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ABSTRACT
Large scale biodiversity monitoring is essential for sustain-
able development (earth stewardship). With the recent ad-
vances in computer vision, we see the emergence of more and
more effective identification tools allowing to set-up large-
scale data collection platforms such as the popular Pl@ntNet
initiative. Although it still covers only a fraction of the world
flora, this platform is already being used by more than 300K
people who produce tens of thousands of validated plant ob-
servations each year. Nevertheless, this explicitly shared and
validated data is only the tip of the iceberg. The real po-
tential relies on the millions of raw image queries submitted
by the users of the mobile application but for which there
is no human validation at all. Allowing the exploitation of
such contents in a fully automatic way could scale up the
world-wide collection of plant observations by several orders
of magnitude. In this paper, we first survey existing auto-
mated plant identification systems through a five-year syn-
thesis of the PlantCLEF benchmark and an impact study of
the Pl@ntNet platform. We then focus more specifically on
the implicit monitoring scenario and discuss several new re-
lated research challenges. Finally, we discuss the results of a
preliminary experimental study focused on the implicit mon-
itoring of invasive species in mobile search logs. We show
that the results are very promising but that there is still
some room for improvement before being able to automat-
ically share such implicit observations within international
biodiversity platforms.

1. INTRODUCTION
Identifying organisms is a key step in accessing informa-

tion related to the ecology of species. This is an essential
step in recording any specimen on earth to be used in eco-
logical studies. But unfortunately, this is difficult to achieve
due to the level of expertise necessary to correctly identify
and record living organisms (in particular plants that are
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one of the most difficult group to identify with more than
300,000 species on earth). This taxonomic gap has been
recognized since the Rio Conference of 1992, as one of the
major obstacles to the global implementation of the Conven-
tion on Biological Diversity. Among the diversity of methods
used for species identification, Gaston et al.[11] discussed in
2004 the potential of automated approaches typically based
on machine learning and multimedia data analysis methods.
They suggested that, if the scientific community is able to (i)
overcome the production of large training datasets, (ii) more
precisely identify and evaluate the error rates, (iii) scale up
automated approaches, and (iv) detect novel species, it will
then be possible to initiate the development of a generic
automated species identification system that could open up
vistas of new opportunities for pure and applied work in
biological and related fields.

Since the question raised by Gaston in 2004 (”automated
species identification: why not?”), enormous work has been
done on the development of automated approaches for plant
species identification, mostly based on computer vision tech-
niques (e.g. [4, 17, 46, 23, 24, 28, 45]). Some of these results
have been integrated in effective web or mobile tools and
have initiated close interactions between computer scientists
and end-users such as ecologists, botanists, educators, land
managers and the general public. One of the first remark-
able system in this domain was the LeafSnap application
[27], focused on a few hundreds tree species of North Amer-
ica. This was followed few years later by other applications
such as Pl@ntNet [22] or Folia [6] more specifically dedicated
to the European flora, or LikeThat garden1 more focused on
garden plants. These productions were perceived as inno-
vative tools and have received a good support of a large
part of the society. The number of news articles on the web
dedicated to this subject is a good illustration of this posi-
tive perception. These tools are nevertheless at their early
stage of development according to the large number of plant
species on earth, the large diversity of end-users interested
in such an accessible approach and the limits of today’s per-
formance.

In parallel to the emergence of automated identification
tools, large social networks dedicated to the production,
sharing and identification of biodiversity records have in-
creased in recent years. Some of the most active ones in the
botanical domain like iNaturalist2, iSpot [35], Tela Botan-

1https://www.likethatapps.com/LikeThatGarden/
2http://www.inaturalist.org/
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ica3, respectively initiated in the US for the two first ones
and in Europe for the last one, federate tens of thousands
of members, producing hundreds of thousands of observa-
tions. As a proof of their increasing reliability, some of these
networks started to contribute to global initiatives in biodi-
versity such as the Global Biodiversity Information Facility
(GBIF4) which is the largest and most recognized one.
Noticeably, the Pl@ntNet initiative was the first one at-
tempting to combine the force of social networks with that of
automated identification tools [23]. It was launched in 2009
by a trans-disciplinary French consortium involving research
institutes in computer sciences, ecology and agriculture in
collaboration with the Tela Botanica social network. This
was the starting point of several scientific and technological
productions [12] which finally led to the first release of the
Pl@ntNet app (iOS in February 2013 [16] and Android [15]
the following year). It was the first system allowing the use
of a combination of different visual features (such as leaf,
stem, fruit and flower) and the first one relying on a con-
tinuously enriched collaborative training set. This app was
initially based on 800 species and was progressively enlarged
to thousands of plant species of the European region (6 140
species up to now). Nowadays, the platform is being used
by about 300K people who produce tens of thousands of
validated plant observations each year thanks to collabora-
tive validation tools (IdentiPlante5 and PictoFlora6). Most
of these observations (actually the geo-localized ones) con-
tribute to the global knowledge of plant species thanks to
their publication by the GBIF.
Nevertheless, this explicitly shared and validated data is
only the tip of the iceberg. The real potential relies in the
millions of raw image queries submitted by the users of the
mobile application but for which there is no human valida-
tion at all. As an illustration, in 2015, 2,328,502 queries
have been submitted by the users of the Pl@ntNet mobile
apps but only less than 1 % of them have been finally shared
and collaboratively validated. Allowing the exploitation of
the unvalidated observations in a fully automatic way could
scale up the world-wide collection of plant records by several
orders of magnitude. More generally, the idea of implicitly
monitoring living organisms from any kind of User Gener-
ated Content data streams has the potential to revolutionize
biodiversity monitoring at a very limited cost.

In this paper, we first survey existing systems and ap-
proaches for the automated collection of plant observations.
Next, we provide a five-year overview of the PlantCLEF
international benchmark (organized since 2011 within the
ImageCLEF and LifeCLEF events) as well as the results
of an impact study of the Pl@ntNet infrastructure that we
conducted through a survey of more than 700 respondents.
We then specifically address the scientific and technological
challenges related to the implicit monitoring scenario. We
show that it is indeed highly related to several hard prob-
lems such as to novelty and uncertainty, and we suggest
brave new research perspectives to address them. Finally,
as a first concrete step, we provide the results of an experi-
mental study focused on the implicit monitoring of invasive
species (i.e. an alien species of which the introduction does

3http://www.tela-botanica.org/
4http://www.gbif.org/
5http://www.tela-botanica.org/appli:identiplante
6http://www.tela-botanica.org/appli:pictoflora

or is likely to cause economic or environmental harm or harm
to human health) in Pl@ntNet mobile search logs (that was
part of the LifeCLEF 2016 evaluation campaign).

2. THE PLANTCLEF CHALLENGE: A FIVE-
YEAR OVERVIEW

In order to evaluate the performance of automated plant
identification technologies in a sustainable and repeatable
way, a dedicated system-oriented benchmark was setup in
2011 in the context of the international evaluation cam-
paign ImageCLEF7. In 2011, 2012 and 2013 respectively 8,
11 and 12 international research groups participated in this
large collaborative evaluation by benchmarking their image-
based plant identification systems (see [18, 19, 17] for more
details). It 2014, the LifeCLEF8 research platform was cre-
ated in the continuity of this effort so as to enlarge the eval-
uated challenges by considering birds and fishes in addition
to plants, and audio and video contents in addition to im-
ages.
Within this context, the plant identification benchmark con-
tinued to be run yearly offering today a five-year follow-up
of the progress in image-based plant identification. A partic-
ularity of the benchmark is that it always focused on real-
world collaborative data contrary to most other testbeds
found in the literature that were created through well con-
trolled laboratory conditions. Additionally, the evaluation
protocol was defined in collaboration with biologists and en-
vironmental stakeholders so as to reflect realistic usage sce-
narios. Notably particular attention was accorded to the
notion of observation rather than considering standalone im-
ages. In practice, the same individual plant is actually often
photographed several times by the same observer resulting
in contextually similar pictures and/or near-duplicates. To
avoid bias, it is crucial to consider such image set as a single
plant observation that should not be split across the training
and test set. Besides this, the use of contextual and social
data was also authorized when they were judged as poten-
tially useful and accessible in a real-world usage scenario.
This includes geo-tags or location names, time information,
author names, collaborative ratings, vernacular names (com-
mon names), picture type tags, etc. It is however important
to note that the visual modality remained largely predom-
inant in all the best systems along the years and that the
use of metadata was shown to provide only slight additional
improvements.

Tables 1 and 2 give a year-to-year overview of the shared
data and of the best performing systems (detailed descrip-
tions of the results and systems can be found in the tech-
nical overview papers of each year [18, 19, 17, 20, 13, 14]
and participant working notes). To allow a comprehensive
comparison along the years, we isolated in Table 1 the leaf
scans and white background image categories that were part
of the evaluation of the three first years but that were aban-
doned afterwards. Table 2, on the other side, focuses on
photographs of plants in their natural environment (only
leaves in 2011-2012, diverse organs and plant views in the
following years). For a fair comparison, we also removed
from the overview, the submissions that were humanly as-
sisted in some point (e.g. involving a manual segmentation

7www.imageclef.org
8www.lifeclef.org
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Table 1: Three-year synthesis of the PlantCLEF challenge restricted to leaf scans and pseudo-scans

Year #Species #Images #Evaluated
systems

Score of
best system

Brief description
of best system

2011 71 3,967 20 0.574
. Various local features (around Harris points)

. Hash-based indexing
. RANSAC based matching

2012 126 9,356 30 0.565
. Shape and texture global features

. SVM classifier

2013 250 11,031 33 0.607
. Shape and texture global features

. SVM classifier

of the leaves). The evaluation metric that was used from
2011 to 2015 was i.e. an extension of the mean reciprocal
rank [41] classically used in information retrieval. The dif-
ference is that it is based on a two-stage averaging rather
than a flat averaging such as:

S =
1

U

U∑
u=1

1

Pu

Pu∑
p=1

1

ru,p
(1)

where U is the number of image authors within the test set,
Pu the number of individual plants observed by the u-th
author (within the test set), ru,p is the rank of the correct
species within the ranked list of species returned by the eval-
uated system (for the p-th observation of the u-th author).
Note that if the correct species does not appear in the re-
turned list, its rank ru,p is considered as infinite. Overall,
the proposed metric makes it possible to compensate the
long-tail distribution effects of social data. As in any so-
cial network, few people actually produce huge quantities of
data whereas a vast majority of contributors (the long tail)
produce much less data. If, for instance, only one person col-
lected an important percentage of the images, the classical
mean reciprocal rank over a random set of queries is strongly
influenced by the images of that contributor to the detriment
of the others who only contributed with few pictures. This
is a problem for several reasons: (i) the persons who produce
the highest volume of data are usually the most expert ones
but not the most representative of the potential users of the
automatic identification tools, (ii) the large number of the
images they produce makes the classification of their obser-
vations easier because they tend to follow the same protocol
for all their observations (same device, same position of the
plant in the images, etc.), (iii) the images they produce are
also usually of better quality so that their classification is
even easier.

The main conclusion we can derive from the results of
Table 1 is that the classical approach to plant identifica-
tion consisting of analyzing the morphology of the leaves
reached its limit (we actually only observed a few slight im-
provements along the years). Leaf shape boundary features
and shape matching techniques have actually been studied
a lot during 30 years and can be considered as sufficiently
mature for capturing shape information in a robust and in-
variant way. The limited performance is thus rather due to
the intrinsic limitation of using only the leaf morphology for
discriminating a large number of species. Botanists them-
selves are convinced that flowers and fruits are much more
discriminant organs than the leaves. The phenomenon that
scientists focused on leaf-based identification during years is

more related to the fact that the leaf was more easy to scan
and to process with state-of-the-art computer vision tech-
niques of that period (segmentation, shape matching, regis-
tration, etc.). With the arrival of more advanced computer
vision techniques, in particular the ones based on machine
learning, we were progressively able to make use of other
parts of the plant such as flowers or fruits. For this reason,
metrics on leaf scans (or leaves on white background) were
abandoned from the PlantCLEF evaluation after 2013. Only
photographs of leaves in their natural environment were con-
sidered in addition to the other newly introduced views in-
cluding flowers, fruits, stems and branches in their natural
environment as well as photographs of the entire plant.

Table 2 gives the five-year synthesis of this new approach
to plant identification that we actively promoted through
PlantCLEF. The most interesting conclusion we can derive
from it is that we observed considerable improvements of
the scores along the years whereas the difficulty of the task
was increasing as well. Actually, the number of classes al-
most doubled every year between 2011 and 2015, starting
from 71 species in 2011 and reaching 1000 species in 2015.
The increase of the performance can be explained by two
major technological breakthroughs. The first one was the
use of aggregation-based or coding-based image representa-
tion methods such as the Fisher Vector representation [32],
that was used by the best performing system of Nakayama
et al. [29] in 2013 and Chen et al. [8] in 2014. These
methods consist of producing high-dimensional representa-
tions of the images by aggregating previously extracted sets
of hand-crafted local features into a global vector represen-
tation. They rely on a two step process: (i) the learning
of a set of latent variables that explain well the distribu-
tion of the local features in the training set (denoted as the
codebook or vocabulary), and (ii) the encoding of the re-
lationship between the local features of a given image and
the latent variables. Overall, this allows to embed the fine-
grained visual content of each image into a single represen-
tation space in which classes are easily separable even with
linear classifiers (such as support vector machines).

The second technological step explaining the last increase
of performance is without much surprise the use of deep
learning methods, in particular convolutional neural net-
works (CNN) such as GoogLeNet [38]. In 2015, the 10
best evaluated systems were actually based on CNN. The
difference of performance between them is mainly due to
particular system design improvements such as the use of
bagging in the best run of Choi [9]. Although, deep learn-
ing is an old research direction that has been widely studied
since the end of the 80’s, CNNs recently received a high



Table 2: Five-year synthesis of the PlantCLEF challenge (plants in their natural environment)

Year #Species #Images
#Evaluated

systems
Score of

best system
Brief description
of best system

2011 71 1,469 20 0.251
. Model-driven segmentation

Shape features
. Random forests

2012 126 2,216 30 0.320

. Multi-scale local (color) texture
SIFT + Sparse coding

Spatial Pyramidal Matching
. Linear SVM

2013 250 11,046 33 0.393

. Dense-SIFT, C-SIFT, Opponent SIFT
HSV-SIF, self-similarity SSIM

. Fisher Vectors
. Linear Logistic Regression

. Late fusion

2014 500 60,962 28 0.471

. ROI segmentation
dense-SIFT + Color Moment

. Fisher Vectors
. SVM on FVs

2015 1000 113,2051 18 0.667
. GoogLeNet CNN

. 5-fold bagging + Borda fusion

amount of attention caused by the impressive performance
they achieved in the ImageNet classification task [26]. The
force of these technologies relies on their ability to learn dis-
criminant visual features directly from the raw pixels of the
images without falling in the trap of the curse of dimension-
ality. This is achieved by stacking multiple convolutional
layers, i.e. the core building blocks of a CNN. A convolu-
tional layer basically takes images as input and produces as
output feature maps corresponding to different convolution
kernels, i.e looking for different visual patterns. Looking at
the impressive results achieved by CNN’s in the 2015 edi-
tion of PlantCLEF there is absolutely no doubt that they are
able to capture discriminant visual patterns of the plants in a
much more effective way than previously engineered visual
features. Interestingly, the performance increase of CNN
was not observed within PlantCLEF 2014 where one of the
team was already using a CNN. The main reason is that the
use of external training data was not authorized before the
2015 edition and that it is well known that CNNs require
very large amounts of visual training data to be effective.
The method consisting of fine-tuning a CNN pre-trained on
ImageNet (such as GoogLeNet) was thus not possible before
2015 whereas it is one of the main strength of these tech-
nologies. More generally, the transfer learning capacities of
CNN’s are a key element for domain-specific classification
problems such as plant identification for which the training
set is highly imbalanced and includes many classes with few
instances.

Besides purely visual concerns, we present in Table 3 the
results obtained by the participants who attempted to use of
the metadata associated to each image, specifically the one
related to geography and seasonality. One can first see that
among the large number of teams involved during the five
years of the challenge, only few of them actually used the
geo-location and date information. And, as a matter of fact,
none of them obtained the best performance (which means
that the best identification methods were always based on vi-
sual content only). Furthermore, one can see that among the

measurable attempts of use of metadata, none of them got
a strong improvement. The best improvement was achieved
by Inria team in 2013. It was obtained by post-filtering
the list of candidate species based on a flowering period his-
togram of each species constructed from the training set (at
the week level). This difficulty of successfully using geog-
raphy and seasonality is, at a first glance, quite surprising.
It is actually obvious that the habitat of a given species
is highly correlated with its ecological profile (for instance,
we expect that plants adapted to high elevation ecosystems
will not be found in coastal areas). Several reasons explain
this paradox. The first one is that the occurrence data of
the training set is too sparse to accurately model the dis-
tribution of the species. In the 2015-th dataset (the largest
one), the average number of geo-localized observations per
species was actually about 20. This is clearly insufficient
to hope modelling the spatial distribution of the species on
the whole territory (in some mountainous or diverse regions,
environmental conditions can for instance be very different
at few kilometers of distance). The second reason is that
the used machine learning techniques were too straightfor-
ward to well address the problem. As discussed in section
4, species distribution modeling from occurrence data is ac-
tually still a hard problem in ecology, in particular in the
context of uncontrolled observations such as the one used in
the PlantCLEF challenge.

3. PL@NTNET IMPACT STUDY
As discussed earlier, Pl@ntNet is among the most ad-

vanced infrastructures in the world making use of automated
identification tools for monitoring biodiversity. To measure
the impact of that initiative, we did survey by email a large
panel of authenticated Pl@ntnet users, i.e. users who cre-
ated a user profile on the Pl@ntNet apps and for whom
we add an email address. Each user was asked to fill an on-
line form with the announced objective to better understand
their usage of that technology and improve its functionality.



Table 3: Impact of the use of geography and seasonality for plant species identification

Year Teams Metadata type Run type Score Improvement

2011 UAIC GPS, Date, Author Id
. Visual

. Visual + metadata
. 0.156
. 0.1

-0.056

2012 IFSC USP [5] GPS . Visual + metadata . 0.16 Unknown

2012 BTU DBIS [3] GPS
. Visual

. Visual + metadata
. 0.21
. 0.2

-0.01

2013 SCG USP GPS . Textual . 0.025 Unknown
2013 LIRIS [7] GPS . Visual + metadata . 0.092 Unknown
2013 UAIC [34] GPS, Author Id . Visual + metadata . 0.127 Unknown
2013 SABANCI-OKAN [48] Date . Visual + metadata . 0.181 Unknown

2013 Inria [1] Date
. Visual

. Visual + metadata
. 0.353
. 0.385

+0.032

2014 SABANCI-OKAN [47] Date . Visual + metadata . 0.127 Unknown

Among the 20 859 users, and 20 003 successfully sent emails,
we received a total of 719 responses within 2 weeks. The
rate of non-response to the questionnaire was thus about
96.6 percent, which is not surprising for an email survey. To
get information about the reasons of non-response, we sent
a second email to 5,000 of the non-respondents. We got a re-
turn of 327 people. The two main reasons for non-response
were that (i) people did not (anymore) use Pl@ntNet (38
%), (ii) people used Pl@ntNet but did not see our message
beforehand (38 %). The survey itself included a first part,
common to all users, that was dedicated to the collect of
personal information (place of residence, age, email and us-
age frequency of Pl@ntNet). The second part was specific
to the two main types of use of the application: professional
vs. recreational. It was important to create these two paths
since some questions were very specific to one type of use,
and we did not want to extend the questionnaire with ir-
relevant questions for a particular type of user. The part
related to professional included 22 questions, such as their
job, in which sector are they working (private or public),
how often they use the application, to what extent this app
has allowed to improve their botanical skills, etc. The part
related to recreational included 22 questions too, such as
the description of the situation that made them download
the app (curiosity, gardening, hiking, etc.), if the applica-
tion has changed their practices, their attention to nature,
what is their interest for new functions. The survey was
completed by several focus groups and interviews organised
with representatives of different domains: (i) scientific do-
main (ecology, computer science) and citizen science, (ii)
agriculture, (iii) biodiversity management, (iv) education.
Our goal in this paper is not to exhaustively analyse all the
results of this study (this will be done later) but to publish
first conclusions with regard to the potential economic and
scholar impact of Pl@ntNet.

The vast majority of respondents in the survey were lo-
cated in France (85.7%) and the rest was mostly divided be-
tween Belgium (4.9%), Switzerland, Spain (1.8%) and North
America (Canada 1% USA and 0.8%). This is at a first
glance surprising as only 30% of Pl@ntNet users are actu-
ally in France (662,295 vs. 1,490,646 outside of France).
The most likely reason of this bias is that the sent email
was written in French and English only, and that the En-
glish translation was provided below the French one. Table 4
presents the age distribution of respondents. It appears that

Table 4: Age of respondents

Age Workforce Percentage

Less than 18 y. 9 1.3%
Between 19 and 25 y. 52 7.3%
Between 26 and 40 y. 190 26.8%
Between 41 and 60 y. 276 38.9%
More than 60 y. 182 25.7%
Total 709 100%

more than 65% of them are over 40 years old. We can be
surprised by the small number of young respondents, as this
population is usually more attracted by mobile technologies
than older people. This illustrates the fact that, even if
the transfer of knowledge to young people on mobile devices
seems to be facilitated by the use of this device, a greater
effort is needed if we want to enlarge their attractiveness to
this type of initiative.

A vast majority of users exploit Pl@ntNet for their recre-
ation (88 %). This can explain the peaks of use noticed since
2013, during weekends. Most of the users in this category
used Pl@ntNet in a garden or during a trekking. The hor-
ticultural and trekking domains are probably the two most
important in which this kind of application can have a strong
impact. Gardens are becoming more urban with the recent
evolution of our societies. This recreational activity is mo-
tivated by a variety of factors from a stronger immersion in
nature to gastronomy. The gardening market, with products
that are more convenient and accessible, is then growing in
popularity. Smart phones and social media start to play
an important role, particularly among younger gardeners.
In France, in 2015 alone, the gardening market represented
8.1 billion euros (source: promojardin9). The most impor-
tant part of this market (1.6 billion euros) is dedicated to
the acquisition of outdoor plants. The selection of the cor-
rect species based on the needs of the consumer (ornamental
aspect, fruit production, shadow, speed of growth, cost of
maintenance, etc.) is then a key step in gardening practices.
Plant identification in the garden context can then generate
a strong economic impact, in facilitating plant selection and

9http://www.promojardin.com/

http://www.promojardin.com/


acquisition of appropriate plant products for their manage-
ment.

Based on this survey, the proportion of Pl@ntNet use for
professional purposes is about 12% (which represents a vol-
ume of 1,200,000 sessions mobilized for professional activi-
ties considering the total number of sessions of over 10M).
Table 5 provides the list of categories in which Pl@ntNet
is used for professional activities. The most frequently rep-
resented category is landscape management (34.6%). It in-
cludes landscape workers, managers and architects, as well
as foresters. The second category is more concerned with the
production and/or transfer of knowledge (23.5%), that is to
say, teachers (in botany, biology, horticulture), students (in
horticultural production for example), trainers (landscape
management, aromatherapy, herbal medicine, etc.), facili-
tators (botanists, nature guides) and scientists (biologists
mainly). The category of ground workers represents 16%
of professional respondents. This category includes farmers,
nurserymen, horticulturists and gardeners.

To further illustrate the potential future impact of Pl@ntNet,
Figure 1 provides a cartography of the number of identifi-
cation sessions performed through the Pl@ntNet Android
version in April 2016. For the countries accounting for the
most users, we provide the number of sessions as well as its
increase in percentage compared to the same period in 2015
(so as to illustrate the dynamic). It first shows a strong
increase in the countries neighboring France (in Italy and
Spain the number of sessions was actually multiplied by re-
spectively 35 and 22). This is not surprising since there
is a high intersection between the floras of those countries
and the one of France, which was the starting point in the
first release of the Android application in March 2014. We
thus observe a geographic diffusion of the usage of the ap-
plication that is related to the increasing coverage of the
related species in the database as well as to the media cov-
erage. Besides, we also observe a very strong progression
in South America that is related to the release of a version
of Pl@ntNet working on the Guyana flora in October 2015.
Here again, we observed the same geographic diffusion phe-
nomenon. Finally, we can also observe a relatively lower
but still strong increase in North America whereas no spe-
cific version of Pl@ntNet was released there. Several factors
might explain this increase including curiosity of people for
such new technology or the fact that the climate of some US
regions is very similar the one of Europe (so that their flora
has a consistent intersection at the species level and strong
intersection at the genus and family levels).

Whatever the future of the Pl@ntNet initiative in itself is,
this impact study clearly shows that domain-specific mobile
search technologies are attracting strong interest in our so-
ciety. We can thus hypothesize that such new practices of
questioning our environment will bring a lasting production
of plant and animal observations. The implicit biodiversity
monitoring scenario introduced in this paper is thus realistic
from a societal point of view. Now it still raises brave new
research challenges that will be introduced hereafter.

4. FROM EXPLICIT TO IMPLICIT PLANT
BIODIVERSITY MONITORING

Whereas previous approaches to monitor plant biodiver-
sity were based on the explicit sharing of plant observations
(be they partially automated or not), the new concept we

Figure 1: Cartography of the number of Pl@ntNet
Android sessions in April 2016 (increase over April
2015 in parenthesis).

Table 5: Business Categories

Business Category Workforce %

Land Management / Environment 28 34.6
Education / Training / Research 19 23.5
Council 5 6.2
Agriculture (ground work only) 13 16
Medicine / pharmaceuticals 6 7.4
Management team 4 4.9
Other 6 7.4

Total 81 100

introduce in this paper is the implicit detection of plant oc-
currences in mobile search logs (or more generally in any
stream of geo-localized user generated pictures). In recent
years, we actually saw the arrival of more and more mobile
search applications such as LikeThat, Goggles or CamFind,
that allow users to get information about surrounding ob-
jects by simply photographing them (thanks to supervised
classification or content-based image retrieval). These appli-
cations are still far from well recognizing any domain-specific
object, but on the other side their search logs capture the
user’s interest about the world’s objects at a very large scale
and high rate. They generate quantities of geo-localized vi-
sual data that are noisy but might be used to monitor our
environment and enrich its visual knowledge. In this pa-
per, we focus on the search logs of the Pl@ntNet mobile
search application, but in essence, the challenges we discuss
could apply to any other mobile search application. As a
concrete illustration, Figure 2 provides a small sample of
geo-localized and dated image queries that were submitted
to the Pl@ntNet application. It is likely that only a small
fraction of the observations might be of interest for monitor-
ing biodiversity. Some pictures do not contain plants at all
(people, indoor scenes, mushrooms, etc.). Some others do
contain plants but are so noisy or cluttered that they could
not be identified. A few are not really noisy but still do not
contain sufficient visual evidence to discriminate the plant
(e.g. the flower is not visible whereas it is a critical informa-
tion for many groups of species). Finally, many pictures do



Figure 2: A sample of the geo-localized image search
logs of Pl@ntNet mobile application

represent plants that are of very limited interest for mon-
itoring biodiversity (e.g. vegetables, popular horticultural
plotted plants, grass, etc.). Producing accurate plant ob-
servations from such noisy and open data raises brave new
research challenges that we will introduce hereafter.

Challenge 1 - Dealing with novelty and uncertainty.
Knowing how much automatically predicted labels can be

trusted is essential for further data processing such as hu-
man validation or direct statistical analysis. A good knowl-
edge of the uncertainty of the automatic predictions is actu-
ally required to select the most beneficial ones (for a given
scenario) or to devise robust statistical inference methods.
In our implicit biodiversity monitoring scenario, any auto-
mated species detection should thus be systematically asso-
ciated to a confidence score in [0, 1] quantifying the prob-
ability that this prediction is true, independently from the
other predictions. Doing so in the context of a noisy visual
data stream such as Pl@ntNet search logs is a hard problem
for two main reasons: (i) the massive presence of unknown
classes in the stream (because it works in an open world) and
(ii), the heavily imbalanced training set (that is inevitable
when dealing with biodiversity data). When launching a
new country-specific instance of Pl@ntNet, the proportion
of images belonging to unknown classes can for instance be
very high, up to 80%. It can remain high even in the long
term because of the continuous emergence of new classes.
Estimating the probability of the membership to an open
set of unknown classes is thus a crucial preliminary step
before being able to model the ambiguity over the known
classes. This is in essence a novelty detection problem (see
e.g. [31] for a comprehensive review) but the fact that the
data set is highly imbalanced increases the difficulty of the
problem. Indeed, as the majority of the known classes in the
long tail only contains few training samples, they are likely
to be confused with the unknown classes when using classi-
cal novelty detection algorithms. To deal with this problem,
we believe it is required to primarily detect the novelty at
the image level, for instance by estimating the uncertainty of
the visual representation of each image during the learning
process. Therefore, it might be required to consider species
confusion as an input data, typically by inferring it from the
annotators confusion as discussed in challenge 2. The degree
of novelty of a visual content item could then be estimated
as the degree of uncertainty on whether it already exists in
the training set.

Challenge 2 - Enriching the training set in a collab-
orative way. As discussed above, one of the main sources of
uncertainty when trying to recognize plants in image search
logs, is the lack of training data in sufficient quantity and

quality. The majority of the images in the search logs do be-
long to either unknown classes, i.e. with no training samples
in the training set, or to weakly supervised classes, i.e. with
very few training samples. A straightforward solution to re-
duce the uncertainty of the predictions is thus to enrich the
training set. Actually, recent deep learning models, such as
convolutional neural networks [26], are capable of learning
very effective visual features directly from the raw image pix-
els but to outperform the previous methods based on hand-
crafted visual features, they still need to be trained on rich
visual data with diverse enough visual patterns and accurate
class labels. Such ideal content is unfortunately missing for
the vast majority of plant species that lie in the long tail
of existing data distribution (contrary to the most common
ones that are over-represented). Large domain-specific col-
lections such as Encyclopedia of Life (EOL) archives include
quantities of well structured tags across many plant groups
but they are not aimed at labeling precise domain-specific
elements (e.g. spine, latex, branching pattern, buds, etc.),
nor at covering their diversity. On the other side, computer-
vision oriented data sets such as ImageNet [10] are only fo-
cused on the most popular species of the web and are too
noisy from a taxonomic perspective (mix of common, species
and genus names, confusions across species, horticultural
plants, hybrids, etc.).

In the end, the most beneficial way to enrich the train-
ing set (and reduce the uncertainty of the predictions) is to
directly annotate a fraction of the search logs themselves.
Applying state-of-the-art crowdsourcing approaches in this
regard is however impossible (e.g. [25, 37, 40]). First, the
brute-force approach consisting of a quiz across the full list
of species would only be tractable for the few specialists of
a given flora, thus drastically limiting the potential number
of annotators. Second, the very high number of classes (i.e.
species), makes it impossible to train a complete confusion
matrix for each annotator as it would require to answer to a
large number of queries (typically quadratic in the number of
classes). A much more promising approach is thus to devise
effective collaborative active learning algorithms, i.e. learn-
ing algorithms that actively select samples to be annotated
as well as annotators in a joint objective. The main under-
lying assumption is that even non-specialists are capable of
recognizing a few tens of species (if we teach them), so that
in the end, they might collectively solve complex classifica-
tion tasks with thousands of classes. As in crowdsourcing
algorithms, this paradigm supposes that we can model the
imperfection of the annotators typically by inferring their
confusion based on the labels they provide. Additionally, it
requires inventing active training strategies aimed at train-
ing the annotators on confusions that exist within the data.
Overall, collaborative active learning poses several funda-
mental questions: (i) how to optimize the selection and as-
signment of the unvalidated samples? (ii) how to model the
learning process of the annotators to train them effectively
and complementary? (iii) how to design new machine learn-
ing algorithms and/or statistical inference methods that deal
with the partial knowledge of the annotators?

Challenge 3 - Using the taxonomy to reduce un-
certainty. Graph-based knowledge representations such as
taxonomies or ontologies are available for many domains, in
particular those with high expertise such as botany. When
such a rich organization of the visual class labels exists, it is
likely to facilitate the estimation and reduction of the uncer-



tainty, even though it is incomplete in some of its branches.
More precisely, it allows restricting our general problem to
the case where the unknown classes occurring in an uncer-
tain visual data stream are supposed to have at least one
parent in the taxonomy of the known classes. Thanks to this
relaxation, challenges 1 and 2 can be revisited in a radically
different manner. We can actually now have a hierarchical
representation of the uncertainty, typically through hierar-
chical conditional probabilities. Such hierarchical structur-
ing of the uncertainty is likely to be very effective for break-
ing the complexity due to extremely large numbers of classes.
The automatic prediction of the uncertainty of the unlabeled
visual data might for instance benefit from the knowledge
of the labels structure by using it as a way of post-checking
the veracity of a given prediction a posteriori. Concerning
the collaborative active learning framework, both the active
training of the annotators, the task assignment and the infer-
ence methods could be revised. For instance novices should
start on easy to discriminate nodes of the taxonomy whereas
the most advanced contributors should tackle the leaves of
the taxonomy that are the most difficult to disambiguate.

Challenge 4 - Using environmental data to reduce
taxonomic uncertainty. As discussed in section 2, using
occurrence information (i.e. the geo-location and the date of
the observation) did not conduct to significant identification
improvement in the past PlantCLEF evaluation campaigns
because of the sparsity of the occurrence data in the train-
ing set. Thus, a first naive solution could be to use a much
larger occurrence data such as the one collected through the
world-scale GBIF initiative. However, even with such big
data, sparsity would still be an issue, in particular for the
vast majority of species lying in the long tail distribution.
Actually, producing masses of occurrence data, timely and
globally, is precisely the objective of the implicit biodiver-
sity monitoring scenario proposed in this paper. So that, it
is somehow a chicken-egg problem. Improving plant identifi-
cation systems thanks to geography would require accurate
species distribution models but, on the other side, building
such models requires large amounts of occurrence data and
would clearly benefit from automated identification tools.
A solution to that problem might rely in the use of exter-
nal environmental data such as habitat maps, climate maps,
soil characteristic maps, topographical maps, etc. Such data
does actually less suffer from the sparsity problem and many
regions of the world are well covered with such information.
Thus, it might be possible to learn the ecological profile of
each species by correlating its occurrences with the environ-
mental variables and then predict the likelihood of its pres-
ence in other regions. Several issues might however be still
challenging. Humans’ impact does notably alter the corre-
lation between plant habitats and environmental variables.
In cities and other highly frequented places, the presence of
a species is for instance rather correlated to its usage by hu-
mans (e.g. potted plants, parks, etc.). Human equipments
such as roads or railways as well as human activities such
as agriculture or forestry tend to quickly and deeply modify
species distribution and to fragment the habitats.

Challenge 5 - Controlling observer and detection
bias in species distribution models As for any presence-
only data (i.e where information is available concerning species
presence but not species absence), Pl@ntNet search logs are
subject to bias due to observers being more likely to visit
and record sightings at some locations than others. Such

Figure 3: Probabilistic graphical model of observer
and detection biais

observer bias has already been studied in some recent work
on species distribution models (SDM) [42, 39]. The goal is
typically to model species occurrence data through a distri-
bution Nij p(Aij , Bij) where Aij is the relative abundance
of species i in place j (to be estimated), and Bij is a more
or less complex observer bias. In the context of the implicit
monitoring scenario developed in this paper, modeling the
bias is even more challenging. It actually depends on both
observer bias and detection bias as illustrated by the prob-
abilistic graphical model of Figure 3 that we built as a first
attempt to model the problem. Incorporating taxonomic
confusion in the species distribution models has in particular
never been addressed before and offers brave new research
perspectives at the frontier of ecological modeling and ma-
chine learning. This approach might lay the foundation to a
new data-driven research field, probabilistic taxonomy, that
has the real potential to scale up biodiversity and pheno-
logical studies to several orders of magnitude. Actually, the
presence of determination errors, even with low ratios, often
makes biodiversity researchers skeptical on the usefulness of
crowdsourced or machine-learning based data for conducting
trustable biodiversity studies. Incorporating the taxonomic
uncertainty in the models and analyzing the extent to which
this uncertainty yields error in SDM predictions, is thus a
crucial step towards automatizing biodiversity monitoring.

5. IMPLICIT MONITORING OF INVASIVE
SPECIES FROM THE PL@NTNET MO-
BILE SEARCH LOGS

As a first step towards evaluating the feasibility of the
implicit biodiversity monitoring paradigm, we conducted an
experimental study in the context of the plant task of the
LifeCLEF 2016 evaluation campaign. Therefore, we created
and shared a new testbed entirely composed of image search
logs of the Pl@ntNet mobile application (in contrast to the
previous editions of the benchmark that were based on ex-
plicitly shared and validated plant observations).

5.1 Usage scenario
As a concrete scenario, we focused on the monitoring of

invasive exotic plant species. These species represent today
a major economic cost to our society (estimated at nearly 12



billion euros a year in Europe) and one of the main threats
to biodiversity conservation [43]. This cost can be even more
important at the country level, such as in China where it is
evaluated to about 15 billion US dollars annually [44], and
more than 34 billion US dollars in the US [30]. The early
detection of the appearance of these species, as well as the
monitoring of changes in their distribution and phenology,
are key elements to manage them, and reduce the cost of
their management. The analysis of Pl@ntNet search logs
can provide a highly valuable response to this problem be-
cause the presence of these species is highly correlated with
that of humans (and thus to the density of data occurrences
produced by the platform). More generally, the Pl@ntNet
platform has a high potential for the monitoring and early
detection of threats to biodiversity that are related to human
activities.

5.2 Data
As for the training set, we used the PlantCLEF 2015

dataset enriched with the groundtruth annotations of the
test images (that were kept secret during the 2015 cam-
paign). In total, this data set contains 113,205 pictures of
herb, tree and fern specimens belonging to 1,000 species (liv-
ing in France and neighboring countries). Each image is as-
sociated with an xml file containing the taxonomic groundtruth
(and in particular the species level ClassId), as well as other
meta-data such as the type of view (fruit, flower, entire
plant, etc.), the quality rating (social-based), the author
name, the observation Id, the date and the geo-loc (for some
of the observations).

As for the test set, we started with a randomized selection
of 30K image queries that were submitted by authenticated
users of the Pl@ntNet mobile application. Among this set,
3049 images had already been shared by their authors within
the collaborative validation tools and were thus associated
with a valid species name. The remaining pictures were dis-
tributed to three botanists in charge of manually annotat-
ing them either with a valid species name from the France
flora repository or with newly created tags of their choice
(and shared between them). In the period of time devoted
to this process, they were able to manually annotate 4951
pictures (so as to reach 8000 images in total). Therefore,
82 new tags were created to qualify the unknown classes
such as for instance non-plant objects, legs or hands, UVO
(Unidentified Vegetal Object), artificial plants, cactaceae,
mushrooms, animals, food, vegetables or more precise names
of horticultural plants such as roses, geraniums, ficus, etc.
For privacy reasons, we removed from the test set all images
tagged as people (although they represented about 1.1% of
the queries). In the end, the test set of 8,000 pictures in-
cluded 3482 tagged with the newly created classes (i.e. the
ones not in the training set of 1,000 species). Moreover it
included 366 images belonging to a selected list of 26 poten-
tially invasive species. This list was defined by aggregating
several sources (such as the National Botanical conservatory,
and the Global Invasive Species Programme) and comput-
ing the intersection with the 1000 species of the training
set. At a first glance, the final number of invasive specimens
in the test set might appear rather low (366). However, it
represents 1.22 % of the sample of Pl@ntNet queries used
to create the test set. If we confront this statistic with the
millions of queries collected each year through Pl@ntNet, we
could hope monitoring critical species at an unprecedented

rate without any additional cost or effort for the society.

5.3 Evaluation protocol
Based on the previously described testbed, we conducted

a system-oriented evaluation involving 8 different research
groups who downloaded the data and ran their system. To
prevent participants from tuning their algorithms on the in-
vasive species scenario and keep our evaluation generalizable
to other ones, we did not provide the list of species to be
detected. Participants only knew that the targeted species
were included in a larger set of 1000 species for which we
provided a large training set (actually the full dataset used
in PlantCLEF 2015). Participants were also aware that (i)
most of the test data does not belong to the targeted list of
species (ii) a large fraction does not belong to the training
set of the 1000 species, and (iii) a fraction of them might not
even be plants. In essence, the task to be addressed is related
to what is sometimes called open-set or open-world recog-
nition problems [2, 33], i.e. problems in which the recog-
nition system has to be robust to unknown and never seen
categories. Beyond the brute-force classification across the
known classes of the training set, a big challenge is thus
to automatically reject the false positive classification hits
that are caused by the unknown classes (i.e. by the distrac-
tors). To measure this ability of the evaluated systems, each
prediction had to be associated with a confidence score in
[0, 1] quantifying the probability that this prediction is true
(independently from the other predictions).

5.4 Overview of the evaluated systems
The 8 participating research groups submitted a total of

29 runs corresponding to different configurations of their
systems. 26 of them were based on CNNs and the different
systems mainly differed in (i) the architecture of the used
CNN, (ii) the way in which the rejection of the unknown
classes was managed and (iii), various system design im-
provements. We give hereafter a few more details of the 3
systems that performed the best (on the invasive species).
A more detailed description of these systems can be found
in the working notes written by the participants and pub-
lished in the CEUR-WS proceedings of CLEF 2016 (refs to
be provided in final version of the paper).

Bluefield system: A VGGNet [36] based system with
the addition of Spatial Pyramid Pooling, Parametric ReLU
and unknown class rejection based on the minimal predic-
tion score of training data (Run 1). Run 2 is the same as
run 1 but with a slightly different rejection making use of
a validation set. Run 3 and 4 are respectively the same as
Run 1 and 2 but the scores of the images belonging to the
same observation were summed and normalised.

Sabanci system: A CNN based system with 2 main con-
figurations. Run 1: An ensemble of GoogleLeNet [38] and
VGGNet [36] fine-tuned on both LifeCLEF 2015 data (for
recognizing the targeted species) and on 70K images of the
ILSCVR dataset (for rejecting unknown classes). Run 2 is
the same than Run 1 but without rejection.

CMP system: A ResNet [21] based system with the use
of bagging in Run 1 (3 networks) and without bagging (in
Run 2).

5.5 Results
Figure 4 provides the mean Average Precision (mAP) of

the best fully automated systems considering only the se-



Figure 4: mean Average Precision (mAP) on the 26
invasive species in open- and closed-world

lected list of 26 invasive species as queries (only the best 2
runs of each team were kept). The mAP is computed either
in open-world (i.e. by considering all images of the test set)
or in closed-world (i.e. by considering only the images of the
test set belonging to the 1000 species of the training set).
The figure shows that the presence of the unknown classes
degrades the performance of all systems in a roughly simi-
lar way. This difficulty of rejecting the unknown classes is
confirmed by the very low difference between the runs of the
participants who experimented their system with or without
reject (e.g. Sabanci Run 1 vs. Run 2 or FlorisTic Run 1 vs.
Run 2). On the other side, it is noticeable that all systems
are quite robust to the presence of unknown classes since the
drop in performance is not so high. Actually, as the CNNs
were pre-trained on a large generalist data set beforehand,
it is likely that they have learned a diverse enough set of
visual patterns to avoid underfitting.

To better fit the implicit biodiversity monitoring scenario
addressed in this paper, we completed this experiment by
additional measurements more focused on high-precision op-
erating points. If we would like the automatic predictions of
the evaluated systems to be automatically integrated in an
international biodiversity records database (such as GBIF),
it is essential to guaranty a very high quality of the identifi-
cation. Therefore, Figure 5 provides a precision/recall plot
of the two best systems (in two configurations). The plot was
obtained by varying the threshold of the confidence score t
of each system and by measuring the recall and precision
at each operating point. This experiment shows that for
high precision values such as 0.99 or 0.95 only the Sabanci
system evaluated in Run 1 is able to return results. How-
ever, this high precision at the price of low recall values,
around 40% on average (and much lower for some of the
species). In all other systems, the trust in false positives is
too high and prevents reaching high precision values accept-
able for biologists. This shows that the strategy of Sabanci
consisting of adding a supervised rejection class is effective
for managing unknown classes although it is theoretically
less elegant than devising new novelty detection algorithms.
Interestingly, the run of Bluefield averaging the predictions
of the images belonging to the same observation provided

Figure 5: Precision-recall values of best systems
for highly confident operating points (probability
threshold t ∈ [0.9, 0.99])

significant improvements in recall but failed to reach high
precision operating points. This does not mean that the
multi-view information should not be considered as a way
to deal with novelty. It rather indicates that the averaging
of the predictions of the different views in not an adapted fu-
sion scheme. Other fusion strategies should thus be explored
so as to improve specificity.

6. CONCLUSIONS
The new concept we explored in this paper is the auto-

mated detection of plant occurrences in mobile search logs
as a way to monitor biodiversity without asking the users to
explicitly share and validate their observations. We showed
through an impact study of the Pl@ntNet initiative that
this concept is realistic from a societal point of view and
that it could scale-up the world-wide collection of plant ob-
servations by several orders of magnitude. To assess the
technical feasibility of such an implicit biodiversity monitor-
ing, we summarized five years of the PlantCLEF evaluation
benchmark and organized a new dedicated evaluation task
within the 2016 campaign. Results show that automated
plant identification systems considerably progressed during
the last years thanks to successive technological advances
(aggregation-based image representations and convolutional
neural networks). However, in the context of very noisy
content such as mobile search logs, reaching high precision
is still challenging. Jointly dealing with novelty, uncertainty
and highly imbalanced training data is actually a hard prob-
lem for which we suggested some new research directions. In
the end, our study shows that there is still some room of im-
provement before being able to automatically share implicit
observations within international biodiversity platforms.
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[16] H. Goëau, P. Bonnet, A. Joly, V. Bakić, J. Barbe,
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