

t�1) are approximately normally distributed. Conse-
quently one can construct a (1� ↵)-confidence lower bound:

r

↵,M

= r + cdf

�1(1� ↵)
var(

P
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t=1

�

k

t

(x̃k

t

, z̃

k

t�1))p
M

(3.15)

where (1 � ↵) is the confidence level, cdf the cumulated distribution
function of the standard normal distribution, and var the variance of
the returns.

Usability of the SDDP algorithm

SDDP is an algorithm, which can be applied to problems where SDP

is computationally intractable. Typically for smaller problems (one or
two state variables) SDP outperforms SDDP computationally, whereas
for problems with a few more states, SDDP can be more e�cient. Nev-
ertheless, SDDP is not an algorithm for dealing with problems with high-
dimensional states (say more than 20 states). For such problems, other
algorithms are better suited.

In SDDP, good performance requires parameter tuning. There is a trade-
o↵ between solving time per iteration and conversion rate.
Consider algorithm 4. For a fast solving time, the number of samples
M should be as small as possible. On the other hand, the more trial
states, the higher the chance for an improvement of the approximation
of the value function. Therefore, it can be a good idea that for earlier
time stages less trial states are used. Then, in later time stages, more
trial states are considered because of the higher uncertainty about the
location of the state points with respect to the optimal policy.

Similar to SDP, parallel processing can be used in SDDP. The calculation
of cutting planes per trial state and/or the calculation of it for each
sampled realization can be performed in parallel.

In each iteration of the algorithm, new cutting planes are added to both
the forward as well as the backward step subproblems, leading to higher
computational complexity per iteration. Therefore, the quality of each
cut is often measured in some way in order to be able to consider only
the best cuts.
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Algorithm 4 Stochastic dual dynamic programming

Require: Discretization of time t = 1, 2, . . . T and SAA

Require: Profit-to-go function Q

T+1

// often zero value

Require: Initial state z

0

Require: ✏ > 0 // maximum allowed optimality gap

Require: Q
t

, t = 1, . . . , T // initial outer approximation

1: Initialize: r = �1, r̄ =1, i 1 // lower/upper bound, iteration counter

2: while r̄ � r � ✏ do
Sampling:

3: Choose or sample M scenarios ⇠1, . . . , ⇠M

Forward step:
4: for k = 1!M do
5: for t = 1! T do

6:
n
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The cut selection can be based on its age: the older a cut is, the less
important it is. Another possibility is to choose cuts based on their
dominance: if a cut at the state it was constructed is dominated by
another cut, it will not be considered (so-called level one dominance).

Typically, the convergence rate of the algorithm decreases with the num-
ber of iterations because the approximation of the value functions are
not improved any more. The algorithm is then “stuck”. This can be
prevented by increasing the number of trial states, where sometimes
even random trial states are meaningful.

In the presented algorithm 4, the stop criterion is when the gap be-
tween upper and lower bound gets smaller a predefined threshold. In
practice, however, the algorithm is often stopped after a fixed number
of iterations, or when the upper bound is not improving anymore.

3.6 Alternative methods

Apart from stochastic programming, hydro power planning problems
can also be approached with alternative methods. These methods are
typically less suited for medium-term hydro power planning (MTHP)
problems. Therefore, only some references about them are given.

Deterministic methods

Although, from a theoretical point of view, stochastic methods clearly
outperform deterministic ones, in practice this may not be the case.
The reason for that is mainly that the computational complexity of de-
terministic models is much lower than for their stochastic counterparts.
Therefore, given a certain amount of computing power, deterministic
models can be more detailed with respect to the representation of the
system. Typically, one or more of the following complications of a hydro
power model are modeled in a more detailed way:

• head variations e↵ects,

• turbine e�ciencies,

• network constraints, or
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• delayed water flows.

Additionally, it may be very di�cult or costly in practice to estimate
stochastic processes of random variables. Such models also tend to
be more complicated than deterministic ones, which reduces the trans-
parency of the model.

Most stochastic methods can also be formulated deterministically. This
is also the case for SDP and SDDP. It would go too far here to intro-
duce and compare all of these methods. In academia, there is a general
consensus that models for hydro power planning should be formulated
stochastically if it is possible, since the importance of modeling stochas-
ticity is much higher than that of a more detailed representation of a
system.2

A counterexample is for instance the Brazilian hydrothermal optimiza-
tion problem, which is so complex such that the performance of de-
terministic, but less aggregated models, seems to be comparable with
stochastic ones [52–54].

Model predictive control

Model predictive control is a method originally developed for process
control. The general idea is to perform an optimization with a receding
or moving horizon. The found optimal control strategy, the policy, is
applied only for the first time stage and the optimization is repeated.
The optimization is typically a deterministic one, but it can also be
stochastic.

Such an optimization strategy with receding horizon also mimics the
way how operators think in MTHP problems: every day they repeat
some optimization and apply the first optimal decision. This procedure
only makes sense, if there are updated informations available, otherwise
the optimization result would not change from one day to the other.
A possible procedure for a MTHP optimization is that a (deterministic)
optimization is performed stage-wise with receding horizon and updated
states. So the operation of the plant would be simulated throughout the
time horizon.
Note that such a model predictive control based simulation is exactly
the same as the forward step in SDDP, where for (updated) states the

2E.g. for a typical Swiss system setup this was analyzed in [51].
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optimal policy is sought. In model predictive control, it is not specified
how the optimal policy is found. If the optimization is based on a SDP-
scheme, then the same policy as in SDDP would be found if the value
function is concave. However, note that such a model predictive con-
trol based simulation would require the calculation of a SDP algorithm
n-times, with n as the number of time stages.
In order to avoid this, o✏ine model predictive control is typically ap-
plied, where the policy is calculated for all possible states only once.
This scheme is then equivalent to SDP.

For MTHP optimizations, the procedure of solving daily stochastic opti-
mizations, which are triggered manually, seems to be more convenient.
Nevertheless, there are a few publications [55, 56], which apply model
predictive control approaches to a MTHP optimization.
For short-term optimizations, model predictive control can be of more
interests, since faster dynamics are present. For instance, the fulfillment
of ancillary services obligations is a good application for such methods.

Decomposition and aggregation

In medium-term hydrothermal problems, the di�culty is usually the
number of di↵erent power plants which has to be considered. These
plants are often only weakly connected to each other, for instance
through a common electricity market. These coupling constraints can
be relaxed which results in solving individual small subproblems which
are connected only through a master problem. Examples for works with
such ideas are [57–59].
In [60], another heuristic is proposed, where an interconnected hydro
system is extended by discretizing the energy interchange between sub-
systems. This allows a decomposition of the system.
Whereas academically such approaches can be very interesting, they
would su↵er in practice from the issue that the methods are based on
heuristics, which have to be tuned. Additionally, there is usually not
much insight on how good the found policies are.

Temporal or spatial aggregations can be very reasonable for specific
problems. This is also the present approach to apply SDP and SDDP to
the Brazilian system [42, 61] and Scandinavian system [41].
In order to consider hourly electricity market products in a MTHP prob-
lem, the products can be bundled (e.g. in peak and o↵-peak products),
as in [62]. Another idea is to model di↵erent time stages lengths: finer
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ones in the near term and coarser ones going forward as in [1, 63].
In chapter 6, decomposition and aggregation technics are further dis-
cussed and also applied to a MTHP problem.

Monte Carlo regression analyses

The MTHP problem can also been seen as an asset valuation problem.
Real option theory can be applied, where a (pumped) hydro power plant
can be modeled as a series of path-dependent American options. The
general idea in Monte Carlo regression analyses is that the unknown
stopping time for the option in a scenario is found by some regression
analysis on the stopping times of the other scenarios. The regression is
often based on least squares, leading to some variant of the Longsta↵
and Schwartz algorithm [64].

Such algorithms are formulated recursively, but also with a simulation
part. Therefore, they are similar to SDDP. The advantage is their
scalability in number of scenarios and their flexibility in how uncertain-
ties are modeled. That’s why they are well suited for asset valuation
problems. On the other hand, these algorithms are computationally
troublesome for more complex systems.
Additionally, regression simulation methods partially lack physical
interpretations. This is because a basis function has to be found, which
models the relationship between stopping times throughout scenarios.
Typically, this is an a�ne or quadratic function in order to work
well with the regression method. However, whereas the motivation
of correlated stopping times can be considered questionable in hydro
power plant applications, its modeling by a simple function is even
more dubious.

There is more research necessary to compare such methods with more
traditional ones like SDDP. In literature, there are a number of works
valuing gas storages with Monte Carlo regression methods (e.g. [65]).
For hydro power storages there are fewer works, which typically model
the plants in a generic way in order to valuate their performance in
di↵erent markets or to analyze expansion plans, as e.g. in [66].
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Approximate dynamic programming schemes

As previously stated, SDDP belongs to the approximate dynamic pro-
gramming (ADP) algorithms. ADP is “based on an algorithmic strategy
that steps forward through time” [30]. The forward simulation only
makes sense if there is some estimation of the value function and/or
a good policy. In ADP, there are many di↵erent approaches to find
them, e.g. by performing a backward optimization as in SDDP. Many of
these approaches are based on heuristics and can work well for a specific
problem.

From the perspective of a MTHP problem, the mentioned approaches in
literature are very similar to the ideas in SDDP. For instance in [67],
value functions are constructed by hyperplanes per cluster of states. A
cluster of states contains states which are strongly coupled. The value
function of the overall system is then found as the linear sum of the
value functions of the clusters. Obviously, such a method can work
well, when states can be clustered reasonably.
In a similar way in [44, chapter 5], a SDP scheme for decoupled basins is
presented. The overall system’s value function is again the linear sum
of the decoupled ones. Nevertheless a comparison with SDDP did not
show any advantage.

In [68, 69], the convex hull of the future cost-to-go function was used
to approximate it instead of Benders’ cuts as in SDDP. However, this
approach does not introduce substantial advantages. It not only ap-
proximates the value function from the “wrong” side, but its benefit to
use less constraints is negligible for problems which are solvable by such
methods.

3.7 Application example: Medium-term
hydro power planning problem

In this thesis, if not stated otherwise, the medium-term hydro power
planning (MTHP) problem is related to finding the optimal medium-term
scheduling for a single power plant. In a medium-term perspective, a
time horizon of some months up to a few years is considered. The plant
belongs to a generation company (GenCo), which sells its production on
a deregulated electricity market.
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Figure 3.4: Notation for medium-term hydro power planning (MTHP)
problems in this thesis.

Notation

When formulating the MTHP problem as a multistage program, variables
and constraints are divided into groups corresponding to stages, the time
periods. An optimization should find the optimal operating decisions.
The notation is as follows (see also figure 3.4):

• State variables z(t):

reservoir fillings: v(t).

• Decision variables x(t):

water release decisions: generation u(t) and pumping p(t),

charges from upstream reservoirs and inflows ◆(t): a(t), and

overflow (spillage): o(t).

• Constraints:

coupling constraints: water balance:

v

t+1

= v

t

+ a

t

� o

t

� f

u

(u
t

) + f

p

(p
t

).

• Objective:
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maximized revenue:

max
u(t),p(t)

c(t)(u(t)� p(t)).

The functions f

u

(u) and f

p

(p) relate used or produced energy in the
turbines and pumps to respective water flows. These functions depend
on head di↵erences and e�ciencies of the machines and can easily be
deduced from the energy conservation equations.
Variables for reservoir fillings are not needed in general, however, they
make the formulation much more streamlined. The production decisions
u(t), p(t) (one for each time period, thus multistage) should lead to
maximum revenue. For limited water inflows, the question of the hydro
scheduling problem is therefore if water should be released now or stored
for future use.
Note that in this formulation the time duration of a time stage is not
accounted for explicitly. In this thesis it is assumed that the functions
f

u

(u), f
p

(p) as well as the electricity price c(t) are adapted accordingly.

In a medium-term perspective, the sequential decisions have to be made
under uncertainty. Stochastic variables taken into account are typically
water inflows as well as prices for some markets. DP schemes can now
be applied, since the objective function can be separated with the in-
troduction of state variables and since the objective value, the revenue,
can only increase in time.

Operation policy: water values

The MTHP optimization should provide operational decision support.
Well suited for that are marginal values of basin fillings, i.e. the water
values. They are the opportunity costs of the stored water for a basin
and depend on time and current filling of all the basins. Typically, water
values can be used directly as a policy in short-term optimizations or
simulations.

The water values can be calculated out of the value function Q

t

(v
t�1).

In SDP-based algorithms, the value function is known only at discrete
points. An interpolation between them is used to estimate the full
function. The water values then follow from the gradient of it. If the
subproblems in the algorithm are formulated as linear programs (LPs),
then the dual variables of the water balance constraints give further
usable information about the value function.
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In SDDP-based algorithms, the cutting planes already include the in-
formation about the gradients of the value function. The water values
therefore are found by selecting the active cutting plane for a specific
filling. The active cut from the set of cutting planes is the one with the
least value for the given filling.

Here-and-now and wait-and-see decisions

Decisions about overflow o(t) as well as charges from upstream reservoirs
a(t) are usually modeled as wait-and-see decisions. On the other hand,
generating and pumping decisions can be modeled as both here-and-now
or wait-and-see decisions. The next example 3.3 analyzes the associated
di↵erences.

Example 3.3. MTHP problem modeling: First, the problem is mod-
eled with only wait-and-see decisions. The recursive optimality equation
for the MTHP problem for the plant in figure 3.4 is then as follows:
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Note the indexes j for all decisions, which means they are adapted to
current realizations of the uncertainties. Although all decisions are wait-
and-see decisions, they have to be taken under uncertainty of future
evolution of the random data. The future is anticipated only by the
value function that is the expected future average revenue.
Note also that per realization j there is one independent maximization
problem to solve.

Next, the generating decisions u(t) and pumping decisions p(t) shall be
modeled as here-and-now decisions. The recursive optimality equation
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is now:
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Note that the maximization operator is now outside of the summation
which couples the previous independent subproblems. From this formu-
lation alone, it is not clear how to solve the problem. This issue will be
treated in the continuation of this example.

Since in the first formulation all decisions are adapted to the random
data realizations, the problem is overly optimistic. In general, one can
say that the objective function value of such formulated models are
higher compared with models with here-and-now decisions (see also ta-
ble 3.2). ⌅

Computational complexity

Stochastic problems are computationally troublesome due to the ex-
ponential growth of their scenario tree. Therefore, it is clear that a
decomposition is meaningful, e.g. the presented dynamic programming
algorithms.

Similarly, the here-and-now decisions can be discretized (e.g. as in algo-
rithm 2) in order to maintain computational tractability. However, such
a decomposition may be not always meaningful. In recent years, solvers
for mathematical programs have become very powerful. The speed up
of the LP algorithms from the year 1990 to 2010 is considered to be
more than 3000 times. Together with the advances in processor speed
of more than 1500 times, this results in a speed up for solving LPs of
about 4.5 millions [70].
Typically, the main problem experienced nowadays when solving LPs,
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are the limited amount of memory available. On the other hand, as long
as the modeled system matrices remain manageable, it is very di�cult
to find more e�cient solution methods, making a further decomposition
of the problem obsolete.

Example 3.3. continued: The formulation (3.17) shall now be imple-
mented. In algorithm 2 the decision space was discretized in order to
be able to solve the problem. In this case, this would mean introducing
discrete generation and pumping steps. For instance, the steps could be
threesome: fully pumping, doing nothing, or full generation. Although
this seems a crude model, in practice this can be a reasonable assump-
tion for a MTHP optimization. It can be even shown mathematically
that, for simple models, such bang-bang solutions are optimal [71].

Another possibility is to solve the coupled problem directly as one max-
imization problem, formulated as the deterministic equivalent for one
time stage. This problem can still be linear depending on how the value
function Q

t

(v
t�1) is modeled.

Table 3.1 shows the computational complexity of both implementations
for one time step and varying number of scenarios N

t

. When the here-
and-now decisions are discretized, then the complexity is linearly depen-
dent on the amount of scenarios. This is obvious, since the subproblems
remain the same, but only a larger number of them have to be solved.
Note that, for comparison reasons, the computations were performed
on a single processor core and not in parallel.

The second implementation formulates the coupled problem as a single
LP. As solver, the function linprog from the optimization toolbox in
Matlab was used.
This implementation is clearly superior to the first one, yielding to re-
sults more than 60 times faster. Further, although the complexity of
this implementation grows more than linearly with number of scenar-
ios, one would need a massive amount of them in order to undermine
it. ⌅

Deterministic optimization of expected random data

As stated in section 3.4, the expectation operator can be moved into the
contribution and state transition function if the problem is linear in the
random elements. This would make solving the problem much easier,
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Table 3.1: Example 3.3: Computational complexity for implementa-
tions of (3.17).

Scenarios Nt: 10 100 1000 10000 100000

Decomposed [s]: 1.21 3.08 33.66 320.57 3198.48

Single LP [s]: 0.02 0.05 0.33 40.75 out of memory

Ratio: 60 62 102 8 -

since the problem could be considered deterministically for expected
random data.

A closer look at the MTHP problem, as stated e.g. in (3.17), reveals that
the problem is indeed linear in the prices c(t) and water inflows ◆(t).
However, if the constraints of ✓ become binding because of an actual
realization of the random data, then the overall problem is not linear
anymore, which is illustrated in the next example.

Example 3.3. continued: The MTHP problem is now also formulated
as a deterministic DP for expected random data:
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In this formulation, the prices cj
t

and water inflows ◆j
t

are considered in
the optimization only by their expected value. Similarly to the imple-
mentation of (3.17) as a single LP, the optimization here consists also
of a single LP per time stage. However, it is a deterministic one and
therefore possibly much smaller.

Consider now the implementation of the formulations (3.16), (3.17) and
(3.18). Table 3.2 shows some results for one time stage. In order to
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make this example both simple and interesting, only two water inflow
scenarios are considered. Additionally, there is no pumping allowed.
The basins are large and empty at the beginning, the time duration
of the time step is one hour, e�ciencies are = 1, 1000m3 of water flow
relates to 1MWh, and there is no value given to stored water and there-
fore Q

t+1

= 0.
In the wait-and-see formulation (3.16), the generation decision p(t) is
adapted to the water inflows. Therefore, the production will make use
of all of them. In the here-and-now formulation (3.17), the turbine does
not run at all, since in one scenario there is no water available. The
deterministic formulation (3.18) finally makes use of the expected water
inflow. But it does not realize that in one scenario the turbine capacity
would not be enough to process all of the inflow.
Also shown are the water values for the two basins. They can be
obtained from the dual variables of the respective water balance con-
straints. For all formulations, the water value is zero for the basin 2,
since Q

t+1

= 0 and since no pumping is allowed. Therefore, the filling
of this basin does not influence the objective function at all. For the
basin 1, the formulations get to di↵erent values. The values can be
explained by noticing the change in the objective value, if the filling of
this reservoir would increase by one unit.

Although this example shows only the results for one time step, some
fundamental characteristics become apparent. The stochastic wait-and-
see formulation is di↵erent to the deterministic case only if some variable
bounds of it become binding. In this case, it was the turbine capacity
and therefore, the overall problem is not linear in the realization of the
water inflows.

The need for formulating a problem stochastically can be analyzed by
the expected value of perfect information (EVPI) measure. The EVPI is
the price one would be willing to pay for perfect information about the
random data. In the shown example it would be 2500e�0e= 2500e,
the di↵erence of the objective values of the wait-and-see and the here-
and-now formulation (only valid for such a two-stage stochastic pro-
gram). If the stochastic formulation would result in the same objective
value, the EVPI would be zero. This would indicate that considerating
random data is not needed, since it does not have an impact on the
problem.
The benefit of using the stochastic formulation can be expressed by the
value of the stochastic solution (VSS) measure. The VSS can be cal-
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Table 3.2: Example 3.3: Comparison of some results for implemen-
tations of (3.16) (wait-and-see), (3.17) (here-and-now) and
(3.18) (deterministic) formulations.

Input data for time stage t:

Inflow ◆jt : = {0, 200} [1000m3]

Price cjt , 8j: = 50 [e/MWh]

Turbine p(t): 2 [0, 100] [MW]

Pump u(t): = 0 [MW]

Results: wait-and-see here-and-now deterministic

Obj. value: [e] 2500 0 5000

Turbine pjt : [MW] 0/100 0 100

Water values: [e/1000m3] 25/0 50/0 0/0

culated, in this case, as the di↵erence of the here-and-now objective
function and the revenue resulting from applying the optimal policy
from the deterministic formulation. Applying the deterministic solu-
tion in this simple example would lead to an infeasible solution, and
therefore the VSS is infinite.

⌅





Chapter 4

Extended stochastic dual
dynamic programming

Stochastic dual dynamic programming is an algorithm, which can be
very powerful, but at the costs of requiring concavity of the value func-
tion with respect to the state space and stage-wise independency. These
two conditions are sometimes di�cult to meet. Therefore extensions to
the basic stochastic dual dynamic programming algorithm were proposed
which can handle them in an appropriate way. This chapter introduces
these methods as well as describes some exotic variants.

4.1 Bibliography

Stochastic dual dynamic programming (SDDP) was applied for several
di↵erent problems by adapting or extending the algorithm. Many au-
thors approximated the problem itself in order to be able to apply SDDP,
e.g. in order to consider transmission network constraints [72], price-
maker agents [73], or non-linear water head e↵ects [74].
Another approach is to use a relatively simple model in the backward
step, but a detailed one in the forward step. Although convergence is
not guaranteed then, in practice, for a small solution gap, one can argue
that a good policy for the detailed model is found. E.g. N. Löhndorf et
al. were able to solve with this approach a hydro scheduling problem
where the hydro power plant was a price setter in the intraday market
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[75].
An extension of SDDP was proposed by A.Gjelsvik et al. in [76]. They
applied SDDP for hydrothermal scheduling, considering spot price un-
certainty, where the price process was a discrete Markov model. With
this construction, the cost-to-go function is non-convex with respect to
the price state. By making the price process discrete, they were able
to apply a variant of SDDP where the cuts are not shared for di↵erent
price points, thus combining stochastic dynamic programming (SDP)
with SDDP.

Non-convex value functions cannot be approximated by a set of linear
constraints which is needed in the traditional SDDP scheme. The usual
approach to cope with this in SDDP is to approximate the problem. E.g.
in [77], integer variables from an investment problem were relaxed to
continuous ones or similarly in [73], for the consideration of a price-
maker hydro plant.
Another way is to approximate the value function itself instead of the
problem. S.Cerisola et al. considered nonlinear water head e↵ects by
applying Lagrangian relaxation to the coupling constraints in order to
find valid Benders’ cuts [74]. F. Thome et al. further enhanced this
approach in the working paper [78] by optimizing the Lagrange multi-
pliers, leading to closer cutting planes and thus faster convergence of
the algorithm.

4.2 SDDP for stage-wise dependent sample
average approximations

SDDP requires a stage-wise independent problem. However, a stage-wise
independent sample average approximation (SAA) seems at first to be a
very limited construct. For instance, consider an hourly model for elec-
tricity prices and water inflows. Both prices and inflows are strongly
autocorrelated. Therefore, some kind of autoregressive modeling is re-
quired, which would prevent constructing a stage-wise independent SAA

and consequently also the application of SDDP.
However, with a simple trick, such a stage-wise dependent SAA can be
reformulated stage-wise independently by augmenting the state space.
The role of the additional state variables is to provide the relevant his-
tory. As long as the formulation stays concave with respect to the newly
introduced state variables, SDDP can be applied.
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A downside of this method is the increase in computational complexity
due to the increased state space. Even a simple autoregressive model
quickly requires a couple of additional states, which reduces the conver-
sion rate of SDDP considerably. In such cases, the application of SDP

can be more e�cient, since a level one dependency can be employed
there inherently.

Another approach is to combine SDP with SDDP, which allows also au-
toregressive considerations for data processes where the value function
would be non-concave in their respect. The method is also known as
multi-cut SDDP and follows directly out of the formulation (3.6) for the
post-decision state.
Consider a random process, which depends on an underlying finite
Markov chain. Let the state transition of the Markov chain process
be sampled. In the backward step of SDDP, the cuts are now not shared
for di↵erent sampled states of the Markov chain. Thus, an individual
collection of hyperplanes per state point is constructed. Algorithm 4
would then have to be slightly adjusted so that the subproblem in line
14 would be solved also for each sampled state point of the Markov
chain process.
Note that by not sharing the cuts, the value function does not have to
be concave for the respective process. The Markov chain can be quite
general and can therefore model complicated systems.
Note further that a multi-cut scheme can be applied for problems where
a single-cut would be also possible. The main disadvantage of multi-cut
SDDP is the combinatorially increased number of subproblems, which
have to be solved per number of sampled Markov chain discrete points.
However, in comparison with a single-cut formulation, the conversion
rate is higher.

Example 4.1. Extended SDDP: Consider the bidding problem for a
hydro power plant with stochastic market prices and water inflows. A
bid consists of a price and an associated quantity of energy. Therefore,
the value function is non-concave with respect to realized market prices.
In order to apply SDDP, the multi-cut scheme with augmented state
space is applied.

For the price process, a discrete and finite Markov Chain is constructed.
A possibility could be to model a temperature process as a Markov
Chain. Then both stochastic water inflows and market prices could re-
alize depending on a temperature state.
Nevertheless, assume that the price process itself is modeled as a simple
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Markov chain. The price is discretized to a sparse representation of
only 2 price states, e.g. to a low and high price point. The state transi-
tion function would then specify the four transitions low-low, low-high,
high-low, and high-high with appropriate probabilities.
In contrast, the water inflows process shall be modeled as a autoregres-
sive process of order 1. Therefore, the state space is augmented by the
realized inflow at t� 1. Note that with such a construction, the inflow
process remains continuous.

Regarding the computational complexity, the modeling of the prices and
inflows have a di↵erent impact. For the price states low/high, the set
of cuts can not be shared. Therefore, the backward step in SDDP has
to be performed basically twice. Additionally, instead of calculating
only one subproblem per trial state and sampled random data, two of
them have to be considered now. So, in total, the complexity grows
2 · 2 = 4 times. However, note that with su�cient parallelization, the
complexity would stay the same. Note also that the conversion rate of
the algorithm would not be influenced.

In contrast, the additional state for the water inflow process does not
change the formulation of the algorithm 4. Because the value func-
tion is concave in respect to a water inflow state, cuts can be shared.
The increase in complexity of the subproblems, which are solved in the
forward and backward step, is negligible. But most probably, the con-
version rate of the algorithm will be lower. It is now more di�cult to
find the right trial states and, therefore, a lower quality of the cutting
planes has to be accepted.
To make this clearer, consider an hourly time step. The hourly uncer-
tainty in the water inflows is typically very high. Therefore the forward
step will have problems to estimate the state correctly. ⌅

4.3 SDDP for non-concave value functions

Depending on the type of problem, there are di↵erent approaches to
handle meaningfully non-concave value functions. In table 4.1, a brief
overview of some of them is given. Those methods are now explained
in more detail.
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Table 4.1: Dealing with non-concave value functions

Method Primarly use

Multi-cut SDDP: If non-concave only for some states.

Concafication: Source of non-concavity is not that important.

Reformulation: Non-concavity can be reformulated reasonably.

Ordinary SDDP: Value function is only slightly non-concave.

Dualized SDDP: Value function is moderately non-concave.

Ordinary SDP: Value function is not well-behaved.

Multi-cut SDDP

Multi-cut SDDP was already explained in the previous section. This
method can handle states in which the value function is non-concave.
It is important to note here that the value function is non-concave only
for some states and not for all. Otherwise multi-cut SDDP would be
nothing else than an ordinary SDP algorithm.

Concafication or reformulation of the problem and ordinary SDDP

Another way of dealing with non-concave value functions is its con-
cafication either by approximation or reformulation. Of course, such
strategies make only sense if the source of the non-concavity is not that
important and can be approximated or reformulated reasonably.

In practice, value functions are often only slightly non-concave. In such
cases, ordinary SDDP can still provide acceptable policies.

Dualized SDDP

Cutting planes are theoretically no longer upper bounds in SDDP if
the problem is non-concave for some states. A way around this issue
can be found with the help of Lagrangian relaxation. The idea is that
the state transition function, which is the complicating constraint, is
relaxed. Therefore, the violation of these constraints is penalized with
a Lagrangian multiplier in the objective function. One can then show
that the optimal value of the resulting problem as well as the multiplier
can be used to construct a valid upper bound even for non-concave
functions.
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Consider again problem (3.7) and assume a non-concave value function.
Let an estimate of the Lagrange multiplier µ̃

j
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for time stage t, trial
state k, and sample j for the complicating constraint be given. The
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found by slightly adapting (3.11):
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} forms a valid cutting plane. The cut is possibly not “close”
to the actual value function (see also Fig. 4.1), if the estimate of the
Lagrange multiplier µ̃j

t,k

was not good. But qualitatively good cuts are
important for the convergence of SDDP.
The multipliers can be optimized in order to get more restrictive cutting
planes. The procedure for such an optimization can be as follows:

1. Solve the non-concave subproblem to get the optimal value �j,opt

t,k

.

2. Find the initial guess of a Lagrange multiplier by solving the lo-
cally convexified problem.

3. Solve the Lagrangian relaxed problem (4.1):

(a) Solve it for the initial multiplier guess.
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Figure 4.1: The collection of cutting planes for guessed multipliers
Q
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The updating of the multipliers can be done by using a sub-gradient
method, where the step size depends on how far the optimal value �̃LR of
the Lagrangian relaxed problem is from the one of the original problem
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opt, normalized by the violation of the complicating constraint:

µ̃

j,new

t,k

= µ̃

j,old

t,k

�
�̃

j,LR

t,k

� �

j,opt

t,k

�

j

t,k

(4.3)

�

j

t,k

=

✓
b

j

t,c

�B

j

t,c

z̃

k

t�1 �A

j

t,c


x

j

t

z

j

t

�◆

Note that the search for a good Lagrange multiplier is not in order
to solve the subproblem (3.10) or to decompose it, but to find a more
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restrictive cutting plane. In this respect, it is interesting to note that the
actual solution of the subproblem is known and therefore the updating
of the multiplier can be done in an elegant way.

Note also that if the value function is concave, then the initial guess of
the Lagrange multiplier corresponds to the dual variable of the compli-
cating constraint ⇡ and the same cutting plane as in ordinary SDDP is
found.

The main disadvantage of this method is the increase in computational
complexity. When the value function is only moderately non-concave,
then two additional subproblems have to be solved, which triples the
needed computational e↵ort. However, already found optimal multi-
pliers can often be shared for di↵erent trial states and data samples,
resulting in only one additional subproblem to be solved.
For not well-behaved value functions many iterations can be necessary
in order to find the optimal multipliers and the sharing of those will
not be helpful. Additionally, even for optimal multipliers, the cutting
planes can be of poor quality, which further lowers the convergence rate
of the SDDP algorithm.
As a conclusion, one can note that although this method could handle
non-concave value functions in SDDP, in practice, this only makes sense
for moderately non-concave value functions.

Example 4.2. Dualized SDDP: In order to illustrate the dualized
SDDP method, consider a problem like (3.7), where some decision vari-
ables w(t) are integer ones. Such mixed-integer linear programs (MILPs)
can lead to non-concavities since the profit-to-go function may become
uncontinuous.

In order to apply the SDDP algorithm 4, line 14 has to be adapted as
shown in algorithm 5.
Note that instead of having a single subproblem, one additional linear
program (LP) with fixed integers has to be solved and then at least one
MILP for calculating the optimal profit of the relaxed problem.
In a practical implementation, previous Lagrange multiplier can be
reused which makes the calculation of the LP with fixed integers ob-
solete. Also, previous solutions of the MILPs are used to warm-start
their computation. Therefore, the e↵ort to solve a single MILP is very
close to solving a LP. As a result, the needed computational e↵ort ap-
proximately at least doubles. ⌅
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Algorithm 5 Example 4.2: Dualized SDDP for a MILP

Require: Algorithm 4, line 14 is replaced with the following:

Solving of MILP to get its optimal value and integer decisions:
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4.4 Summary

Stage-wise dependent problems can be well reformulated in order to
allow stochastic dual dynamic programming (SDDP) to solve them by
either augmenting the state space or by using multi-cut SDDP.

For non-concave value functions, the discussion is more subtle. Depend-
ing on the source and severity of non-concavities some approaches may
be more suitable than others. However, it is not really clear a priori,
how to measure the extent of non-concavity. This issue is therefore fur-
ther discussed in chapter 7.
The di↵erent methods and their main application are summarized in
table 4.1. Note that, for more than moderately non-concave value func-
tions with many state variables, there is no e↵ective method.



Chapter 5

Risk averse optimization

This chapter introduces risk averse optimization. First, coherency of
risk measures is discussed. Then, the average value at risk is described.
In the multi-stage setting, dynamic risk measures and time-consistency
are briefly scrutinized. Finally, the risk measure is built into stochastic
dynamic programming and stochastic dual dynamic programming algo-
rithms.

5.1 Bibliography

In literature, many approaches for risk averse hydro power planning
strategies are proposed. A relatively recent review about them is given
in [79], and for hedging of price risk in energy trading in [80].

Roughly speaking, uncertainties may appear either in the constraints
and/or in the objective function. An example of the former case is un-
certainty in water inflows. Research about how to mitigate such inflow
risks, and with that related also reservoir level risks, began with ap-
plications of stochastic dynamic programming (SDP) in the 70’ of the
last century. In [81], a penalty-based procedure was used to ensure
certain water levels. This was extended in [82] by using Lagrange mul-
tiplier methods and in [83] these kind of algorithms were investigated
in detail. Finally, in [84], it was tried to overcome some issues for such
algorithms by modeling them as a set of nested problems, where the

61



62 Chapter 5. Risk averse optimization

targeted risk was attained by an iterative approach.
The works were further extended by considering chance constraints. If
the distribution of the random variables (like water inflows) are as-
sumed to be known analytically, then such problems can be formulated
e�ciently. E.g. recent examples [85, 86] follow such an approach which
is applicable to stochastic dual dynamic programming (SDDP).

With the advent of liberalized electricity markets, the scope of some
researchers shifted from achieving a certain reliability of hydro power
production to mitigate profit risk. However, this was achieved by similar
methods, i.e. by setting target values for some variables. E.g. in [87], an
integrated approach was followed, where revenue below a certain target
was penalized by taking into account future contracts.

More recently, risk measures in the objective function of multistage
stochastic programs that depend on decisions and the underlying ran-
dom variables achieved great attention in research.
It begun with the discussion of coherent risk measures by P.Artzner et
al. in 1999 [88]. F.Riedel contributed by analyzing dynamic risk mea-
sures in [89] and A.Eichhorn by investigating general polyhedral risk
measures in [90, 91]. Time-consistency of risk measures were analyzed
in many publications, e.g. for dynamic risk measures in [92] and applied
for hydro power by M.Densing in [93]. A.Ruszczynski discussed such
risk measures further in [94] as well as G. Pflug et al. in the textbook [45,
chapter 5]. A. Shapiro contributed to this field by various publications
and by analyzing how coherent risk measures, especially the average
value at risk, could be co-optimized within a SDDP based algorithm
[19, 40, 50, 95, 96]. A. Philpott et al. extended such approaches to gen-
eral coherent risk measures in [97, 98]. Independently, these approaches
were also investigated by the Electric Energy Research Center (CEPEL)
in Brazil in [99, 100]. Finally T.Homem-de-Mello et al. tried to summa-
rize the findings of risk aversion in multistage stochastic programming
in [101].

5.2 Risk aversion in power plant operations

Risk and its mitigation can be modeled as additional constraints in a
mathematical program. One possibility is to maintain the risk con-
straints for all possible scenarios. This leads mostly to quite unrealistic
and costly solutions or even to infeasible problems.
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One can make the model less restrictive by using chance constrained
programming, where the risk constraints have to be maintained only
for a high probability. When the distributions of the uncertainties are
known and not complicated (like normal distributions), this can be a
convenient approach. Otherwise such models can be very di�cult to
handle numerically.
The next step is to maintain the risk constraints only for some repre-
sentative scenarios, which is also called robust programming. Whereas
such methods can be quite transparent, the choice of the scenarios is on
the other hand di�cult to justify. Additionally, no guarantees for the
quality of such robust policies can be given.
More recently, the so-called scenario approach [102] provides, for con-
vex problems, the number of randomly sampled scenarios which has
to be considered, in order to fulfill probabilistic constraints. This ap-
proach depends only on the amount of decision variables and/or how
uncertainty enters the problem. Therefore, the number of scenarios to
consider can be quite large. Additionally, although the constraints are
fulfilled, the found policy is not the most optimal one as well as there
is no insight on its relative quality.

All of the so far mentioned risk measures consider possible shortfalls
equally, no matter how large they can be. Penalty schemes, in con-
trast, are di↵erent in this respect. The idea is that the violation of
the risk constraints is penalized in the objective function. Consider the
risk constraints being described by A

risk

x � b

risk. Then, its violation
�(brisk �A

risk

x) is added to the objective function.
It is di�cult to motivate the parameters of the penalization � and
the lower limit b

risk. Additionally, the parameters are in this way not
adapted to the current realizations of a random process. Consider for
instance a model which would penalize too high usage of water per time
stage. When the parameters are not adapted then they are chosen a
priori. For the model, it could make sense to adapt the upper limit
of water usage depending on if the respective time stage has relatively
high or low water inflows.
In order to make the limit brisk adaptive or conditional on the observed
history of the random process, the value at risk can be taken as the
limit. This construction leads to optimizing the conditional conditional
value at risk or, in order to avoid that awkward terminology in this
context, the conditional average value at risk.

Following this qualitative discussion of risk measures a more mathe-



64 Chapter 5. Risk averse optimization

matical one is shown below. First, some properties of risk measures are
discussed. Then, the conditional average value at risk is introduced for
the multistage case.

5.2.1 Coherency of risk measures

As shown in the previous section of this chapter, there are many possible
di↵erent risk constructions. Coherency for risk measures now guaran-
tees meaningful risk functionals. Let the variables X,Y be random,
where again a higher realization of them is considered to be better. A
risk measure ⇢(X) is called to be coherent [88], if it fulfills the following
conditions:

1. Subadditivity::

⇢(X + Y )  ⇢(X) + ⇢(Y )

2. Positive homogeneity:

⇢(�X) = �⇢(X) , � � 0

3. Monotonicity:

⇢(X)  ⇢(Y ) , X � Y

4. Translation equivariance:

⇢(X + a) = ⇢(X)� a , a 2 R

The four conditions can be motivated qualitatively. Subadditivity en-
sures that a combination of two random variables does not increase
the risk value (diversification). Monotonicity ensures that if all real-
izations of a random variable is higher or lower than the other ones,
then the same is true for their risk measures. And, finally, translation
equivariance and positive homogeneity ensure that a summation or mul-
tiplication of all realizations of the random variable can be taken out of
the functional.
Note that if lower realizations of the random variable are considered to
be better, then the monotonicity and translation equivariance have to
be adapted accordingly.

As discussed in [103], many situations can arise where the risk of a posi-
tion might increase in a nonlinear way with the size of the position, e.g.
due to additional liquidity risk. For such cases, the properties of coher-
ent risk measures are proposed to be relaxed, namely the subadditivity
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and positive homogeneity conditions, to the property of convexity:

5. Convexity:

⇢(tX + (1� t)Y )  t⇢(X) + (1� t)⇢(Y ) , 8t 2 [0, 1]

Such risk measures are then called convex risk measures.
It can be shown that a coherent or convex risk measure is meaningful
from the mathematical point of view. Mostly this is also the case from
the modeling point of view.

5.2.2 Average value at risk and mean-risk models

In general, the average value at risk (AV@R) is defined for a random
variable X and a risk level ↵ as follows:

AV@R
↵

[X] = E [X|X  V@R
�

] =
1

↵

Z
↵

0

V@R
�

(X)d�

where V@R
�

is the value at risk. The AV@R is the expected value of
the probability distribution function of the random variable lower than
its ↵ quantile. Therefore, it is also called expected tail loss. Note also
that this notation applies only to the risk of a random variable, where
higher realizations of it are considered to be better. Examples for such
random variables are portfolio values or cashflows.
It can be shown that the AV@R is a coherent risk measure. In an opti-
mization problem, it can be calculated as follows [104]:

AV@R
↵

[X] = max
2R

� ↵

�1 E [(X � )�]

If there are identically and independently distributed random samples
X

1

, . . . , X

N of realizations of the random variable X available, then
this optimization problem can be written as:

AV@R
↵

[X] = max
2R

� 1

↵N

NX

j=1

�
X

j � 

�
� (5.1)

In practice, this problem can also be solved by first ordering the set
of samples to X

1,sort  X

2,sort  · · ·  X

N,sort. Consider now the
operator [X]sort (j), which orders the set of the realization of the random
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variable X and returns its j-th entry. Then for d..e being a rounding
up operator there is:

AV@R
↵

[X] =
1

d↵Ne

d↵NeX

j=1

[X]sort (j) (5.2)

A co-optimization of the risk of random costs or revenues and the ex-
pected value of them seems to be the most meaningful approach for risk
averse dynamic programs. Such constructs are for general risk measures
known as mean-risk models. If the AV@R is taken as risk functional and
with � 2 [0, 1] as costs of risk, a weighting factor, there is:

⇢(X) = (1� �)E[X] + �AV@R
↵

[X] (5.3)

For a two-stage stochastic program the formulation of the objective
function then changes from optimizing the expected value of some ran-
dom variable (e.g. revenue) to its risk adjusted one (5.3).

5.2.3 Dynamic risk measures and time-consistency

For multi-stage problems, dynamic risk measures [89] are convenient
for the consideration of risks. A dynamic risk measure % is above all a
measure, which adapts its value if new information gets available. It is
well known that such a behavior can be achieved by using a recursive
setting of single period risk measures.
Consider now as X

1

, ..., X

T

the sequence of future realizations of a ran-
dom variableX which arises in multi-stage programs. Further, let ⇢(X

t

)
be a single period risk measure, e.g. as defined in (5.3). Then, the nested
formulation of the risk measure % for this sequence is as follows:

%(X
1

, ..., X

T

) = ⇢ (X
1

+ ⇢ (X
2

+ ...+ ⇢ (X
T

) ...)) (5.4)

Since this formulation coincides with the one for SDPs (3.3), it can be
integrated there seamlessly.

Whereas mathematically the complete characterization of % is di�cult
(it is a risk measure of risk measures)1, it makes sense from the modeling

1Recently, some authors argued that multi period risk measures should fulfill
information monotonicity, i.e. with more information the risk can not increase [45].
Risk measures based on the concatenation of single period risk measures as in (5.4)
fulfill this property only for the single period risk functional being based on the
expectation or the max-risk functional [105]. In our view, however, this property is
not required for a reasonable setting.
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and economical point of view as follows.
Firstly, with such a construction, risks are valued less the further they
are away, which is intuitive thinking. Then, one can also try to interpret
the objective function economically. At time stage t = T � 1, the
objective function for a revenue maximization problem represents the
risk adjusted value at terminal wealth. In financial terms, it is the
certainty equivalent of it, the amount of money which is viewed as being
comparable to holding the asset. Further, at time point t = T�2, . . . , 0,
the objective function describes again the certainty equivalent of holding
the asset for one period. [106]

For multi period risk measures, consistency in time is another important
aspect. Time consistency assures that decisions are not contradictory
in time. It can be referred as:

“For a multi stage optimization the optimality of the deci-
sions in a stage should not depend on scenarios which are
already known that they can not happen in the future.” [19]

An alternative formulation is that “if an investment opportunity is pre-
ferred to another at a future time in all possible events at that time,
then it is preferred as of today, too.” [93].
An example for a time inconsistent risk measure would be the minimiza-
tion of the AV@R of some quantity at the end of the planning horizon.
That is because the policy at some time stage t > 1 would depend on
realizations which are known that they can not happen any more. Thus,
the constructed policies would be awkward and it can be shown that
they are in general suboptimal.

Now, if a risk measure % can be formulated in a nested way of coherent
risk measures ⇢ as in (5.4), then it follows mathematically that % is also
coherent as well as time consistent [92]. Therefore, such a construct can
be a good choice for a risk measure in dynamic programmings (DPs).

5.3 Application to stochastic multi-stage
programs

For a stochastic multi-stage program, which can be formulated as a DP,
a mean risk model shall be introduced. As single period risk measure,
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the coherent AV@R is chosen. In the multi-stage setting the measure is
considered adaptively on the realized uncertainty as well as in a nested
way. Therefore, a mean risk model with a dynamic and conditional
AV@R will be formulated.

The formulation of the objective function of the stochastic optimization
(3.4) will change to:

Q

t

(z
t�1) = max

x

t

(1� �)
1

N

t

N

tX

j=1

h
�

j

t

(x
t

, z

t�1) +Q

t+1

(zj
t

)
i
+

�

1

d↵N
t

e

d↵N
t

eX

j=1

[�
t

(x
t

, z

t�1) +Q

t+1

(z
t

)]sort (j) (5.5)

Note that the calculation of the AV@R requires a certain number of
samples N

t

in order to be meaningful. Otherwise, with the modification
(5.5) of the objective function, the algorithm 2 can be used directly to
solve the risk averse multi stage stochastic program.

The problem (5.5) may be di�cult or quite expensive to solve. But it
was shown in [19, Proposition 6.37] that if a risk measure is monotone
(which is the case when it is coherent), then the risk operator can be
written outside of the maximization. So, instead of computing one large
maximization problem, a number of subproblems can be solved, for each
random data realization one. The risk measure can then be computed
out of them.
In our context, this is only possible, if all of the decisions x(t) are of the
wait-and-see type. Equation (5.5) can then be formulated as follows:

✓

j

t

= max
x

t

�

j

t

(x
t

, z

t�1) +Q
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(zj
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) , 8j = 1, . . . , N
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1

d↵N
t

e

d↵N
t

eX

j=1

[✓
t

]sort (j) (5.6)

Example 5.1. Risk averse SDDP: Similar to the SDP algorithm, with
modest e↵ort, the SDDP algorithm 4 can be modified in order to con-
sider risk aversion.
Consider the application of a dynamic mean risk model with the con-
ditional AV@R as risk measure. The lines 14-17 in the backward step of
algorithm 4 have to be adapted as shown in algorithm 6.
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Note that the forward step does not need to be adapted, since the risk
averse policy, the value function approximations Q, can be used in the
same way as the risk neutral one. Similarly, the expected value of the
found policy can still be evaluated as in (3.15). However, there is no
easy way to calculate the nested risk averse objective value.2 Hence, it
is no longer possible to compute a lower bound to the algorithm and
therefore another stopping criterions for the algorithm has to be applied.
A possibility is to stop the algorithm if the upper bound stabilizes itself
or simply after a fixed number of iterations.
Note also that the computational complexity is not increased in compar-
ison to the risk-neutral formulation because the convergence rate stays
the same. But as in the case for risk averse SDP, an appropriate amount
of samples N

t

has to be considered in order to be able to compute the
risk measure. ⌅

Algorithm 6 Example 5.1: Risk averse SDDP

Require: Algorithm 4
Line 16 in algorithm 4 is replaced by:

1: �

k,sort

t

= sort(�

t,k,j

) // sort in increasing order

2: �

k

t

= (1� �)

1
N

t

N

t

P

j=1
�

t,k,j

+ �

1
d↵N

t

e

d↵Ne
P

j=1
�

k,sort

t

(j) // compute risk-averse intercept

Line 17 in algorithm 4 is replaced by:
3: �

t,k,j

= �(Bj

t

)

T

⇡

j

t,k

, 8j = 1, . . . , N

t

4: �

k,sort

t

= sort(�

t,k,j

) // sort in increasing order

5: �

k

t

= (1� �)

1
N

t

N

t

P

j=1
�

t,k,j

+ �

1
d↵N

t

e

d↵Ne
P

j=1
�

k,sort

t

(j) // compute risk-averse intercept

5.4 Summary

Risk measures can be constructed in many di↵erent ways. Coherency
and time-consistency are two mathematical properties, which try to
describe the meaningfulness of them.

2Recently, there was shown a way around this issue, where in [98] an upper bound
to a risk constrained minimization problem was constructed by a separate backward
optimization, where the convex hull was used as cost function approximation. But
this upper bound is only valid for the sample average approximation (SAA) and
requires a high computational e↵ort for higher state dimensions. Since SDDP is
typically applied for such problems with higher state dimensions this method gets
almost obsolete.
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Dynamic mean-risk models, with the conditional average value at risk as
risk measure, are good candidates for risk-averse optimization models of
stochastic multi-stage programs. It was shown how to implement such
models in stochastic dynamic programming (SDP) and stochastic dual
dynamic programming (SDDP) type algorithms.
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Chapter 6

Multi-horizon modeling

This chapter deals with the analysis of how to model the medium-term
hydro power planning problem. The goal is to mimic the operation of the
plant as realistically as possible for reasonable computational complexity.
A flexible modeling framework, the multi-horizon modeling approach, is
proposed and discussed from the modeling and computational point of
view.
The model is extended through the consideration of risk measures, where
two variants are shown. Then, the revenue from providing ancillary ser-
vices is included into the model.
The multi-horizon modeling method is evaluated against traditional ap-
proaches as well as some alternative modeling methods are compared.
Finally, two examples show how such models can be applied for medium-
term hydro power planning problems.
This chapter is based on the publications [1–3, 5, 7].

6.1 Bibliography

In this bibliography, first, references about the foundation of multi-
horizon models are given. Then, references about alternative models
in order to account for ancillary services markets and price makers in
medium-term hydro power planning (MTHP) problems are described.

73
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Multi-horizon models

In [107], inter- and intrastage problems were termed explicitly and used
for a MTHP optimization. The intrastage problem in this dynamic pro-
gramming (DP) problem consists of finding a supply function, which is
o↵ered for every trading period within an interstage. The electricity
market is considered with stochastic price duration curves. This prob-
lem is solved for a range of di↵erent water release policies. Then, the
interstage problem selects the most optimal one.
Similarly, in [71, 93], price duration curves were used as a model for
the short-term bidding. The model is formulated as a mixed-integer
linear program (MILP) and risk measures are incorporated. By a prin-
cipal component analysis, it is possible to motivate the number of price
levels.

In [75], the idea of inter- and intrastage problems were applied in order
to incorporate day-ahead and intra-day bidding in a MTHP optimization.
A stochastic dual dynamic programming (SDDP) type algorithm was
used to solve the model. The day-ahead price process is modeled as a
Markov Chain depending on the evolution of underlying “environmental
states” like temperature and gas prices. The intra-day price process
then linearly depends on the respective day-ahead price and the bid
volume, thus, a price response is modeled.
As in [108], the bidding is modeled as specifying a supply curve with
fixed price points. This can be formulated as a MILP. Nevertheless,
in the backward step of SDDP, the problem is solved without a price
response. This simplifies the problem considerably, since all trades are
now moved into the intra-day market. Therefore, the backward step
considers basically only the intra-day market. In their applications,
however, the solution gap was reasonably small.

The term of multi-horizon decision trees was also proposed by M.Kaut
et al. in [109] for a gas field investment problem. They named the inter-
and intrastage decisions strategic and operational decisions respectively.
Some of these authors extended the work by considering risk measures
in [44, chapter 8]. An average value at risk (AV@R) is introduced there
on a multi-dimensional scenario tree. The risk measure is based only
on the operational decisions which is reasonable in their application.
However, they also briefly discussed other possibilities.
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MTHP optimization with consideration of ancillary
services

Ancillary services markets were mostly considered in short-term bid-
ding problems. In [110], a decision support tool for market players is
presented, by a deterministic multi-agent based simulator taking into ac-
count ancillary services. In [111, 112], deterministic MILPs are presented
to solve the bidding problem of a hydro power producer with consid-
eration of an ancillary services market. A number of works [113–115]
use stochastic mixed-integer programming to account for uncertainties
in the electricity market and the ancillary services market for a more
short-term risk constrained scheduling optimization. In [116], the bid-
ding and scheduling problem is optimized for an 11-unit system by a
stochastic mixed-integer optimization, solved by an algorithm based on
Lagrangian relaxation and stochastic dynamic programming (SDP).

MTHP planning for a price-maker in forward and day-
ahead markets

In [62], an hourly day ahead market and a monthly financial future
market are considered. Stochasticity in the pool prices is introduced
via scenarios. Large scale linear programming, which has the advantage
of easily incorporating risk measures, is used. Because of the curse of
dimensionality, computational tractability is a problem. So in their
example, they consider only two periods with five price scenarios in the
recourse stage and three di↵erent forward contracts.
In [117], a static hedging strategy is constructed. For a given physical
position, the hedge of it by the available forward contracts is found
subject to risk constraints. However, the spot market is omitted in
their formulation.
In [63], the focus is on constructing bid curves with a large scale mixed
integer linear program. A finer model is used on near term and then a
coarser one going forward. Whereas the finer model models e.g. non-
convex e�ciency curves and have hourly time resolution, the coarser
one is very simplified with price-segments. Again, the problem is the
computational complexity because no decomposition was considered.

The mentioned approaches have not dealt with limited liquidity in their
models. The most interesting ones that do are as follows:
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In [118], game theory is used to study a duopolistic case where by apply-
ing SDP they compute the water values of these two utilities. However,
such an approach would not be suitable to consider hourly bidding for
a yearly time horizon.
In [119, 120], an optimal scheduling of a price-maker pumped hydro
storage producer was performed. By using residual demand curves the
influence on the pool market prices was modeled. This mixed-integer
problem results in short-term bidding strategies as well as mid-term
reservoir management. Apart from issues in modeling the competition
as a demand curve, forward contracts were considered only as prede-
fined and fixed. The authors in [73] used a similar approach, but they
considered stochastic water inflows, but no forward contracts. They
applied SDDP in order to find a long-term operation strategy.

6.2 Proposed model

Hydro power plants (HPPs) in the Alps and in other regions with similar
topology, typically, have two di↵erent kinds of reservoirs. The first kind
is storage reservoirs. They store water inflows in order to be able to
produce during dry seasons. Therefore, they are operated seasonally
and a daily or even weekly view on them is su�cient.
The second type of basins is balancing reservoirs. In comparison with
the storage reservoirs, they are very small. Their role is to balance out
water flows, i.e. to provide a necessary amount of water for generation
or pumping. Therefore, they can be depleted within some hours.

Whereas the filling of storage reservoirs define the medium-term opera-
tion strategy of the HPP, the balancing reservoirs are very important to
consider in the daily operation of it. In order to consider both types of
reservoirs in a MTHP optimization, a short time step is often modeled.
Alternatively, the balancing reservoirs can also be neglected by some
aggregation of the HPP in order to reduce the computational complex-
ity.

The proposed modeling approach lies in between these two concepts.
It allows both a realistic consideration of short-term operation as well
as has limited computational complexity. The model is explained next,
both conceptually and mathematically. Then, it is extended by consid-
ering risk measures and an ancillary services market.
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6.2.1 Multi-horizon modeling approach

The idea of the proposed modeling approach is that storage and balanc-
ing reservoirs are considered both with their inherent dynamics. Fur-
ther, a decomposition of the problem into inter- and intrastage subprob-
lems makes an e�cient implementation of the model possible.

Decomposition into inter- and intrastage subproblems

The model is such that the operating policies are calculated for daily
or weekly time stages only for the storage reservoirs. This multi-stage
stochastic program is decomposed into interstage and intrastage sub-
problems. The daily/weekly interstage problem, which is the master
problem, handles the water management of the storage reservoirs. The
intrastage subproblems on the other hand manage the hourly operation
of the plant. In this subproblem, the balancing reservoirs and their wa-
ter balances and the hourly electricity market are considered.
Summarizing, the proposed model can be described as follows:

1. Interstage problem (master problem):

• is formulated dynamically with daily/weekly time stages.

• state variables are the storage reservoirs.

• here-and-now decision variables are the daily/weekly sum of
water release from storage reservoirs.

• output are operation policies (water values) and profit-to-go
function.

2. Intrastage problem:

• has hourly time steps.

• is formulated as a multistage stochastic program.

• state variables are the balancing reservoirs.

• decision variables are the day-ahead market bidding and pro-
duction operation.

• has possibly stochastic water inflows and market prices.
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a) b) interstage decision
intrastage decision

Figure 6.1: Two examples of multi-horizon decision trees. a) The un-
certain data is revealed at once at the beginning of the in-
trastage problem. Therefore, the intrastage problem is de-
terministic. b) The uncertain data in the intrastage problem
is revealed every three hours for the next three hours, thus,
it is a stochastic problem.

Note that the intrastage subproblem itself is a stochastic multistage
problem. Depending on the application, the disclosure of uncertain
inflows and prices can be modeled di↵erently.

The nested decision structures, see figure 6.1 for two examples, can be
depicted as multi-horizon decision trees. Thus, the modeling based on
such a structure, is proposed to be called multi-horizon modeling.

Notes from the modeling point of view

The proposed model formulation mimics the way operators typically
think about a MTHP problem, which is water release or filling of the stor-
age reservoirs under unknown optimal short-term operation. Therefore,
the data processes which have to be modeled, are typically already avail-
able. This involves daily/weekly water inflows for the storage reservoirs
and hourly inflows for the balancing reservoirs and hourly electricity
market prices. So there is no need for aggregation or extending the
data.
Similarly, the output of the optimization, the daily or weekly operating
policies, can be used directly in the further optimization of the HPP.
So no smoothing of policies is needed, which would be necessary e.g.
for hourly policies, since no operator would change its strategy on an
hourly scale.

Because of the decomposition of the problem, the water balance for the
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balancing reservoirs is not respected from one interstage to the other.
That is, the fillings at the beginning and end of each intrastage subprob-
lem are given and fixed beforehand. Thus, the model neglects that with
balancing reservoirs water from one day/week to the next one could be
stored. Since there is a strong autocorrelation in the daily pattern of
water inflows and market prices, this seems acceptable.

Notes from the computational point of view

SDP or SDDP methods can be applied to solve the master problem. The
problem is decomposed in time and, for SDP, the storage reservoirs and
the amount of water release from these reservoirs are discretized.
The multi-stage stochastic program in the intrastage problem, in con-
trast, is not decomposed. It is formulated as its deterministic equivalent
and a commercial solver is used to solve it.

The proposed model, therefore, allows the exploitation of the strengths
of DP and e�cient mathematical solvers. That is, the curse of dimen-
sionality in time is avoided by the decomposition in time. But, this is
done only to daily/weekly time stages because the deterministic equiva-
lent of a stochastic problem with hourly stages and up to daily or weekly
time horizon is usually manageable by mathematical solvers very e�-
ciently.1

6.2.2 Mathematical model and solution methodolo-
gies

In order to formulate the mathematical model, the state variables z(t),
which is the filling of the reservoirs v(t), are divided into storage vstor(t)
and balancing v

bal(t) reservoir state variables. Then, the recursive op-
timality equation is:
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1See also the discussion about computational complexity on page 45.



80 Chapter 6. Multi-horizon modeling

s.t.:

8
>>>>><

>>>>>:

v

bal

B
⌧

=v

bal

A
⌧�1
�oB

⌧

�f
u

(uB
⌧

)+f

p

(pB
⌧

)+aB
⌧

, ...

8A
⌧�12⇤j

⌧�1, 8B⌧

2U(A
⌧�1), 8⌧ (6.1a)

PT
⌧=1[fu(u

s

⌧

)�f
p

(p

s

⌧

)�as

⌧

]+o

t

=W

t

, 8s2S (6.1b)

mA
⌧

=uA
⌧

�pA
⌧

, 8A
⌧

2⇤j

⌧

, 8⌧ (6.1c)

0u,p,o,vstor

,v

balub
t

, lb

t

W
t

,mub
t

(6.1d)

The objective function, the intrastage subproblem, and how such models
are actually solved are discussed next in more detail.

Objective function

The water release decision W

t

is modeled as a here-and-now decision.
There are N

t

number of possible intrastage subproblems. Note that
even if N

t

= 1, the intrastage subproblem ✓

j

t

can still involve multiple
scenarios since it is a stochastic problem.

The filling of the storage reservoirs at the end of the time period is given
by v

stor

t

= v

stor

t�1 �Wt

, thus, the profit-to-go depending on it, Q
t+1

(vstor
t

),
can be calculated outside and independently of the intrastage subprob-
lem. Note that the water release W

t

can also be negative. This means
that the filling of a storage reservoir would increase which can happen
due to water inflows or charges from other reservoirs.

Intrastage subproblem

The optimal value of the intrastage subproblem ✓

j

t

can be seen as an
estimation of the short-term revenue. It is formulated with the help of
scenario trees with the intrastage time stage ⌧ 2 {1, . . . , T }, where the
time duration is one hour.
The objective of this problem is maximized revenue, which is the ex-
pected product of prices c(⌧) and market positionsm(⌧) over all bundles
A

⌧

. The market position m is defined in the constraints of the in-
trastage subproblem in (6.1c) as the di↵erence of electricity generation
and pumping. It is the amount of energy which is sold or bought back at
the day-ahead spot market. This variable would not be needed for the
considered application, but it makes the formulation more streamlined,
especially for extensions of the model.
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The intrastage subproblem is subject to the water balance constraints.
For the balancing reservoirs, these constraints have to hold for each hour
⌧ , which is specified in (6.1a). For the storage reservoirs, however, the
water balance is maintained only for the interstage t in (6.1b). There-
fore, the sum over the hourly in- and outflows of the storage reservoirs
for each scenario s has to be equal to the predefined water release W

t

.
Finally, all variables are positive except for the market position m and
the water release W

t

. The market position can be bounded in order
to introduce some crude form of risk control. The water release W

t

in
the algorithm is discretized adaptively to reasonable points. The points
depend on current water inflows, production capabilities, and filling of
the storage reservoirs.

Solution methodologies

The problem (6.1) can be solved with SDP with the algorithm 2, where
the subproblem in line 5 itself is a stochastic problem, formulated as
the deterministic equivalent.
The resulting here-and-now decisions W

t

are actually not used, but only
the profit-to-go functionQ(vstor) and water values derived from it define
the optimal policy. Nevertheless, a forward simulation like the one in
algorithm 3 can deliver optimal operational decisions if needed.

The size of the variable vectors in the intrastage problem depend on the
sum of the number of bundles for each time step

P
⌧

|⇤
⌧

|. For example,
consider a daily interstage problem with the intrastage subtree given in
figure 6.1 a). Each intrastage vector (for each reservoir, turbine etc.)
then has 24 entries. For the stochastic subtree given in figure 6.1 b) it
would require 31+32+...+324/3 = 9840 entries. In both model versions,
the same number of subproblems would have to be solved, however, the
sizes of these subproblems di↵er.

Multi-horizon models can also be solved by SDDP. This makes particu-
larly sense if the model consists of more than a few storage reservoirs. In
SDDP, the profit-to-go is given by its approximation with hyperplanes.
Therefore, the trick applied for SDP, where the introduction of the wa-
ter release W

t

allowed the independent calculation of the profit-to-go,
is of no value here. Therefore, the model shown in (6.1) is adapted as
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a) b)

Figure 6.2: Two variants of risk measures in multi-horizon decision trees
for the root node. a) The measure is based on the whole
subtree. b) The measure is based only on the respective
intrastage subtree.
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Note that no here-and-now decisions and, therefore, also no interstage
decisions are present anymore. Note also that the filling of the storage
reservoirs vstor,j

t

at the end of an interstage can vary depending on the
scenario j. Further, the water balance for the storage reservoirs is now
formulated explicitly in (6.2b). With these modifications, SDDP can be
applied as it was done in algorithm 4.
Whereas the formulation does not match exactly the one used for SDP,
it is still as reasonable as before. Therefore, the results from both
formulations will be very similar.
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6.2.3 Risk functionals

Typically, a profit risk aware optimization provides more realistic and
robust policies. In order to introduce this for multi-horizon models, two
variants are proposed. Either the risk measure is based on the whole
decision subtree or only on the intrastage scenario tree (see also figure
6.2). Both ways have their advantages and either one can be more
reasonable for a specific application.

Risk measures based on interstage subtree

The first formulation of the risk aware multi-horizon problem corre-
sponds to (5.5) if SDP or to (5.6) if SDDP is applied respectively.
From the modeling point of view, the profit risk associated to the short-
term intrastage decisions and the future risk adjusted profit-to-go for
the storage reservoirs are considered. Such a construction is very close
to how operators perceive these profit risks.
But, in order to calculate the risk measure, a reasonable number of sce-
narios N

t

have to considered. For stochastic intrastage subproblems,
this can be a problem because of the computational complexity and
modeling e↵ort. Therefore, such risk measures are recommended to be
used primarily if deterministic intrastage subproblems are present.

Risk measures based on intrastage subtree

In the second formulation, the risk measure is calculated only based on
the current intrastage subtree. In such a case, the objective function in
(6.1) changes to the following one:
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calculates the revenue per intrastage scenario s. Therefore,



84 Chapter 6. Multi-horizon modeling

instead of maximizing only the average revenue, the tail of the revenue
distribution is weighted more.
Note that this risk measure treats the profit-to-go risk-neutrally. From
the modeling point of view, only the short-term decisions are regarded
as “risky” decisions, whereas the interstage decisions, the water release
for the storage reservoirs, are not. This can make sense for particular
applications where the intrastage uncertainty is much more important
to consider than the interstage one. For instance, this could be appli-
cations, where it is important to consider the profit risk in intraday
markets, whereas for a day-ahead market a risk-neutral view is su�-
cient.

The risk measure is not a dynamic one as defined in (5.4). Therefore,
the question arises if this risk measure is time-consistent. The overall
formulation is dynamic and risk-neutral. Therefore, time consistency
of the found policies, which is the interstage decisions as well as the
profit-to-go function, is not an issue.
For the intrastage decisions, on the other hand, the proposed risk mea-
sure could lead to time inconsistencies within an intrastage subproblem.
So the question here is not about time consistency of the overall model,
but rather, if the intrastage subproblem model is still realistic enough.
However, remember that the overall objective is to find medium-term
operation strategies with time horizons of more than one year. From
this perspective, a possible time inconsistency for a few hourly operation
decisions seems to be tolerable.

From the formulation of (6.3), it is not clear how to solve the intrastage
subproblem. A discretization of the intrastage decisions would be pos-
sible but not easily realizable. A rather pragmatic approach is proposed
here. It is assumed that scenarios with low inflows and prices will also
relate to least revenue. The scenarios are, therefore, first sorted ac-
cording to their inflows and prices and then corresponding weights are
introduced. Such a procedure does not increase the computational com-
plexity and can be implemented in a straightforward way for both SDP

and SDDP solution methodologies.

6.2.4 Provision of ancillary services

As described in chapter 2, ancillary services markets, and in particular
the market for provision of secondary frequency control (SFC), are very
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reasonable to consider in a MTHP optimization. In order to include
a SFC market within a multi-horizon model, some simplifications are
made. The considered profit out of the SFC market is only the remu-
neration for holding the capacity, whereas payments for energy delivery
are neglected. Therefore, it is assumed that the demanded request is
symmetric within the tender period, such that the energy delivery is
balanced out which is a valid assumption in a medium-term perspec-
tive.

Further on, the bidding process is simplified. The bid capacity is as-
sumed to be a multiple of 10MW per qualified turbine. Then, the
highest acceptable price for the capacity provision is estimated before-
hand out of historical data, where in this thesis a conservative value of
20CHF/MWh is assumed.
These assumptions may be seen as questionable. But, remember that
such a MTHP optimization is not used for direct decision support about
SFC bidding, but to estimate realistic water values which incorporates
the opportunities in SFC markets for a time horizon of a few years.
Hence, predefined bid prices seem to be reasonable. Note also that with
such a construct the simplifications of the market are similar to the one
typically done in energy markets with an hourly priced forward curve.

With these assumptions, the only additional decision to take is how
much SFC shall be provided by each qualified turbine. This decision is
modeled as a wait-and-see decision within the intrastage subproblem.
In order not to make the mathematical formulation unnecessarily com-
plicated, assume now that the interstage time period corresponds to the
tender period duration. Then, the optimality equation is as follows:
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Compared with the formulation (6.1) without the provision of SFC, there
is an additional integer wait-and-see decision q(t), which describes how
much SFC capacity a turbine shall provide. The sum of these capacities
over all qualified turbines

P
q, times the prefixed remuneration c

q(t),
contributes to the intrastage revenue.
If a turbine provides SFC, then the binary variable q

active for it is 1. In
such a case, its limits are adapted in equation (6.4d) in order to indeed
provide the correct capacity for the tender period.
The formulation for an application of SDDP follows in the same way
from (6.2) and, therefore, is not shown here.

Because of the integer variable q(t) as well as the binary variable qactive,
the intrastage subproblem is now a MILP. For the application of SDP this
is not an issue. However, traditional SDDP is not applicable anymore
since the value function is non-concave. There, extended methods like
the dualized SDDP as described in chapter 4 have to be applied.
Such a construction is only possible as long as the tender period of the
ancillary services is shorter or equal to the interstage time duration.
Since in the near future this period is supposed to be one or less than
one day this approach is applicable. Note that if multiple tender periods
have to be considered within an intrastage problem, the formulation has
to be adapted only slightly.
Similarly, the formulation can be adapted if ancillary services are pro-
vided in a more complicated way, e.g. with a turbine in combination
with a pump.

6.3 Evaluation

The model for the Kraftwerke Oberhasli AG (KWO) power plant consists
of four storage reservoirs and six balancing reservoirs. An application of
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SDP to such a model is possible, but computationally very demanding.
Therefore, SDDP is used here. In the evaluation, standard modeling
approaches are compared with the multi-horizon approach.
The model for the Kraftwerke Mattmark AG (KWM) power plant on the
other hand is built up out of only one storage reservoir and one balancing
reservoir. This relatively undemanding model is solved primarily with
SDP. In the evaluation, it is analyzed, how interweekly dynamics, the
intrastage subproblem, can be modeled. Further, KWM serves as a worst
case example for the motivation of multi-horizon models.

The di↵erent models are compared threefold. First, the models them-
selves are discussed conceptually. Then, their required computational
e↵orts are analyzed. Finally, the results of the models, the water val-
ues, are applied in an operation simulation. The simulation is based on
the application of operation decisions from sequential hourly optimiza-
tions. In the hourly optimizations, the water values are used as water
opportunity costs and a MILP is formulated in order to find the optimal
operation.

6.3.1 Multi-horizon modeling against traditional
procedures

As already described in the motivation of the proposed MTHP model,
there are two obvious modeling alternatives when dealing with storage
and balancing reservoirs. The first alternative is to model an hourly
time step, which allows considering a detailed HPP model. The second
alternative is to aggregate balancing reservoirs in a way that a longer
time step is su�cient and thus less computational e↵ort is needed.
Both alternatives are used in academia and practice. They are explained
next and then compared with multi-horizon modeling. The models are
applied on KWO and SDDP is used to solve them.

MTHP models with hourly time steps

Hourly time steps seem to be the natural choice for modeling a MTHP

problem with balancing reservoirs. However, a closer look reveals many
di�culties of such an approach depending on which HPP type is con-
sidered. Therefore, first a suitable model with hourly time steps is
discussed in general, before it is applied to KWO and compared with
the multi-horizon modeling approach.
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Table 6.1: Options to model a HPP for a MTHP problem and to solve it.

time step states SDP SDDP model complexity

Traditional modeling:

hourly stor./bal. + � + �
hourly storage ++ + �� +

daily storage ++ ++ � ++

Multi-horizon:

daily/hourly stor./bal. ++ ++ ++ +

A model with hourly time steps and only storage reservoirs as state
variables is not reasonable. Because in such a case the HPP model
would have to be aggregated a detailed analysis of it does not make
sense. Therefore, the only choice is to consider the balancing reservoirs
as well.
For a model with hourly consideration of both storage and balancing
reservoirs the application of SDDP will be troublesome. The reason
for this is that the fillings of balancing reservoirs are very volatile (in a
MTHP perspective) and, therefore, di�cult to predict. In such a setting,
the convergence of SDDP will be poor and an application of SDP is more
meaningful.
Table 6.1 shows a comparison of such modeling options. As a conclusion
one can say that a model with hourly time steps only make sense if the
balancing reservoirs are also considered as states and if the model is
solved with SDP.

However, also SDP is troublesome to use in this setting. The more states
that are considered the more SDP su↵ers from the curse of dimension-
ality. Additionally, the discretization of the states has to be relatively
fine in order to be able to estimate profit-to-go functions properly for
hourly time steps. Therefore, such an approach is still applicable for
HPPs like KWM, whereas for KWO the required computational e↵ort is
too big.

Model from commercial software package for KWO

The company operating KWO uses as decision support a commercial
software tool, which models the HPP hourly and applies SDP. The huge
computational burden for such a solution is eased by a sparse discretiza-
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Table 6.2: Computational complexity for di↵erent modeling options,
applying SDP on KWO with one processor core.

modeling approach nr. of subproblems solving time

multi-horizon 33Mio. 38 days

hourly, bal. res. 1 discrete point 788Mio. 91 days

hourly, bal. res. 2 discrete points 50432Mio. 5824 days

tion of the balancing reservoirs to one point. The filling of those reser-
voirs, therefore, stays constant. Nevertheless, the model requires access
to high-performance computing in order to be solvable.
Table 6.2 compares the computational complexity on KWO, if the bal-
ancing reservoirs are discretized with one or two points. Since there are
six balancing reservoirs the number of subproblems and, therefore, also
the solution time would increase by 26 = 64. The calculation is based on
the solving time of one subproblem on one processor core. Note that, in
parallel computing, the numbers would decrease almost proportionally
with the number of available processor cores.
A subproblem in a multi-horizon setting, in comparison, is more di�-
cult to solve, but fewer of them have to be computed. Note that here all
reservoir types are taken into account and that the balancing reservoirs
are considered continuously.

The results from the commercial software package were compared with
the ones from the multi-horizon method. The detailed results are sub-
ject to confidentiality, nevertheless, some interesting findings with re-
gard to the modeling can be shown.
Figure 6.3 compares the sum of the water overflow in all basins in KWO

for the two modeling approaches. These overflows happen within the
optimization and are not the result of applying the optimized policies
in a simulation. Therefore, this plot gives some insights in how the dif-
ferent optimizations model the HPP.
It is clearly visible that the multi-horizon model leads to much less over-
flow (more than 80%). The reasons for that are threefold. The most
influence has the poor representation of the balancing reservoirs in the
commercial model. Since their filling stays always constant, storing of
water in it is not possible. This leads to high water overflow in periods
with high water inflows.
In order to analyze this further, the multi-horizon optimization was
adapted to neglect storing of water in the balancing reservoirs as well.
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Jan 2014 Nov 2014 Sep 2015 Jul 2016

hourly SDP
multi-horizon

Figure 6.3: Comparison of water overflows between multi-horizon ap-
proach and modeling solution based on hourly SDP with
one point discretization of balancing reservoirs.

This optimization showed an increase in spillage, but still considerably
less than from the hourly SDP optimization. This is due to the sec-
ond reason, which is more subtle and happens if hourly time steps are
considered in a MTHP. Since in DP an independent Markov process is as-
sumed, there is only the knowledge of the expected future. That means
that the hourly operation decisions depend on the expected future rev-
enue. Since the water balance in the reservoirs do not change much in
an hourly scale, it can be di�cult in practice to find correct operation
decisions. Since the policy of the hourly SDP was based on the discrete
state of the storage reservoirs, its discretization would have to be very
fine, which was however not the case in order to avoid further compu-
tational complexity.
Finally, the last reason is due to the deterministic modeling of the in-
trastage subproblem in the multi-horizon approach. So, since the water
inflow then can be anticipated within each day, less overflow results.

As a conclusion one can note that a reasonable modeling with hourly
time steps with application of SDP for HPPs like KWO is computationally
very demanding and, therefore, is not considered anymore from now on.
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MTHP model with hourly time steps and application of SDDP on KWO

As described in the previous sections, for models with hourly time steps
for complex HPPs like KWO, SDDP can not be applied directly because of
convergence issues. Further, it was shown that also SDP is not well suited
because of the curse of dimensionality. Finally, a sparse discretization of
the balancing reservoirs eased this curse of dimensionality at the price
of an inaccurate model. A similar idea can now be applied here so that
SDDP is usable.

If the fillings of the balancing reservoirs are not considered as state
variables, then the convergence of SDDP is less of an issue. This is
because even an hourly filling of the storage reservoirs is not volatile
and can be predicted better.
Note that also the one-point discretization of the balancing reservoirs
in the commercial solution implies that the balancing reservoirs are not
part of the state variables anymore. Therefore, such a simplification
leads to the same modeling issues as already described in the previous
section. So the balancing reservoirs are considered in the optimization,
but their fillings stay constant.

The application of SDDP outperforms the commercial solution for KWO

because a state space of four storage reservoirs can be handled much
more e�ciently. Further, the formulation of an hourly subproblem as
a mathematical program prevents the discretization of production deci-
sions.
The recursive optimality equation looks as follows:
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In comparison to the problem (6.2), t has a time duration of one hour.
Therefore, the subproblem for a scenario j is very small and consists
of one decision per pump, turbine, etc. Both balancing and storage
reservoir are treated in the same way, which is in contrast to (6.2). In
(6.5a), the respective water balances are assured. In the course of the
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algorithm, the filling of the balancing reservoirs is not tracked, since
they are not part of the state space. Therefore, their filling is kept
constant in (6.5b), e.g. equal to zero.

The implementation of such an algorithm is quite similar to implement-
ing a multi-horizon approach. The key di↵erence is that there are more
time steps but the subproblems are smaller. There are also similar re-
quirements for the input data. However, hourly water inflows into the
storage reservoirs are needed. This data is mostly not available in prac-
tice. Since the correct hourly values of these are not important, this
data can be easily constructed out of daily inflows by simply distribut-
ing them uniformly across the hours.

MTHP model with daily time steps

As shown in table 6.1, another option to model the MTHP problem for
a complex HPP like KWO would be a temporal aggregation leading to
daily time steps. For a time horizon in MTHP problems of typically
a few years, this aggregation seems to be reasonable at first. Some
models in literature even work with weekly or monthly time steps. But
an aggregated time step leads also to the need of aggregating the market
and the HPP model.

Aggregating an hourly electricity market to a daily one or even further
can be meaningful, since the uncertainty in an hourly market a few
years ahead is quite large. Possibilities of how to do that are shown in
section 6.3.2.
In contrast to the market model, the implications on the HPP model
can be more awkward. A daily view on balancing reservoirs is not
reasonable. Such reservoirs are then often aggregated which mostly also
implies an aggregation of turbines and pumps which is troublesome.

Out of these reasons, a similar approach to the one with hourly time
steps is chosen here: The balancing reservoirs are considered, but they
are not modeled as state variables. Therefore, the filling of these bal-
ancing reservoirs stays the same, but no aggregations of turbines and
pumps are necessary.
However, since a daily time step is modeled, the production and also
the electricity market are considered with their daily average values.

With these modifications the mathematical model is the same as (6.5)
with the time step tmodeling a duration of one day. Whereas previously
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Figure 6.4: a) Time duration per SDDP iteration until convergence (gap
lower than 5%). b) Comparison of water values for the first
stage at the beginning filling of the seasonal reservoirs.

the constant filling of the balancing reservoirs let to model inaccuracies,
this issue is here less prominent since the detailed operation is not con-
sidered explicitly. On the other hand, the performance of the HPP is
underestimated considerably with a daily view.

Comparison of computational complexity

Table 6.2 already compared the computational complexity of some (hy-
pothetical) models of KWO, solved by SDP. Now the complexity is com-
pared for the models which are solvable by SDDP, which is more conve-
nient for HPPs like KWO.
To keep the computational burden low as well as to achieve a meaning-
ful comparison, the optimizations were performed without considering
di↵erent scenarios of water inflows and market prices. The models were
formulated risk-neutrally without consideration of a market for ancil-
lary services for a time horizon of one year. Dualized SDDP algorithms
were used with a cutting plane selection method based on level one
dominance and maturity of the cuts.

Figure 6.4 a) compares the time duration per SDDP iteration for the
di↵erent methods until convergence. The criterion for convergence was
chosen to be an optimization gap between upper and lower bound of the
algorithm of lower than 5%. Note that because the uncertain data is
not sampled in every step, the lower bound is also a deterministic one.
The multi-horizon formulation needed around 20 minutes per SDDP it-
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eration and convergence was reached after 19 iterations. The optimiza-
tion, therefore, needed 6 hours.
The hourly SDDP method has smaller subproblems but many more of
them to solve. As a consequence, one iteration required around one hour
of computing time which increases due to the larger set of hyperplanes.2

Since hourly interstage time steps are modeled, the convergence rate is
lower and 62 iterations were necessary. Another notable issue with the
hourly SDDP formulation is the data handling. Although the hourly hy-
percuts are very similar, they have to be stored individually. This leads
to a roughly 24 times higher requirement of memory and data storage,
compared to the multi-horizon and daily formulation.
In the daily formulation, the subproblems to solve are of similar size
as the ones of the hourly formulation, but there are 24 times less of
them. Compared to the multi-horizon approach, the number of sub-
problems are similar, but they are easier to solve and the convergence
of the algorithm should be slightly better. These findings were qualita-
tively confirmed. The solution time per SDDP iteration was of around
1.5 minutes and convergence was found after 16 iterations, resulting in
an overall required computing time of 22 minutes.

Figure 6.4 b) depicts the water values for the very first time period.
In practice, the MTHP optimization is often repeated every day with a
moving time horizon and, therefore, these water values are especially
important.
The water values for the three methods are similar. They reveal the
di↵erent elevations of the basins with the tendency that the higher the
relative elevation of a basin, the higher also the water value. Then,
the low water values from the daily approach demonstrate that in the
approximated model short-term flexibility is not exploited. But note
that only the values for one specific hour are shown and, therefore, this
result has to be taken with caution.
The hourly SDDP provides an hourly set of these water values, whereas
the other two approaches have only daily ones. However, it can be
shown that the hourly water values do not change much from one hour
to the other as expected.

2The variability in computing time came from occupation of the server by other
simulations.
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Table 6.3: Performance of operation policies. The lower bound should
be as close as possible to the simulated profit.

multi-horizon hourly SDDP daily SDDP

lower bound [Mio e]: 119 111 96

profit simulation [Mio e]: 116 99 111

deviation: 2.3% 12% 13%

Comparison of operation policies

Even a small deviation of the water values will have a great impact
on how the HPP is operated. In order to analyze the quality of the
di↵erent proposed water values, they are now applied in the operation
simulation.
For a proper operation simulation study the simulation would have to
be repeated for di↵erent sampled uncertain data. Nevertheless, here
are presented only the results from one simulation run. Further, the
chosen sample of uncertain data is the one which was already used in the
optimization. The reason for performing such an in-sample simulation is
to be able to compare how well the approaches approximate the original
problem. Not discussed here are the questions, if a close representation
of the model is necessary and if its policies are then indeed good in
practice.

Table 6.3 compares the achieved profits from the di↵erent methods. The
lower bound is the operation value estimated by the respective SDDP

forward step. This value should be as realistic as possible and, therefore,
be similar to the profit achieved in the operation simulation. This would
indicate that the method models the problem realistically.
Note that a higher profit in the simulation does not necessarily mean
that a policy is better. It only means that it is better for this specific
scenario, which could be also due to overfitting. Interesting to note is
that in all simulations a comparable small amount of spillage is present.
So the reason for higher simulation profits is primarily because of a
di↵erent use of the water in time.

The shown values again confirm the findings given earlier. The multi-
horizon approach overestimates the profit but only slightly. This indi-
cates a close representation of the problem. The daily method under-
estimates the profit, where its poor model leads to a di↵erence of more
than 10%.
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Interestingly, the policy from the hourly SDDP approach leads to a sim-
ulation performance more than 10% lower than its lower bound. This
can be explained by the unnecessary detailed optimization of a relatively
simple model.

Concluding remarks

For relatively simple HPPs like KWM, SDP is a good choice as a solution
method since it can handle a detailed model. For more complex HPPs,
where KWO was analyzed as an extreme example, SDP can be trouble-
some to use because of the curse of dimensionality.
This problem can be eased by a sparse discretization of balancing reser-
voirs which leads in return to model inaccuracies. Similar model inac-
curacies are present if the problem is solved with SDDP for traditional
models. A daily aggregated model performed reasonably well, but it
neglects hourly flexibility leading to an underestimation of the opera-
tion opportunities. But an extension of it to hourly time steps was even
more troublesome, which could be explained by the issue of optimizing
a poor model in a more detailed way. Therefore, considering the very
high computational requirement of the hourly method, the daily one is
much more reasonable.
Multi-horizon models, on the other hand, showed a couple of advantages
in this respect. They are more realistic, have less modeling issues since
no aggregation is necessary and have a computational complexity which
is almost as good as the one from aggregated models. Therefore, proper
constructed multi-horizon models solved with SDDP are applicable for
complex MTHP problems solvable in less than a day and simultaneously
allow many modeling details.

6.3.2 Modeling of the intrastage subproblem

The second part of the evaluation of multi-horizon models analyses how
the intrastage subproblem of it can be modeled. In order to demonstrate
the findings expressively, an interstage time duration of one week is
considered. The di↵erent approaches are shown on KWM and SDP is
used to solve the models. Additionally, an ancillary services market is
taken into account.

From the modeling perspective, two issues are important to consider,
first, how to model the electricity market and second, how to model
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hourly operation. Four di↵erent approaches are presented, which model
the weekly intrastage subproblem di↵erently:

• method 1: weekly peak and o↵-peak prices;

• method 2: price duration curves;

• method 3: deterministic subproblems; and

• method 4: stochastic subproblems.

The first two methods are approaches which can be found in academic
literature whereas methods three and four are di↵erent alternatives of
multi-horizon models.
The methods are first described conceptually and mathematically and
then compared in the evaluation part.

Method 1: weekly peak and o↵-peak prices

The first method neglects hourly flexibility. Water inflows and market
prices are estimated and aggregated as weekly expected values. Two dif-
ferent prices are assumed: energy is generated for peak prices c

peak(t)
and pumping for o↵-peak prices coff�peak(t). The balancing basins are
neglected and turbines and pumps are, therefore, aggregated accord-
ingly. For KWM, this results in a model with a single basin, turbine,
and pump.
Mathematically the model is as follows:
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Note that random data consists of peak and o↵-peak prices and water
inflows a

t

. The intrastage decision vector consists of only one entry per
generation, pumping, etc. Therefore, the intrastage problem is a small
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out of 
generation

cost
because of
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Figure 6.5: Method 2: Schematic example of a price duration curve.
Revenue out of generation as well as costs because of pump-
ing are shown. Note that since the overall water discharge
is fixed, with more pumping more generation is possible.

MILP.
Alternatively, generation and pumping could have been discretized,
which would avoid the use of a mathematical solver. This is a stan-
dard approach and is applied often in practice.

Method 2: price duration curves

To have only two prices to describe the energy market for a week, seems
a too coarse approximation, especially, for volatile markets with a high
penetration of fluctuating renewables. However, one may also argue
that the actual price process is not so important for estimating short-
term profit in the perspective of a MTHP optimization. In between,
there is the concept of price duration curves which is also called occu-
pation times of prices.
A price duration curve (example in Fig. 6.5) is constructed out of the
proportion of hourly prices below a certain price for some time duration.
Since the revenue depends on price times quantity of sold energy, it can
be estimated by an integration of the price duration curve.
In [107], such curves are multiplied by quantity-price o↵ers and inte-
grated with respect to prices. Here, another approach is followed, where
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the sum of the water discharge for the next week is discretized. Then,
for a given water discharge, an optimization problem is formulated with
the objective to find the time durations of pumping h

p and generating
h

u. The expected short-term profit can then be derived.

It is assumed that the HPP either generates or pumps fully or not for
each hour. Random data involves again prices and water inflows. To
estimate random price duration curves pdcj , the hourly price process
itself is sampled and the price duration curve is constructed out of it.
The problem can now be formulated as follows:
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Note that in this formulation u

t

is not the physical utilization of the
turbines, because it does not consist of the generation due to capacity
provision. Therefore, it is given in (6.7b) di↵erently than before.
Similarly, the water balance (6.7a) is changed accordingly. Since there
are no balancing reservoirs to consider, only the water discharge from
the storage ones is regarded.
In the objective function, the maximal additional production u

t

and
the maximal pumping p̄ are weighted with the average lowest or highest
prices for some hours h

u

t

and h

p

t

respectively, which are the primary
decision variables. Additionally, the profit out of the sold production
because of the capacity provision has to be considered with the average
market price c

t

since the capacity is provided continuously. Finally,
the remuneration for this provision contributes also to the intrastage
revenue.

The problem turns out to be challenging to solve. Therefore, the price
duration curves are assumed to be piece-wise linear, which approximates
the problem to a quadratic mixed-integer problem.
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From the modeling point of view, there are several approximations with
this formulation. The most severe is that, similar to the first method,
timing is not respected at all. This means that when and in which order
the decisions are taken within a week is not considered.3

The advantage with this formulation is the consideration of a reasonable
representation of the opportunities in the hourly day-ahead market.

Method 3: deterministic intrastage subproblems

The third method is based on the multi-horizon approach. The in-
trastage subproblems are modeled deterministically. That means that
the intrastage operation is done with the knowledge of the water inflows
and market prices. Therefore, only a fan of scenarios is considered per
interstage.

The mathematical formulation is the one already introduced in (6.4).
However, since per scenario j no additional uncertainty is present, the
set of bundles at each intrastage ⇤

⌧

consists only of one bundle, which
is one path of the fan. This simplifies the problem considerably.

Note that the HPP, as opposed to the first and second method, is con-
sidered fully with all turbines, pumps, and basins present as well as in
hourly resolution.
Approximations made are first that the random data are assumed to
be known one week in advance. Further, the fillings of the balancing
reservoirs are neglected in the calculation of the profit-to-go functions
as well as their water balances are not respected between consecutive
weeks. This results in empty fillings of the balancing reservoirs at the
beginning and end of each week.

Method 4: stochastic intrastage subproblem

The model from method 4 considers stochastic intrastage subproblems.
Whereas in the third method the random data is disclosed at the begin-
ning of a week, the day ahead prices are now revealed daily for one day.
So the market prices are known only one day in advance. The water
inflows are still revealed weekly to keep the computational burden low
and since their influence in this study is less important.

3It may happen that e.g. high market prices occur all at the beginning of a week
where the reservoirs may be empty and generation not possible. Such cases are not
taken care of with the consideration of price duration curves.
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Figure 6.6: Time duration needed for solving the di↵erent optimization
methods and memory requirement of the optimizations.

The mathematical formulation was already given in (6.4). Compared
with deterministic intrastage subproblems, the method 4 is much more
realistic from the modeling point of view. Computationally, the same
number of subproblems have to be solved, however, the sizes of these
subproblems di↵er. This results in that one stochastically formulated
intrastage subproblem was constructed and solved in 0.41 s, whereas the
deterministic variant required only 0.12 s.

Evaluation of the four intrastage modeling approaches

The performance of the four di↵erent methods are now compared first,
regarding their computational burden and then, secondly, regarding the
quality of their proposed operation policies.

In figure 6.6, the time durations as well as the memory requirements
needed for the di↵erent methods are depicted. The first method needs
15 seconds, which is 30 to 200 times faster than the other methods. This
would be a clear advantage in daily use. Method four has higher memory
requirements than the other ones. Memory usage of this method (as
well as solving time) will further increase exponentially if the number
of intrastage time periods, stochasticity or HPP complexity (number of
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Figure 6.7: Water values for the di↵erent methods for the first time
stage. Note that the first two methods undervalue relatively
the short-term revenue whereas the third one overvalues it.

state variables) is increased.
The results of the optimization methods, the water values, are shown
and compared in figure 6.7 for the first time stage. Notable is that the
more opportunities in the hourly operations are considered, the higher
the water value is. However, since the third method assumes perfect
weekly knowledge, it overvalues the water value. Therefore, method 4
should give a more realistic estimation. The water values for methods 3
and 4 are similar not only for the first time stage but also for the others,
with roughly 80% of them having a di↵erence of less than 10%. This
gives already a hint that the additional e↵ort of a more realistic data
process may not have much influence on its performance.

A Monte Carlo operation simulation study is performed in order to an-
alyze the application of the di↵erent proposed water values. Because of
lack of a su�cient amount of historical data, distributions are estimated
out of the available data. Water inflows and market prices are sampled
out of it for 100 scenarios.
Table 6.4 shows the expected profit, the relative standard deviation, and
the mean profit for the 10% worst scenarios (AV@R

10%

). The values
are shown with and without consideration of provision of SFC.



6.3. Evaluation 103

Table 6.4: Comparison of optimization methods without / with provi-
sion of SFC reserves.

exp. profit [Mio e] rel. stand. dev. AV@R10% [Mio e]

Method 1 34.24 / 34.99 2.19% / 2.53% 32.66 / 33.27

Method 2 29.13 / 30.44 1.95% / 2.47% 27.90 / 29.03

Method 3 34.80 / 35.85 2.36% / 3.99% 33.27 / 33.47

Method 4 33.40 / 39.14 2.57% / 4.10% 31.82 / 36.28

Method 1 leads to unexpectedly good results. However, the perfor-
mance evaluation was based on market data, where peak and o↵-peak
price periods were clearly present, which will or already is not anymore
the case.
Method 2 performs worse than expected. An explanation for it could
be that although the price process is considered in a detailed way, the
HPP itself is simplified considerably. This leads to using non-existing
resources more e�ciently which may result in less e↵ective policies.
Method 3 outperforms method 4 for optimizations without the consid-
eration of SFC provision. Interesting is also the increased robustness
compared with method 1: the AV@R

10%

is considerably higher whereas
the relative standard deviation, as an alternative risk measure, would
indicate slightly more risk.
Finally, the proposed method 4 outperforms the other methods only if
SFC reserves provision is considered. But, in this case, the increase of
both expected profit and AV@R

10%

is substantially by around 10%.

Concluding remarks

In this section, a comparison of di↵erent approaches to model the in-
trastage subproblems were performed. For the evaluation, the relatively
undemanding HPP KWM was chosen which can be seen as a worst case
example to motivate multi-horizon modeling approaches.
The results indeed suggests that a simple modeling of peak and o↵-
peak prices can deliver good results at a very low computational burden.
But, already the introduction of an ancillary services market reveals the
advantage of a more detailed modeling, where both deterministic and
stochastic intrastage subproblems performed substantially better.

However, it should be noted that the performance of methods with
stochastic intrastage subproblems in practice would require good mod-
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eling skills of the random data processes. Therefore, as a good com-
promise, one could also recommend deterministic subproblems which is
relatively undemanding from the modeling point of view, but still de-
livers reliable results for a reasonable computational e↵ort.
As a final conclusion, it can be stated that either stochastic or determin-
istic intrastage subproblems are meaningful depending on the specific
application. On the other hand, it was shown that even for simple HPPs

like KWM a multi-horizon modeling approach is meaningful.

6.4 Application examples

As seen in the evaluation part of this chapter, the meaningful modeling
of multi-horizon based approaches has to be adapted depending on the
application. Given next are two examples which apply multi-horizon
models to problems where di↵erent markets are considered. In both
examples the modeling flexibility of multi-horizon models is exploited
di↵erently.

6.4.1 Long-term valuation

Apart from MTHP optimizations, multi-horizon models can also be used
in long-term valuations of pumped HPPs.
Large HPP investments are very capital intensive and need to be evalu-
ated for a long time horizon. This evaluation is subject to many di↵erent
uncertainties and is, therefore, very challenging to perform reasonably.
Especially the market framework could change considerably and is dif-
ficult to predict for a time horizon of dozens of years.

However, the added values of HPPs, which are energy provision and
short-term flexibility, are subject to less changes. The idea is now to
model the economical return on these added values as the profit from
the participation in two generic markets, a day-ahead market and an
intra-day market.
The day-ahead market provides the platform for energy provision and
the intra-day market for exploiting the short-term flexibility, where e.g.
also remuneration out of provision of spinning reserves can be part of
it. A day-ahead market price, therefore, depends on the marginal price
of available power plant technologies in the future and on the load.
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The intra-day market price correlates to the day-ahead price but with
some additional variability. So, if some short-term upward regulation
is needed, this can be modeled as a higher intra-day price compared to
the day-ahead price and vice versa.

Multi-horizon model

Given day-ahead and intra-day market price scenarios, a multi-horizon
model can be formulated. Because of the enormous uncertainties, the
model should be as streamlined as possible without neglecting the op-
tionalities of the HPP.
The evaluation is based on an optimization with a time horizon of one
year, which defines the operation strategy for one year. This optimiza-
tion is repeated every year for the whole valuation time horizon.
As case study, the HPP KWM was regarded and, therefore, SDP was used
as solution algorithm. The model can be described by an extension of
(6.1):
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As interstage time period t, one day is chosen. The bidding into the
day-ahead market is modeled as an additional here-and-now decision
in the intrastage problem and, therefore, is included in the objective
function of it. This decision is performed for each day t for its 24
hours simultaneously. Therefore, the decision vector m

DA,j

t

for a day-
ahead price scenario j consists of 24 entries and is subject to intrastage
uncertainty.
The participation into the intra-day market is modeled as wait-and-see
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decisions. The intrastage subproblems are modeled stochastically, with
the intra-day prices known for the next block of four hours. There are
two di↵erent price scenarios per block and, therefore, there are 26 = 64
intra-day price scenarios s 2 SIM per day-ahead price scenario j.

Discussion of the model

Also some alternatives and extensions to the model (6.8) were evaluated
but, eventually, rejected.
Evaluated were the introduction of day-ahead price cluster states. These
states would model a certain expectation of the next day-ahead price
scenarios and would allow an adapted policy based on it. This exten-
sion was rejected due to increased computational complexity as well as
modeling issues.
Secondly, the actual bidding process could be modeled in more de-
tail similarly to the short-term bidding model in [108]. For fixed o↵er
volumes, optimal bided prices can be found with a MILP formulation.
Downside of such a method is the need for many modeling decisions.
Further, non-anticipaty of day-ahead prices would require more sce-
narios of them than the number of fixed volume points, which would
increase the computational complexity substantially. Although such a
method models the actual bidding process, the di↵erence to the pro-
posed model at the end would be only that the bid volume would be
discrete instead of continuous.
Finally, the introduction of a price response in the intra-day market was
analyzed similarly to what is shown in the next section. Again this idea
was rejected because meaningful price responses are di�cult to motivate
for such a long-term view.

The model as presented in (6.8) has one severe drawback. Since no
price response and a risk-neutral formulation is chosen, the expected
values of day-ahead and intra-day prices have to be equal in order to
be arbitrage free. On the other hand, if they are made hourly arbitrage
free, then there is no reason for the two markets and one of them would
be enough.
Whereas in a MTHP problem this issue would need closer analysis here
a rather pragmatic approach was used. The positions in both day-
ahead and intra-day markets are limited to a number comparable to
maximum generation capacity of KWM. The reasoning behind this idea
is to introduce a market depth or risk constraint and by that limit
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arbitrage possibilities. However, note that the results of the evaluation
critically depends on these limits.

Results of the valuation

The model presented here was implemented and tested. Then, it was
used in the evaluation part of a long-term evaluation study of KWM. The
prediction of day-ahead and intra-day market prices as well as the anal-
ysis of the results were done by other people. The study was leaded by
a PhD-student at the Ecole polytechnique fédérale de Lausanne (EPFL)

and its results are described in his thesis [121] and, thus, are omitted
here.
The main conclusions of the study were that, depending on fuel and
CO

2

prices, payback times of the HPP investment would be around 30
years with an internal rate of return of 4-8%.

6.4.2 Medium-term hydro power planning planning
for a price-maker

The MTHP problem is becoming more complicated if the influence of
generation companies (GenCos) on market prices is studied. This influ-
ence can be important for markets with limited liquidity, which can be
the case in oligopolistic markets like forward, intra-day, and ancillary
services market as well as sometimes even spot markets.

Such problems are typically solved by considering a market clearing pro-
cess, where each market participant either bid their marginal costs or
act strategically (see also section 9.3). Apart from modeling issues, this
solution concept becomes quickly computationally intractable for time
horizons up to a few years.
Therefore, here suggested is an alternative, where by assuming a lin-
ear dependency between amount and price of the commodities, price
influences are modeled.

The proposed method is both simple and powerful and can be included
in multi-horizon models. In this example, the model is applied to a
MTHP problem for a price-maker GenCo with the consideration of a for-
ward and a day-ahead market.
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Forward contract markets for hydro GenCos

By nature hydro GenCos are in long positions and they try to hedge this
position by forward contracts. Most prominent reasons for this is first,
due to limited liquidity of market products and second, because of their
price influence on it.
Note that another reason for trading forward products can be that a
risk premium is present. That is that consumers of electricity are wiling
to pay a premium in order to reduce their future cost variability and
downside risk. This argument can also be applied from the producers
side. In literature, mostly indications for the former case is found and,
therefore, forward prices would be overestimated with respect to the
spot price.

The available and liquid forward products have di↵erent delivery peri-
ods of days, weeks, months up to a few years for both peak and o↵-peak
products. Therefore, the GenCos first estimate prospective production
with a MTHP planning and, then, they hedge this physical long position
with the available forward products. The portfolio is constantly up-
dated, especially if forward products with shorter delivery periods get
available.
Given that the delivery period of the forward products is di↵erent then
the actual physical hourly production and pool market, the hedging of
it can be non-trivial. Usually some kind of risk is calculated for open
positions and the task of traders is then to hedge the position most
profitably within given risk limits.

Multi-horizon model for a price-maker in forward and day-ahead mar-
kets

In order to give decision support for the bidding in forward markets,
multi-horizon models can be used. The idea is that the bidding process
is simplified to two steps: the bidding into the forward market and its
fulfillment with physical production or bidding in the day-ahead market.
The limited liquidity in both forward and day-ahead markets is modeled
by a linear price response giving an incentive for the model to take part
in the forward market.

In a multi-horizon setting, the bidding into the forward market can be
modeled as a here-and-now decision, whereas the intrastage decisions
consists of day-ahead bidding as well as the physical operation of the
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Figure 6.8: a) Multi-horizon model with varying intrastage time dura-
tions to model the bidding process. b) Linear dependent
forward product prices results to a quadratically depending
profit on traded amount.

HPP (see also figure 6.8 a)).
It is important to note that the interstage time durations in such a model
are not constant, but are adapted to the available forward products.
Therefore, the interstage time periods are first short but are getting
longer moving forward.

The model is tested on KWM and SDP is used to solve the model. Only
forward peak products are considered since KWM is a peak HPP. These
products are traded over-the-counter, but their prices are mostly based
on standard future contracts with financial settlement. Therefore, EEX
Phelix German peak future prices are taken as estimation of a forward
contract bid price.
The day-ahead price is estimated by an hourly priced forward curve
which is constructed by the operator of KWM. It is arbitrage-free to the
future products. Note that if a risk premium in the forward prices shall
be modeled, the estimation of the day-ahead price would have to be
adapted accordingly.

Mathematical model

The linear price response leads to a quadratic problem. Consider mfut

t

as the volume of a bided forward product at interstage t and c

fut

t

as its
current price. For a linear price response 

fut the return out of trading
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this product is therefore:
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(6.9)

The same derivation is also valid for the price response in the day-ahead
market.
The price response  can be estimated either by experience and tacit
knowledge or out of historical data e.g. from the market stack curve. A
qualitative example of it is given in figure 6.8 b). For the case study
the price responses were made constant although it would make sense
to adapt it.

The mathematical formulation of the multi-horizon model now follows
from (6.1) but with a deterministic intrastage subproblem, with the
forward market bidding as additional here-and-now decisions as well
as with quadratic objective functions (6.9) in both interstage and in-
trastage problems:
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Note that m

DA(⌧) is a vector denoting the day-ahead bid volumes for
all interstage hours ⌧ . Subsequently the objective function in the in-
trastage problem is written in matrix form.
Note also that the financial balance in (6.10c) and (6.10d) is valid on
either peak T

peak

or o↵-peak hours T
off�peak. In there, mpos

⌧

denotes
the portfolio positions from previous trades which is given beforehand
and is not part of the decision vector.
The intrastage problem is a quadratic linear problem for ⌧ stages. The
forward product volume mfut is discretized whereas the day-ahead mar-
ket positions mDA remain continuous.
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Figure 6.9: Bidding process simulation: For every month one optimiza-
tion is done with updated data. The forward simulation is
for determining forward bids to exercise whereas the oper-
ation simulation mimics the actual operation of the HPP.

Notes about the evaluation of the model

The model for the optimization (6.10) considers only one snapshot of
the whole bidding problem, which is what would be the most optimal
bidding strategy presently without taken into account that this static
strategy could be changed afterwards if new market information gets
available. Nevertheless, the amount of bid forward contracts could be
used as a decision support for the trading group in a GenCo.

The optimization depends on the previously traded forward products
i.e. on the actual portfolio positions mpos. In order to evaluate how the
application of such a bidding strategy performs over time, it is tested
in an operation simulation of the bidding process (figure 6.9). In the
course of the simulation, the optimization begins with zero portfolio
positions, which are then gradually built up in time with the following
procedure:
A respective forward simulation of the optimization (6.10) delivers the
bidding strategy that is the number of forward contracts to trade. These
trades are then exercised and, therefore, the portfolio positions are
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Figure 6.10: Results of the forward simulation for one randomly selected
week. Production depends on current water value and pool
price. But the balancing reservoir limits generation and
pumping capabilities by a large extend.

changed. Afterwards an operation simulation is performed, which mim-
ics operators decisions regarding HPP commitment for one month. This
procedure is repeated monthly with a receding horizon until end of the
time horizon is reached.

The simulation requires a large amount of data because each optimiza-
tion and simulation requires di↵erent data sets of either predictions or
actual realizations of inflows and prices of the day-ahead market and
the available forward contracts. As a result the optimization starts at
1st April 2009 in order to have enough historical data available.

Results of the simulation of the bidding process

Given next are results of the operation simulation of the bidding process
(figure 6.9). Note here that the computation time for the whole simu-
lation was a modest 35 minutes, which is also due to the undemanding
model of KWM.

Figure 6.10 illustrates the forward simulation for a randomly selected
week. For better readability not all results are shown and some turbines
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Figure 6.11: Results of bidding process simulation: a) Filling of storage
reservoir: The basin is used up to 80% of its maximum
capacity. b) (Cumulated) profit for each simulation run.

and pumps are combined.
For the shown week 100MW of peak forward contracts were sold. As
one can see, the full deployment of turbines and pumps is not always
possible. One reason for this is the balancing basin, which is relatively
small and, therefore, reduces turbining and pumping capabilities. In-
teresting is also the fifth day, where the obligation of forward contracts
are not met and, therefore, relatively cheap energy are bought back in
the day-ahead market.

Figure 6.11 shows the overall results of the operation simulation. On
one side the filling of the storage basin is shown normalized to its capac-
ity. Such a filling pattern was expected, since the basin is empty at the
beginning and inflows occur only in the first months. So the basin acts
as seasonal storage in order to be able to produce energy throughout
the whole year.
Figure 6.11 b) outlines the profit, which is achieved in the day-ahead
market and by trading forward contracts. At the beginning the profit
is negative, since forward contracts were bought so the HPP went
even more in a long position.4 However afterwards, profit is achieved
throughout the year with a tendency to more profit in the summer than
in winter time which was also expected because of non-storable water
inflows.
If no trading in the forward market was allowed (not shown in fig-

4Note that financial and operational risks were not considered explicitly but
rather implicitly by the price-maker model.
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Figure 6.12: Positions out of traded forward contracts. Note that
traded contracts are only in the peaks hours and that the
higher the simulation run the less hours are able to be
trade. The positions are gradually increased with even
long positions at first.

ures) total profit summed up to 20Mio.e compared to 24Mio.e in the
former case. So the simulation shows that trading in the forward mar-
ket results to an increase of profit of about 20%. Note that historical
achieved revenue out of sold energy were about 20 to 30Mio.e, making
the simulated ones realistic estimations.

Finally, figure 6.12 depicts the positions of forward contracts. The po-
sitions are daily aggregated to get a better overview.
At the beginning, there are even long positions but the less time left
until settlement the more the positions are in short. This is reasonable
since the storage HPP is long by nature and short positions are needed
in order to hedge its operation. Further, the positions are built up
gradually because of the price response which is also realistic behavior.

Conclusions

A linear price response is able to model limited liquidity in electricity
markets. Such an approach is implementable in multi-horizon models.
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The results of such a modeled optimization can be used as a decision
support for traders. However, note that the results are sensitive to the
modeled price response which has to be treated carefully.
Alternatively, also a risk-averse optimization would be a possibility to
model a similar behavior. But, the modeling of stochastic forward and
day-ahead market prices would then be very important but also delicate
to perform.

6.5 Summary

This chapter presented the multi-horizon modeling approach. The
model was extended by risk measures and revenue from the provision of
ancillary services. In the evaluation, traditional approaches and alter-
native modeling methods are compared with the proposed multi-horizon
method. Finally, two application examples for long-term valuation and
a price-maker were presented to show how multi-horizon models can be
applied.
Detailed conclusions were already drawn individually and are not re-
peated here. The main points were that multi-horizon modeling allows
a computationally e�cient as well as detailed modeling and outperforms
traditional approaches considerably. The modeling concept is very flex-
ible and, therefore, has to be adapted for specific applications.





Chapter 7

Dealing with non-concave
value functions

This chapter presents some extensions to dualized stochastic dual dy-
namic programming in order to deal better with non-concave value func-
tions. Additionally, a measure of the severity of non-concavity applica-
ble in this context is proposed. The chapter is based on the publication
[6].

In chapter 4, non-concave value functions and the state-of-the art re-
search were presented. The bottomline was that di↵erent methods
are applicable depending on the source and severity of non-concavities.
So for value functions, which are more than moderately non-concave,
ordinary stochastic dynamic programming (SDP) was the appropriate
method.
For this class of problems another method is introduced here, which
is proposed to be called stochastic dual dynamic programming (SDDP)
with locally valid cutting planes. The idea of such an approximate dy-
namic programming (ADP) scheme is to approximate the value function
locally with a better quality than a dualized SDDP method would allow.
Therefore, the proposed method is also able to solve higher dimensional
problems which would be intractable for a SDP method.

117
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7.1 Introduction

The reasons for non-concave value functions in medium-term hydro
power planning (MTHP) optimizations can be manifold. The most
prominent are:

• consideration of ancillary services markets,

• power plant operation rules,

• varying water head considerations, and

• modeling of market bidding.

The provision of ancillary services introduces non-concavities because
of forbidden operating zones in turbines. Similarly, physical properties
of the power plant often require the introduction of forbidden operation
zones or other operation rules. For instance, pumping is very often only
permitted fully or not and thus, if not simplified, is introducing discon-
tinuous value functions and therefore non-concavities.
Also the consideration of a varying water head makes a scheduling prob-
lem non-concave since it is depending in a non-linear way on di↵erent
factors. Finally, if as decisions in a bidding process both volumes and
prices have to be decided, then the value function is based on the mul-
tiplication of it and thus, non-concave.1

The two last phenomenas are not considered in this thesis since they
are not that important for MTHP problems, particularly not for Swiss
power plants.

Apart from concavitation techniques, SDDP can be applied to problems
with non-concave value functions with the dualized SDDP method as de-
scribed in chapter 4. It is not di�cult to show that this method doesn’t
work for value functions which are considerably non-concave. However,
it is not clear a priori, what “considerably non-concave” in this respects
means.
Therefore, proposed next is a measure of non-concavity. The measure
is applied to Kraftwerke Oberhasli AG (KWO) which also introduces

1Similarly if price states are present, then the value function is also non-concave
in respect to these. However, such a problem can be well approached by multi-cut
SDDP as presented in section 4.3.
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Figure 7.1: Measure of non-concavity ⇣

t

(z
t�1) for state z

t�1 as the rel-
ative di↵erence of the objective values of the Lagrangian
relaxed and the original problem.

some opportunities to speed up the computation time of the optimiza-
tion. Then, the SDDP-method with locally valid cutting planes is intro-
duced. Its performance is compared to the one with dualized SDDP on
Kraftwerke Mattmark AG (KWM).

7.2 Measure of non-concavity

The idea of a measure of non-concavity is to quantify the impact it has
on the correct representation of the value function by cutting planes.
In literature, many di↵erent mathematical concepts of measures of non-
convexity already exist. Widely discussed is for example the convexity
number, which states the minimum number of convex subsets that cov-
ers the original set.
Here a measure is introduced specifically for dualized SDDP, which can
be constructed cheaply but, nevertheless, gives an insight on the severity
of the non-concavity.

Recall the discussion in section 4.3 about dualized SDDP, especially fig-
ure 4.1, which is shown again with the proposed measure ⇣

t

(z
t�1) in

figure 7.1. With dualized SDDP it is possible to find valid cutting planes
for non-concave value functions. The minimum of the finally found col-
lection Q

t

(µ
t

), which is denoted as �̃

LR, does possibly not represent
the value function perfectly, but a di↵erence can remain due to the
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non-concave value function.
The relative value of this di↵erence is proposed to be the measure of
non-concavity:

⇣

t

(z
t�1) =

�̃

LR(z
t�1)� �

opt(z
t�1)

�

opt(z
t�1)

(7.1)

In a dualized SDDP algorithm the values needed to compute this mea-
sure are already available and the calculation of it, therefore, does not
complicate the problem further.
Note that the objective value of the original problem �

opt(z) corresponds
only to the minimum of the approximated value function Q̃

i(z). Fur-
ther note that the measure is only valid for a certain state. Out of these
reasons the measure is only a qualitative one for the true value function
Q(z).

It is also important to mention that �̃

LR(z
t�1) depends on the actual

optimized Lagrange multiplier µ
t

. If the stopping criterion in the algo-
rithm 5 in line 5 is solely based on the di↵erence ✏ of �̃LR with the objec-
tive value from the original problem �

opt, then the proposed measure of
non-concavity ⇣ either will stay always lower than ✏ or the optimization
of the Lagrange multiplier will not converge at all.
Therefore, in this thesis apart from an ✏ of 0.5%, two additional stop-
ping criterions were used. One is a limit on the maximum multiplier
optimization iteration of 100. The other one is a criterion based on the
progress of the optimization. So if the multiplier optimization does not
result anymore to closer cutting planes, it is stopped.
The first stopping criteria was experienced to be triggered mostly in all
simulations. The second criterion on the other hand was never active,
since at most around 50 iterations were needed. But in these cases with
many iterations, typically, the third criterion terminated the optimiza-
tions.

7.2.1 Application to Kraftwerke Oberhasli AG

Figure 7.2 a) shows the measure of non-concavity for the optimization
of KWO. The measure is calculated for every cutting plane in each daily
time stage.
In KWO there are 44 decision variables modeled, where 9 of them are
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Figure 7.2: Measure of non-concavity ⇣ of the value function of KWO

per time stage: a) for final fillings constrained to be zero
and non-zero and b) for an optimization with consideration
of a SFC market. Note the di↵erent scaling of the y-axes.

binary decisions. Nevertheless, the measure doesn’t show any consider-
able non-concavity.

Since the measure in figure 7.2 a) was not exactly zero, dualized SDDP

could possibly still requires some iterations until adequate Lagrange
multipliers are found. However, it can be shown that for this optimiza-
tion the Lagrange multipliers were not needed to be optimized because
the estimated multipliers from the locally convexified problem resulted
directly to a objective value �̃

LR(z
t�1) close to the original one.

If such behavior is experienced then the optimizations of the Lagrange
multiplier can be left out resulting in solving only the original problem
as well as the convexified one. This results of a speedup factor of 1.5-2
for the backward step of SDDP.

Figure 7.2 b) shows the measure for the same optimization of KWO, but
with the consideration of a market for the provision of SFC. This leads
to three additional binaries as well as integer variables. In this case, the
measure is roughly ten times as large and dualized SDDP is necessary,
at least for half of the time stages.

7.2.2 MTHP problems with constrained state values

Generation companies (GenCos) sometimes want to guarantee a certain
basin filling at some point in time. It turns out that such constraints
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are troublesome if SDDP-type algorithms are used.
Feasibility of a policy can be checked in the forward step of the algo-
rithm and then based on it additional penalties or feasibility cuts can
be introduced. However, it is very di�cult to find appropriate penalties
or feasibility cuts.

In this thesis, only the final value of the basins are sometimes required to
be met. For such a case there is also another simpler approach in order
to apply SDDP. The value function at terminal time can be adjusted so
that fillings lower then the given one have a negative profit-to-go value
and, therefore, are prevented.
Such an approach will amplify the non-concavity because of the non-
smooth value function at terminal time (figure 7.2 a). Note that the
reason for the non-concavity is still the non-linear model of the power
plant.

7.2.3 Conclusions

With the proposed measure ⇣, a qualitative insight on the non-concavity
of value functions is possible. This information can be used to further
tune the SDDP algorithm.
If a low measure is experienced only the locally convexified problem
has to be solved additionally. Otherwise, the Lagrange multipliers are
optimized but only for the time stages with higher values of the measure.
Depending on the application this heuristic will lead to a speedup of the
algorithm up to a factor of 2.

7.3 Locally valid cutting planes

For problems, which have a value function with a high value of non-
concavity, dualized SDDP will provide valid but not necessarily close
cutting planes to the actual value function.
Even worse, the outcome of MTHP optimizations are water values as
gradients of the cutting planes. Those gradients are di�cult to estimate
correctly by dualized SDDP. As an illustrative example consider the one-
dimensional case in figure 7.3. The slopes of the dotted lines in the
collection Q

t

(µ
t

) do not correspond well to the actual water values, i.e.
the slopes of the grey line Q

t

.
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Figure 7.3: Construction of locally valid cutting planes for an illustra-
tive one-dimensional case.

7.3.1 Proposed method

The idea is now to construct cutting planes, which approximate the
value function closer but are valid only locally at a certain region. There-
fore, the subgradients of them should be more accurate for an estimation
of the water values. In figure 7.3 these cuts would be represented by
the yellow lines in the collection Qloc

t

.

The cutting planes can be constructed out of the objective value of
the original non-convex problem and the dual variables of the coupling
constraints of the locally convexified problem. Therefore, one additional
linear program (LP) has to be solved in order to get this information.
A locally valid cutting plane also needs the state it was constructed for
in order to specify the valid region of it. The width of this region is
proposed to depend both on the SDDP algorithm iteration number i as
well as on the experienced measure of non-concavity ⇣. It is adapted in
the course of the algorithm with a smaller validity region for a higher
iteration number and non-concavity measure.

The usage of locally valid cutting planes complicates the calculation of
a subproblem in the backward pass. This is because at time point t

the state z

t

is unknown and therefore the valid cuts for it can not be
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determined.
In order to solve this issue, a heuristic procedure is proposed. The sub-
problems are first solved with an actual trial state z̃

t

and then iterated
until the state converges to a value. Depending on the application, this
procedure requires the calculation of multiple problems per subproblem
resulting in a considerable increase of computational complexity.2

Dualized SDDP and the technique with locally valid cutting planes com-
plete each other. The proposed methodology is, therefore, as follows:
For the first SDDP-algorithm iterations, the dualized method is used to
quickly find a first approximation of the value function. Afterwards, if
a relatively high non-concavity measure is experienced, the technique
with locally valid cutting planes is employed to refine the approximation
locally and to get to more accurate water values.

7.3.2 Evaluation

In order to evaluate the proposed method it is applied to KWM. If the
provision of SFC is considered, the problem gets more than moderately
non-concave. Additionally, KWM also allows the usage of SDP as solution
algorithm and, therefore, a benchmark can be constructed.

First, the water values proposed by SDP are compared with the water
values from the dualized SDDP approach with and without the extension
of locally valid cutting planes. Afterwards, the water values are applied
in a Monte Carlo operation simulation study.

The number of backward/forward pass iterations for both SDDP meth-
ods were limited in order to be comparable: 10 algorithm iterations for
the dualized SDDP method were used whereas for the second method
there were first 5 iterations of dualized SDDP and then again 5 iter-
ations with locally valid cutting planes. Note that in both cases the
upper bounds would have been also stabilized.

Water value comparison

Figure 7.4 shows the water values for the benchmark method SDP as
well as for the other two SDDP methods. Note that only values for state

2For the application to KWM the solving of around four additional mixed-integer
linear programs (MILPs) were necessary.
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Figure 7.4: Comparison of water values proposed by SDP, dualized
SDDP, and with locally valid cutting planes. The water val-
ues for SDDP methods are only meaningful for state trials,
here for almost empty fillings.

Table 7.1: Monte Carlo operation simulation

mean profit [Me]

perfect information: 53.04

SDP: 44.70

Dualized SDDP: 43.54

SDDP with locally cutting planes: 44.32

trials are meaningful for the SDDP methods whereas SDP estimates for
all filling levels accurate water values.
Qualitatively, one can argue that the values from SDDP with the ex-
tension of locally valid cutting planes are closer to the ones from SDP,
which could show the benefit of this enhancement.
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Performance of the optimization methods

In a Monte Carlo simulation, the hydro power plant operation is mim-
icked over one year for 100 samples of water inflows and market prices
in order to evaluate the quality of the di↵erent proposed water values.
Table 7.1 shows the resulting average profit for all methods and for
perfect information, when the unknown data is known in advance. The
enhancement of SDDP with locally valid cutting planes results in slightly
higher profits compared with SDDP without the enhancement, which is
indicating the better quality of the calculated water values. Note that
these results may change for di↵erent problem set ups and scenario
constructions.

7.4 Summary

Non-concavities can arise in medium-term hydro power planning
(MTHP) problems because of many di↵erent reasons. A measure of
it can be used to get some insights about the severity of non-concavity.
Such a measure can also be used for tuning the stochastic dual dynamic
programming (SDDP) algorithm, leading to less computational require-
ments.
For problems which are more than moderately non-concave and where
the application of stochastic dynamic programming (SDP) is not pos-
sible due to computational tractability issues, dualized SDDP with the
proposed extension with locally valid cutting planes can be used. Espe-
cially the estimation of water values can be performed better with such
an extension.



Chapter 8

Delta-hedging of cashflows
from ancillary services
markets

The market for the provision of ancillary services is a relatively new
revenue opportunity for generation companies. Therefore, the manage-
ment of its associated risks are not well understood until now. This
chapter gives support in this respect.

8.1 Introduction

The provision of ancillary services can be highly profitable, especially,
for storage hydro power plants. However, the acceptance of an o↵er is
insecure and consequently this will result to an uncertain revenue stream
from it. Additionally, the provision of ancillary services influences the
production schedule significantly. Out of these reasons, bidding in an-
cillary services increases cash flow and production risk considerably.

The idea is now to give some decision support in order to hedge cash flow
risks by adapting positions in the electricity forward market. Whereas
the risk in the electricity market due to open positions increases, in
return the cash flow risk from the ancillary services market can possibly
decrease more, leading to an overall mitigated risk exposure.
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8.2 Proposed method: delta-hedging

The proposed method is based on the well known concept of delta-
hedging. The delta denotes the sensitivity of the value of a portfolio or
option to a change in the value of the underlying product. Delta-hedging
means to build up a portfolio which has a delta close to zero. Therefore,
its value does not change with varying values of the underlying (as long
as the delta stays around zero of course).

Delta-hedging is already applied in a way by generation companies (Gen-

Cos) for several years, but typically only for the mitigation of cashflow
risks in electricity markets. Decision support is given there by calculat-
ing the deltas by scenario analyses of deterministic programs. Alterna-
tively, it can be formulated also as a stochastic multistage program as
it was shown in [122]. For the hedging of cashflows resulting from the
ancillary services market such an approach has to be adapted.

Consider as V t

spot

the value of a power plant for a certain time period t,
which is realized as cashflows in the electricity spot market. Consider
further F t

anc

as the remuneration of ancillary services, which is treated
as the underlying. The delta � is then as follows:

�t =
�V

t

spot

�F

t

anc

⇡
V

t,F

anc

+

spot

� V

t,F

anc

�
spot

2 · F t

spot

(8.1)

V

t,F

anc

+

spot

denotes the value of the power plant for an increase of the

remuneration for the ancillary services by one unit and with V

t,F

anc

�
spot

the value for a respective decrease of it. The di↵erence of it is divided
by the average spot price of the period t.
The delta �t as defined in (8.1) specifies the sensitivity of the spot
position in terms of energy, if the remuneration of ancillary services
changes. The time period for which the delta is constructed can be
hours, weeks etc. Also the change in the remuneration can be adapted,
e.g. it can be changed for all ancillary services products or for only a few
of them. Further, it is possible to analyze the behavior if bid ancillary
service products are awarded as expected or not at all.

The values of the power plant V t,F

anc

+

spot

, V

t,F

anc

�
spot

can be found by an op-
eration simulation, which can be di�cult to perform. It can be based on
a pre-constructed policy, for instance water values. Further, it should
consider the actual positions in the electricity markets, that is from
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trading in the forward markets. Given an estimation of the spot prices,
the cashflows can be computed which result from a change in the pro-
duction schedule due to di↵erent provision of ancillary services. With
such an operation simulation, various deltas can be calculated and the
positions in the forward market can be adjusted accordingly if needed.

8.3 Application to Kraftwerke Oberhasli
AG

The proposed framework is now illustrated for an application to
Kraftwerke Oberhasli AG (KWO). The power plant value shall be hedged
with respect to changing remunerations of ancillary services markets,
where a hypothetical daily secondary frequency control (SFC) market is
considered.

In order to find the position in the electricity market, first, a medium-
term hydro power planning (MTHP) optimization is performed based
on dualized stochastic dual dynamic programming and multi-horizon
modeling as well as with consideration of the SFC market for a given
remuneration. Out of this optimization, the production strategy, i.e.
the water values, can be retrieved. They are used in an operation sim-
ulation, which will deliver prospective hourly production. This long
positions are hedged with forward electricity products.
The values of the power plant for increased and decreased remunera-
tion is found by the same operation simulation, where the influence of
the changed price leads to a di↵erent operation and, thus, to diverging
cashflows. With this information various deltas can be computed.

In figure 8.1 a), the daily deltas of one month are shown, where the
production was hedged with daily products and the remuneration was
adapted for the whole time horizon of three years equally.
Typically, the delta is mostly positive, because with higher remuneration
more SFC is provided and, thus, higher production results.
Interestingly, the delta can also be negative, e.g. end of August in this
example, where for higher remuneration less of SFC is provided. The
reason for this is because the remuneration was changed for the whole
time horizon and, therefore, more energy is produced in general than
expected. This leads to lower basin fillings and subsequently higher
water values, which is then balanced out at some point in time.
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Figure 8.1: Delta as di↵erence of cashflows for increased and decreased
remuneration of SFC. a) Daily deltas for daily hedged pro-
duction as well as awarded SFC bids. b) Monthly delta for
monthly hedged production if in August SFC is not awarded.

Whereas the figure 8.1 a) is shown to illustrate the concept, more mean-
ingful are deltas for longer time periods, which corresponds to the avail-
able forward contracts. Figure 8.1 b) shows an example of it, where the
remuneration of SFC was not adapted but instead the o↵ers for the
month August were accepted or not. In this case the delta is negative
since if the o↵ers are not accepted, the production will be less than
assumed and energy would have to be bought back at the spot market.
It is not a priori clear, how much less the production will be. The simu-
lation estimates it by around 30MW for the month August. Therefore,
it could be reasonable to not sell all of the prospective production be-
forehand and stay in a long position. Note also that in the months after
August the delta is positive again because of the relatively high filling
in the reservoirs, which leads to more energy production than expected.

8.4 Summary

Given the multi-horizon modeling tools and dualized stochastic dual
dynamic programming, decision support for hedging of the cashflows
from ancillary services markets is possible. Some examples were shown
how to achieve this and how a decision support could look like.
The method is based on standard delta-hedging, which is well under-
stood in practice. This is especially important because the proposed
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decision support heavily depends on the input data and, therefore, the
model itself has to be as transparent as possible.





Chapter 9

Short-term planning

In this chapter the operation strategies calculated earlier are applied to
short-term planning. First, a decision support for bidding in electricity
markets is presented, where a marginal production cost curve is con-
structed. Then, an agent-based simulator, giving decision support for
strategic bidding in the ancillary services market, is presented. This
chapter is based on the publication [4].

9.1 Introduction and bibliography

From the operational point of view the realization of a production sched-
ule can be modeled as a deterministic mixed-integer linear problem. The
production function of hydro power plants (HPPs) can there be approx-
imated by a piece-wise linear function incorporating nonlinear turbine
e�ciencies, forbidden operation zones, head e↵ects, penstock losses etc.
as described in [8].

Whereas most problems in short-term scheduling are deterministic ones,
there are a few which are reasonable to model stochastically. An exam-
ple is the provision of secondary frequency control (SFC), where it has
to be guaranteed that the called energy can be delivered.
Such and similar problems can be addressed by stochastic model predic-
tive control algorithms where some constraints are formulated as chance
constraints and e.g. a scenario approach [102, 123] is used to solve it.
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From the market perspective, the self scheduling of a hydro power pro-
ducer is a bidding problem. Apart from selling of energy, the o↵ering
of ancillary services is relevant for this problem.
Water values from a medium-term hydro power planning (MTHP) opti-
mization yield a proxy for marginal costs of hydro generation companies
(GenCos). Using them in a bidding problem allows a very detailed mod-
eling, since only the time horizon of the market has to be considered
which is typically a day or a week.

There were done many di↵erent works in academic literature about such
problems. The recent review [124] can be used to dig deeper into lit-
erature about bidding problems for hydro generation companies. Also,
previously in 6.4.1, there was given an example of a bidding problem
where however the bidding decisions itself were not used explicitly.
In this chapter, a rather pragmatic approach is shown how to construct
a bid curve for a complex HPP, usable more in a short-term perspective.
Further, the strategic bidding of ancillary services is analyzed, which
gained not a lot of attention so far in practice and literature.

Bibliography in strategic bidding problems

One method, which is able to model strategic bidding problems, is agent-
based models, which were reviewed in [125]. The Q-learning framework,
as one of the most commonly used approaches, was introduced in [126]
and extended in various papers, e.g. in [127].
In the energy field, the research about agent-based modeling is outlined
in [128–131]. Agent-based models are mostly used for analyzing di↵erent
market structures and not for self-scheduling. Few other works consider
thermal or hydrothermal portfolios for an optimal bidding problem. For
example in [132], game theory techniques were utilized to locate optimal
Nash equilibrium solutions to the electricity market auction. Consid-
ered were, apart from the energy market, spinning reserves and reactive
power markets with two players with thermal production.
Apart from agent-based modeling, mathematical optimization of esti-
mated residual demand curves with market data can be used to find
optimal strategic bidding. For example, the authors in [115] use two
estimated residual demand curves of one player and its competition in
order to find optimal bidding considering day-ahead and intra-daily en-
ergy markets as well as secondary reserve market.
In [124], a recent literature review about energy bidding for hydro Gen-

Cos is given. However, bids consisting of several quantity-price pairs
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are not considered until now in literature. One reason might be that
for standard agent-based modeling the algorithm either quickly gets in-
tractable or the model has to be unrealistically simple, because of the
large freedom of quantity-price pairs bids. For residual demand curves
it would be possible to include such bids in the optimization. But it is
first very di�cult to model the demand curve of the competition and
secondly, it is even more di�cult to model their strategic behavior, thus,
resulting again in an unrealistic setting.
If many quantity-price pairs would be present, this could get approxi-
mated by a marginal cost curve. In [133] deviated slope and markup of
such a marginal cost curve are used to model discrete strategic choices.
In the setting here, however, the cost curve is a staircase function and,
therefore, a linear approximation of it would be troublesome.

9.2 Bidding in electricity markets

For a price-taker the bidding into markets depends mostly on its
marginal costs, which for hydro GenCos are the water values. The water
values are given as a result of a MTHP optimization. In order to get
to optimal bids the marginal values of turbines and pumps can be con-
structed: Given the water values of the reservoirs up- and downstream
of these machines, the marginal value is the di↵erence of them divided
by their production function.
Then, an optimal bid curve consists of the marginal values of the tur-
bines and pumps associated with their capacity.

Whereas this procedure works well for simple HPPs, for more complex
ones it is not applicable. Consider for instance the Kraftwerke Oberhasli
AG (KWO) power plant. A close analysis of it reveals that water release
is possible in multiple ways and therefore “parallel” water streams can
occur. Further, operational rules prevent some operation condition that
is e.g. if some turbines are running others can not etc.
In such cases the operation of turbines and pumps are linked to other
ones. The marginal values are then not independent of the actual oper-
ation condition although the water values remain constant. Therefore,
it would get quite misleading to use them as decision support for energy
bidding.

A way around this issue is proposed here, where a marginal production
cost curve of a HPP is constructed by simulation. An operation simula-
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Figure 9.1: Example of a partly confidential marginal production cost
curve for KWO. Highlighted are the bids which are reason-
able.

tion of the HPP is constructed, which for given water values finds most
optimal operation condition. The optimization is repeated for all pos-
sible energy amounts that can be produced. The resulting costs define
the marginal production cost curve.
Figure 9.1 shows an example of it for KWO for a specific hour. For the
production of electric energy the marginal costs increase slowly, since
KWO has large basins with a lot of flexibility.
For usage of energy in the pumps the curve is more interesting. Since
there are only a few pumps and all of them have forbidden operation
zones this results to an discontinuous curve. Often turbines are operat-
ing simultaneously with the pumps in order to be able to use a certain
amount of energy. Therefore, only the highlighted bids would make
sense for usage of energy.

Such a curve can be used directly as decision support for bidding in a
spot market. Note that a separate simulation per hour is needed, which
requires around 20 seconds of computation time.

9.3 Bidding of ancillary services

The bidding of ancillary services is a di�cult task to perform for GenCos.
Additionally, in Switzerland such markets are dominated by a few big
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quantity / price pairs

accepted pair

turbines/pumps

Figure 9.2: Overview of the algorithm with agents deciding on their bids
and the market operator who clears the market. The agents
are each specified by their water values and production ca-
pabilities.

players. So these markets are of oligopolistic nature where theoretically
strategic bidding is present and additional profit could be obtained if it
is considered.
Therefore decision support about bidding into ancillary services should
deliver not only the optimal o↵er to bid, but should also take into ac-
count that strategic bidding could be possible.

Agent-based modeling is one method which is suited to model oligopolis-
tic markets. Here analyzed is the SFC market. For this market in
Switzerland only hydro GenCos take part. Therefore, the following model
is proposed:
The market players are aggregated into agents, each agent representing
one of the bigger market players. Depending on their production capa-
bilities and water values, optimal quantity-price pair bids are found by
simulating their strategic behavior, giving a possible decision support
to one of the agents.

9.3.1 Proposed model

In agent-based modeling, a notation style is used, which interferes with
some of the variables introduces in this thesis so far. Nevertheless, in
order to avoid misunderstandings the notation follows the one typically
used in such contexts.
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In order to simulate strategic behavior, the agents should be able to
learn by acquiring knowledge from past actions and decide for upcom-
ing ones based on their experience. The learning here is based on the
commonly used Q-learning framework [126].
Figure 9.2 shows an overview of the proposed algorithm. The agents
are characterized by their technical production capabilities and water
values. For each agent, three tasks have to be done: bid decision, profit
estimation for a given accepted bid and memorizing of relevant knowl-
edge. Apart from the agents, also the market clearing has to be simu-
lated. The algorithm is repeated until su�cient learning has occurred
and stable results are found. In the following, all of these tasks are
explained in more details.

Agent model

The market participants are modeled as agents i 2 I. The agents are
modeled from public available data. Each agent should represent one of
the most influencing market participants. Typically, those GenCos have
several di↵erent HPPs or certain shares of them in their portfolios. In
order to get to the relevant information for bidding of SFC, the following
procedure is proposed:

1. Calculation of water values per HPP.

2. Determination of SFC power per HPP.

3. Estimation of marginal costs for the provision of SFC per HPP.

4. Clustering of HPPs depending on marginal costs.

5. Determination of power quantity for provision of SFC per agent.

First, water values wv
hpp

have to be calculated for each HPP in the
agents portfolio. This task can be very di�cult. In the case study a
multi-horizon model is used with the consideration of SFC provision but
also other approaches could be used.
Second, for each HPP the maximum quantity of SFC power is determined.
Afterwards, marginal costs for the provision of SFC are calculated, that
is the smallest remuneration which makes the provision still beneficial.
For this calculation a profit estimation, which is explained later, with
provision of the SFC bid is compared with estimated profit without it.
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The HPPs within a portfolio are then grouped together depending on
the marginal costs.
Finally, it is possible to construct for each GenCo a list of SFC power
associated with their marginal costs. Note that this list denotes the
optimal bidding strategy for the GenCo in a perfect market, with each
quantity-marginal costs pair forming one bid. Note also that there are
not enough quantity-price pairs in a typical portfolio in order to ap-
proximate a marginal cost curve which would be used for alternative
formulations.

Bid model

A bid b 2 B of some agent is defined as a number of combinations k of
the volume o↵ered q

k

2 Q and demand charged s

k

2 S.
The critical question in agent-based modeling is how a bid is adjusted
if new knowledge about the performance of it gets available. The idea
proposed here is to adjust the list of cumulated power quantities with
associated marginal costs depending on certain characteristics.

It seems reasonable to bid SFC based on its marginal costs. However, in
an oligopolistic environment higher prices for certain quantities could be
reasonable. To be able to learn this, bid characteristics are introduced.
A bid characteristic could be e.g. a strategy, where the price for the
quantity with the highest marginal costs would be further increased.
Proposed are ten di↵erent characteristics which construct the discrete
action set A from which the agents choose their actions ai 2 A.

The question remains on how much each price has to be increased. The
following assumptions are made:

• each price s

k

is at least the corresponding marginal cost, and

• each price s

k

is at maximum the prices of the quantities with
higher marginal costs s

k+1

, s

k+2

, ... .

The first assumption is obvious whereas the other one is due to the
bidding of cumulated quantities. With these assumptions only the dif-
ferences between the marginal prices based on the chosen action a is
adjusted. Figure 9.3 a) shows the factors by which each di↵erence is
multiplied and added to each marginal cost. Figure 9.3 b) gives an ex-
ample for the forth factor how prices increase.
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4.

It should be noted that similar characteristics are close and that the
first characteristic is also similar to the last one making the learning
process more smooth.

Whereas one bid will consist only of a few di↵erent prices, the o↵ered
quantity can vary much more because an agent can bid each power
quantity per HPP individually or even bid a fraction of it. This makes
sense since the demanded power is limited so a bigger quantity is less
probable for being accepted. Therefore the corresponding cumulated
power quantity for each price (figure 9.3 b)) is split into increasing values
up to the full amount. This results in many quantity-price pairs for each
di↵erent marginal costs type.

Bid decision

In each game round the agents have to decide which characteristic to
apply on their SFC bid, the respective actions a

i 2 A. The actions are
first sorted, so that similar actions are close together and are given a
number j 2 N+ (see also figure 9.3 a)). The agent i selects his action
based on normal distribution with some standard deviation and the
mean µ of the number j

max

of the action which maximizes its believed
reward:

µ = j

max

= argmax
a2A

Q

i

t

(9.1)

The result is then rounded to the nearest integer and the corresponding
action is taken.
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With this procedure each agent chooses actions which are similar to
the one with the best reward. In order to introduce more randomness,
actions are drawn for a certain probability out of a uniform distribution.

Profit estimation

Each agent has to estimate the reward r

i for the set of actions for a
game round t. From the market operator he gets the accepted quantity-
price pair qacc, sacc, if any. The provision of SFC limits the production
capabilities. The remaining unconstrained power range can be used for
taking part in the pool market.
To model this pool market an estimated hourly priced forward curve is
used. The profit from this market depends on the di↵erence between
market price and water values wv

hpp

of the respective HPP. For the sake
of simplicity a number of simplifications are made:

• the water values wv
hpp

remain the same for the whole week,

• water inflows as well as water balance in the basins are neglected,
and

• same water values are assumed for HPPs with similar marginal SFC
costs.

For bigger basins, where weekly production and water inflows do not
influence the filling much, the first two simplifications are reasonable.
The third simplification is only valid, if the HPPs are technically similar.

With these simplifications the HPP-portfolio can be clustered. To es-
timate the profit with this portfolio in the pool market with given ac-
cepted quantity-price pair qacc, sacc, a linear program (LP) is formulated.
For each HPP in the portfolio there is:

max (HPFC� wv
hpp

)T · x (9.2)

s.t.:
n

0  x  unconstrained power
hpp

(qacc)

x denotes hourly bidding in the pool market, where it is constrained
depending on the accepted SFC quantity q

acc as well as the technical
minimum. The profits of all HPPs in the portfolio together with the
remuneration of the accepted quantity-price pairs (qacc)T · sacc leads to
the reward r

i for each agent. Note that alternatively to a LP a direct
analytical computation would be also possible.
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Memory / learning algorithm

In a Q-learning algorithm the agent i keeps in memory a function Q

i :
A ! R, which represents the expected profit previously calculated for
action a

i 2 A. The agent updates his memory after each game round t.
This is done as follows:

Q

i(ai
t

) Q

i(ai
t�1) + ↵

i

t

�
r

i(a1
t

, . . . , a

n

t

)�Q

i(ai
t�1)

�

↵

i

t

2 [0, 1] is known as degree of correction specifying how much new
knowledge change the memory. r

i denotes expected reward for agent i
if actions a1

t

, . . . , a

n

t

are performed with n as the number of agents.
So if ↵i

t

= 0 the agents leaves the memory unchanged, if ↵i

t

= 1 the
agent doesn’t consider past observations at all. Here chosen is the same
value of 0.6 for all agents which turned out to be a suitable value.

Market Clearing

The market operator collects the bids from the agents and performs a
market clearing. The operator can select at most one of the quantity-
price pairs within each bid. Further, the sum of the selected power
quantities has to exceed the control demand. This is a typical opti-
mization problem, which can be modeled as a binary LP:

min s

T · x · q (9.3)

s.t.

8
><

>:

q

T · x � control demand
P

b

x  1

x2{0,1},s2S
t

,q2Q
t

,b2B
t

The binary variable x specifies, which quantity-price pairs get accepted.
Within each bid b only one pair can get accepted.

9.3.2 Application to Swiss market system

The proposed model is now applied to the Swiss system in order to give
bidding decision support to one of the Swiss GenCos. In Switzerland
storage HPPs account roughly for one third of total produced electri-
cal energy. These plants are more than enough to provide the needed
amount of SFC power. The three biggest Swiss GenCos and the three
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of game rounds. b) Bid decision: chosen characteristics for
agent 2.

biggest Swiss public utilities own more than 80% of total capacity. So
those six entities were chosen for modeling the agents. The following
simplifications were made:

• consideration only of hydro storage HPPs with more than 50MW,

• technical minimum: Francis turbines: 50%, Pelton turbines: 10%,
further technical issues were disregarded,

• water values calculated only for six reference HPPs, and

• minimum amount of 20MW for SFC provision.

Water values are highly depending on the ratio of yearly produced en-
ergy to installed capacity. That’s why the HPP are clustered based on
this ratio and are allocated a water value out of six reference ones. The
six reference water values are estimated based on a multi-horizon model
optimization of six di↵erent typical HPPs in Switzerland for the last
week of June. At this time point the storage basins are usually half
filled. The taken hourly priced forward curve is also the estimated price
curve for this week done some days beforehand. The resulting data is
summarized in table B.1 in the appendix.

The algorithm is iterated in parallel, but the knowledge is shared repeti-
tively. The results are shown for 4000 game rounds which needed around
30 seconds of computation time.
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20MW.

Results

In figure 9.4 a) for all agents the characteristics are shown, which bids
were accepted by the market operator. The bids from agent 5 were
seldom accepted which is obvious for the data shown in table B.1. But
the other agents also want to get their bids approved and for certain
characteristics this is more probable. Expect of agent 4 the others bid
prices substantially higher than the marginal costs.
In figure 9.4 b) the bid decision for agent 2 is depicted. After around
1000 game rounds the result stabilizes. Note that the spikes in the figure
are due to frequent complete randomly chosen characteristics.

Figure 9.5 compares simulated prices for the costliest awarded quantity
with historical values. The historical prices are around 20% lower than
the simulated ones, which indicates either model inadequateness and/or
missing strategic behavior in the real market. If the agents would bid
their marginal costs, the costliest awarded quantity would be around
30e/MW/h which would fit historical ones better.

The results indicate that strategic bidding would be beneficial. Besides
it can also be shown that if only one agent is given the opportunity to
bid strategically, he will choose to bid marginal costs. So there is a high
probability in reality that despite a Nash-equilibrium exists no agent
bids strategically. This makes a decision support tool which considers
strategic bidding obsolete.
However, there could be special situations, where the SFC amount of-
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Acceptance of marginal cost types for agent 2.

fered by the agents is reduced (such situations may have resulted in high
prices in figure 9.5 b)). Usually this is known before the actual market
clearing is performed and an agent could make use of this knowledge.
Figure 9.6 shows the results of a simulation, where some HPPs are not
available and therefore the amount of bid SFC quantity is reduced. Ad-
ditionally only agent 2 is learning. In this case agent 2 acts strategically
although the other agents bid their marginal costs. He chooses char-
acteristic 5 instead of characteristic 4 as earlier, which means further
increased bid prices. Accepted were in this case marginal cost type 3.
The same simulation was done without agent 2 given the possibility to
act strategically, so all agents bid their marginal costs. The expected
return from bidding increases for agent 2 by more than 20% if he bids
strategically. If the profit out of energy bidding in the pool market is
also considered an increase of more than 10% can be achieved. So it is
indeed more beneficial for agent 2 to act strategically in this case.

9.3.3 Summary

An agent-based simulator allows an analysis of the secondary frequency
control market as well as decision support to one of the market partic-
ipants. The simulator was applied to the Swiss system out of public
available data. It was shown that strategic behavior would be benefi-
cially but would hardly be applied in practice. A reason for this is also
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the oversupply of control reserves in Switzerland. However, in case of
special occurrences, it could be indeed beneficial for a generation com-
pany to act strategically.
Obviously, the costs for a transmission system operator increases if some
market participants act strategically. Therefore, he may prevent this by
additional market rules.



Chapter 10

Closure

Summary and conclusions of the thesis

This thesis deals with the self-scheduling of pumped storage hydro gen-
eration company in a liberalized market environment. As main contri-
bution, a flexible but very e�cient modeling approach, the multi-horizon
framework, was introduced, analyzed, evaluated, and applied for realis-
tic test cases.

The thesis started with laying out the challenges which have to be faced
in hydro power planning. The combination of some of these challenges
makes the problem very di�cult to solve, making a decomposition of it
into short- and medium-term planning problems necessary.
From the academic point of view also the evaluation of new methods is a
challenge since no standard power plant models are available. Therefore,
two test power plants were introduced.

Chapters 3 to 5 showed the state-of-the-art methods in hydro power
planning. The following methods were explained, analyzed, and com-
pared: deterministic equivalents, stochastic dynamic programming
(SDP), stochastic dual dynamic programming (SDDP), multi-cut SDDP,
dualized SDDP as well as some exotic variants. Further, some model-
ing technics were discussed: here-and-now and wait-and-see decisions,
stage-wise dependent problems, and risk-averse multistage optimiza-
tions.

In the second part of the thesis, the main contributions can be found.
Chapter 6 dealt with how to model medium-term planning problems
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both reasonably from the modeling point of view and e�ciently from
the computational point of view. In order to achieve this, the multi-
horizon modeling framework was introduced and analyzed. The idea
there is to combine dynamic programming with deterministic equiva-
lents and to exploit physically di↵erent reservoir types.
The model was then extended by considering risk measures and mar-
kets for ancillary services. The model was evaluated against traditional
approaches and some alternative formulations were discussed. It was
shown that multi-horizon models have a number of advantages for only
a modest increase in modeling e↵ort.
Multi-horizon models are very flexible and, therefore, have to be adapted
for specific applications. Two examples showed how to do this for a stor-
age plant long-term evaluation and for a price-maker bidding problem.

Chapter 7 extended the dualized SDDP method in order to better cope
with problems with non-concave value functions. First, it was shown
why non-concavities can arise. A measure of the severity of non-
concavity was proposed and based on it the dualized SDDP method
was extended by the concept of locally valid cutting planes. It was
shown that this extension can lead to better results especially for the
estimation of water values.

Chapter 8 presented how to deal with risk associated with ancillary
services markets. It was shown how a delta-hedge of its cashflows can
provide decision support for a mitigation of its risks.

Finally chapter 9 applied medium-term operation strategies in short-
term planning. Decision support for bidding in electricity markets for
complex power plants were presented, where a marginal production cost
curve was constructed. Then, assistance for bidding into ancillary ser-
vices were given by an agent-based simulator, which considers strategic
bidding. It was shown that for special situations strategic bidding could
be beneficial.

As a main conclusion, one can note that despite the mature research field
of hydro power planning, modeling approaches and solution methods
can still be improved. Whereas academically many results in this thesis
could be shown in a similar way also with traditional modeling technics
and methods, in practice a more natural and transparent model as well
as less computational e↵ort is more valuable.
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Outlook

Multi-horizon modeling technics were constructed out of the need for
better models for hydro power planning. However, such models could
be applied in many other fields, which were not discussed in this thesis,
but which would be interesting to explore.
Multi-horizon models are very flexible and it is maybe not always clear
how a reasonable set-up could look like. Therefore, a more formal pro-
cedure and/or a list of possibilities in how to find meaningful models
could be a further playground for research.
The modeling of data processes were not analyzed in detail in this the-
sis. Therefore, a further direction for research could be to extent multi-
horizon models in this respect.
In this thesis, relatively simple production functions for turbines and
pumps were used. But multi-horizon models would allow the consid-
eration of much more di�cult functions, for instance piece-wise linear
ones. Its impact on the results would be interesting to analyze.
As an application example of multi-horizon models a long-term valua-
tion study of a pumped storage hydro power plant was shown. It would
be interesting to compare its results with more financial oriented tech-
niques like Monte Carlo regression type algorithms.
Finally, the multi-horizon models were constructed only with at most
two di↵erent kinds of state variables. This could get relaxed to an in-
definite number of it. Whereas computationally it would not introduce
any benefits, from the modeling point of view this could make sense,
e.g. for power plants with large, medium, and small sized reservoirs.

The improved dualized SDDP as well as the measure of non-concavity
probably needs more applications and analyzes in other fields in order
to prove if they are indeed applicable in general.
In contrast, delta-hedging of ancillary services is from a theoretical point
of view well defined. However in practice, it could be troublesome to
use and, therefore, needs more application experience.

Finally, risk-averse optimizations for multi-horizon models were well
defined and also applied in this thesis. However, it was not used in
bidding problems, which could be a good application.





Appendix A

Case study models

A.1 Kraftwerke Mattmark AG (KWM)

The model of the Kraftwerke Mattmark AG (KWM) power plant is
shown in figure A.1. The plant is located in southern Switzerland. It is
operated by the Axpo Trading AG but belongs to di↵erent sharehold-
ers, which can independently use their part of the plant.
The plant is not overly complicated. There are two reservoirs, one sea-
sonal storage vstor with a maximum filling of 100Miom3, and a balanc-
ing reservoir vbal with a maximum filling of 100000m3. The balancing
reservoir is therefore 1000 times smaller and it is primarily used to catch
water inflows. This water is either pumped in the pumps p1 and p

2 into
the seasonal storage or generates energy in the turbines u3 and u

4.

Both reservoirs receive a comparable amount of water throughout the
year. Most of the inflows originate from glaciers. Therefore the cor-
relation of inflows and temperature is very high and the inflows have
a strong seasonality (see also figure A.2). Therefore optimizations on
such power plants preferably end in spring time since then the storage
basins are mostly empty.

The turbines u1

, u

2 and the pumps p1, p2 are build up out of Francis tur-
bines, with each have capacities of 37MW and 23MW respectively. The
turbines u3

, u

4 are of Pelton type and have each a capacity of 92MW.
The turbines and penstocks are designed in a way, that full production,
which is 260MW, is continuously possible when all turbines operate at
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Figure A.1: Model of the Kraftwerke Mattmark AG (KWM) hydro
power plant.
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Figure A.2: Example of water inflows into reservoir v

stor of KWM for
the last few years. Note the strong seasonality.
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Anlageschema der Kraftwerke Oberhasli AG

Figure A.3: Overview of the Kraftwerke Oberhasli AG (KWO) hydro
power plant.2

their maximum capacity. The capacity of the pumps is approximately
half of the one of the turbines u1

, u

2. Additionally, the turbines u3

, u

4

are prequalified for delivery of secondary frequency control (SFC) with
a technical minimum of around 10%.

A.2 Kraftwerke Oberhasli AG (KWO)

An overview of the Kraftwerke Oberhasli AG (KWO) power plant is
shown in figure A.3. The plant is located in central Switzerland and
belongs and is operated by the BKW Energie AG.
The plant is known as the most complicated one in Switzerland from
the operational point of view. In this thesis a model of it is used
which was constructed by BKW Energie AG for medium-term optimiza-
tions. The confidential model consists of 10 reservoirs with a capacity
of 195Miom3. This capacity is enough to store around a quarter of the
yearly inflows. Four reservoirs can be considered as seasonal storages
whereas the other 6 are balancing ones. The turbines and pumps in the
model are aggregated to 12 and 8 units with a capacity of 1.125GW
and 424MW respectively.

The pumps are build up out of Francis turbines. Therefore only a bi-
nary on/o↵ operation of them is allowed. The exception is a recently

2Kraftwerke Oberhasli AG, “analageschema-kwo.pdf”, Retrieved from http://

www.kwo.ch, January 2015.

http://www.kwo.ch
http://www.kwo.ch
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installed pump which can adjust its operation from 60� 100% with the
help of a frequency converter.
The turbines are of both Francis and Pelton type. Additionally, there
are a few operation rules which can be modeled as mixed-integer con-
straints. Three of the turbines are used for the delivery of SFC.



Appendix B

Swiss system data for chapter
9

Table B.1: Data
Agent (GenCo) bid power quantity [MW] marginal cost [e/MW/h]

1: Alpiq 0 100 20 60 20 540 0 30 38 60 69 152
2: BKW 0 20 40 20 80 100 0 38 44 57 74 154
3: Axpo 340 40 60 120 260 0 28 31 46 135 174 349
4: EWZ 0 0 0 120 80 0 0 0 0 31 47 94
5: ewb 0 0 0 0 20 0 0 0 0 0 94 188
6: iwb 0 0 20 20 40 100 0 0 31 57 67 154

Agent (GenCo) total installed capacity [MW] tech. minimum [MW]

1: Alpiq 0 359 187 187 132 1260 0 70 43 19 38 126
2: BKW 0 84 260 55 593 253 0 42 59 5 167 25
3: Axpo 967 158 188 506 715 67 193 61 57 234 109 33
4: EWZ 0 0 0 386 330 54 0 0 0 89 77 27
5: ewb 0 0 0 0 204 27 0 0 0 0 59 3
6: iwb 0 0 81 48 256 253 0 0 15 5 73 25
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[49] J. Dupačová, G. Consigli, and S. W. Wallace, “Scenarios for mul-
tistage stochastic programs,” Annals of Operations Research, vol.
100, pp. 25–53, 2000.



162 Bibliography

[50] A. Shapiro, W. Tekaya, J. P. da Costa, and M. P. Soares, “Risk
neutral and risk averse stochastic dual dynamic programming
method,” European Journal of Operational Research, vol. 224,
no. 2, pp. 375 – 391, 2013.

[51] M. Leuzinger, “Einsatzplanung hydraulischer kraftwerke unter
stochastischen bedingungen,” Ph.D. dissertation, Eidgenössische
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[94] A. Ruszczyński, “Risk-averse dynamic programming for markov
decision processes,” Mathematical Programming, vol. 125, no. 2,
pp. 235–261, 2010.

[95] A. Shapiro, “Time consistency of dynamic risk measures,” Oper-
ations Research Letters, vol. 40, no. 6, pp. 436 – 439, 2012.

[96] A. Shapiro, W. Tekaya, M. Soares, and J. d. Costa, “Multistage
energy planning – risk neutral and risk averse approaches,” in XII
SEPOPE: Symposium of Specialists in Electric Operational and
Expansion Planning, 2012.

[97] A. Philpott and V. de Matos, “Dynamic sampling algorithms
for multi-stage stochastic programs with risk aversion,” European
Journal of Operational Research, vol. 218, no. 2, pp. 470 – 483,
2012.



Bibliography 167

[98] A. Philpott, V. d. Matos, and E. Finardi, “On solving multistage
stochastic programs with coherent risk measures,” Operations Re-
search, vol. 61, no. 4, pp. 957–970, 2013.

[99] A. Diniz, M. Tcheou, and M. Maceira, “A direct approach to the
consideration of the cvar problem hydrothermal operation plan-
ning,” in XII SEPOPE: Symposium of Specialists in Electric Op-
erational and Expansion Planning, 2012.

[100] M. Maceira, L. Marzano, D. Penna, A. Diniz, and T. Justino,
“Application of cvar risk aversion approach in the expansion and
operation planning and for setting the spot price in the brazilian
hydrothermal interconnected system,” in Power Systems Compu-
tation Conference (PSCC), Wroc law, Poland, 2014.

[101] T. H. de Mello and B. K. Pagnoncelli, “Risk aversion in multi-
stage stochastic programming: a modeling and algorithmic per-
spective,” Universidad Adolfo Ibanez Santiago, Chile, Tech. Rep.,
2015.

[102] M. C. Campi, S. Garatti, and M. Prandini, “The scenario ap-
proach for systems and control design,” Annual Reviews in Con-
trol, vol. 33, no. 2, pp. 149–157, 2009.
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