
Submitted to J. Imaging. Pages 1 - 25.
OPEN ACCESS

Journal of

Imaging
ISSN 2313-433X

www.mdpi.com/journal/Journal of

ImagingArticle

Optimized Distributed Hyperparameter Search and Simulation
for Lung Texture Classification in CT Using Hadoop
Roger Schaer 1,*, Henning Müller 1,2,† and Adrien Depeursinge 1,3,†

1 Information Systems Institute, University of Applied Sciences Western Switzerland (HES–SO),
Techno–Pôle 3, 3960 Sierre, Switzerland; E–mail: henning.mueller@hevs.ch,

2 University Hospitals and University of Geneva, Rue Gabrielle–Perret–Gentil 4, 1205 Geneva,
Switzerland,

3 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; E–mail:
adrien.depeursinge@epfl.ch.

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E–mail: roger.schaer@hevs.ch, Tel.:
+41–27–606-9035

Version May 6, 2016 submitted to Jimaging. Typeset by LATEX using class file mdpi.cls

Abstract: Many medical image analysis tasks require complex learning strategies to reach1

a quality of image–based decision support that is sufficient in clinical practice. The analysis2

of medical texture in tomographic images, for example of lung tissue, is no exception. Via a3

learning framework, very good classification accuracy can be obtained but several parameters4

need to be optimized. This article describes a practical framework for efficient distributed5

parameter optimization. The proposed solutions are applicable for many research groups6

with heterogeneous computing infrastructures and for various machine learning algorithms.7

These infrastructures can easily be connected via distributed computation frameworks. We8

use the Hadoop framework to run and distribute both grid and random search strategies for9

hyperparameter optimization and cross–validations on a cluster of 21 nodes composed of10

desktop computers and servers. We show that significant speedups of up to 364x compared11

to a serial execution can be achieved using our in–house Hadoop cluster by distributing12

the computation and automatically pruning the search space while still identifying the13

best–performing parameter combinations. To the best of our knowledge, this is the first14

article presenting practical results in detail for complex data analysis tasks on such a15

heterogeneous infrastructure together with a linked simulation framework that allows for16

Version May 6, 2016 submitted to J. Imaging 2 of 25

computing resource planning. The results are directly applicable in many scenarios and17

allow implementing an efficient and effective strategy for medical (image) data analysis and18

related learning approaches.19

Keywords: hyperparameter optimization; grid search; random search; support vector20

machines; random forests; distributed computing; image analysis21

1. Introduction22

Exhaustive grid parameter search is a widely used hyperparameter optimization strategy in the23

context of machine learning [1]. Typically, it is used to search through a manually defined subset24

of hyperparameters of a learning algorithm. It is a simple tool for optimizing the performance of25

machine learning algorithms and can explore all regions of the defined search space if no local extrema26

exist and the surfaces of the parameter combinations are relatively smooth. However, it involves high27

computational costs increasing exponentially with the number of hyperparameters as one predictive28

model needs to be constructed for each combination of parameters (and possibly for each fold of a29

Cross–Validation (CV)). It can therefore be extremely time–consuming (taking multiple days, weeks30

or even months of computation depending on the infrastructure available) even for learning algorithms31

with a small number of hyperparameters, which is often the case. Random search is another approach32

that randomly samples parameters in a defined search space. It can also be very time–consuming33

when working with a large number of hyperparameters and a large number of sample points in the34

search space. Random search can be more suited if highly local optimal parameter combinations exist35

that might be missed with grid search. It is a less reproducible approach though. Fortunately, grid,36

random and similar parameter search paradigms are typically “embarrassingly parallel”1 problems, as37

the computation required for building the predictive model for an individual parameter setting does not38

depend on the others [2].39

Distributed computing frameworks can help saving time by running independent tasks simultaneously40

on multiple computers [3] including local hardware resources, as well as Cloud computing resources.41

These frameworks can use Central Processing Units (CPUs), Graphical Processing Units (GPUs) (which42

have received much attention recently, especially in the field of deep learning) or a combination of43

both. Various paradigms for distributed computing exist: Message Passing Interface (MPI)2 and44

related projects such as Open Multi–Processing (OpenMP) are geared towards shared memory and45

efficient multi–threading. They are well–suited for large computational problems requiring frequent46

communication between threads (either on a single computer or over a network) and are classically47

targeted at languages such as C, C++ or Fortran. They offer fast performance but can increase48

the complexity of software development and require high–performance networking in order to avoid49

bottlenecks when working with large amounts of data. Other paradigms for large–scale data processing,50

1 https://en.wikipedia.org/wiki/Embarrassingly_parallel, as of 18 February 2016
2 https://en.wikipedia.org/wiki/Message_Passing_Interface, as of 18 February 2016

https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://en.wikipedia.org/wiki/Message_Passing_Interface

Version May 6, 2016 submitted to J. Imaging 3 of 25

including MapReduce implementations such as Apache Hadoop3, are more aimed towards data locality,51

fault tolerance, commodity hardware and simple programming (with a stronger link to languages such52

as Java or Python). They are more suited for the parallelization of general computation or data53

processing tasks, with specific tools available for different kinds of processing (for example Apache54

Spark4 for in–memory processing or Apache Storm5 for realtime stream–based computation). All of55

these frameworks are commonly used in medical imaging and machine learning research [3,4].56

It is also noteworthy to mention that although hyperparameter search should be as exhaustive as57

possible, there often exist large areas of the search domain that produce suboptimal results, therefore58

offering opportunities to intelligently reduce the search space and computation time. In a distributed59

setting, this can complicate the process as the pruning operation requires sharing information between60

tasks. To this end, a distributed synchronization mechanism can be designed to allow identifying61

parameter combinations yielding suboptimal results and subsequently cancel their execution in order62

to further decrease the total computational time. Moreover, parameter search can be a lengthy process,63

even when executed within a distributed environment. Therefore, the availability of a parallel execution64

simulation tool can help estimate the total runtime for varying conditions, such as the number of65

available computation tasks. Such a simulation tool can also be useful for price estimation when66

using “Pay–as–you–go” computing resources in the Cloud (most Cloud providers offer specific Hadoop67

instance types and simple cluster setup tools). This allows making a trade–off between the expected68

optimization of parameters vs. the related costs.69

In this article, we present a novel practical framework for the simulation, optimization and execution70

of parallel parameter search for machine learning algorithms in the context of medical image analysis.71

It combines all the aspects discussed above: (i) parallel execution of parameter search, (ii) intelligent72

identification and cancellation of suboptimal parameter combinations within the distributed environment73

and (iii) simulation of the total parallel runtime according to the number of computing nodes available74

when executed in a distributed architecture. The objective is to allow easily running very fine–grained75

grid or random parameter search experiments in a reasonable amount of time, while maximizing the76

likelihood of finding one of the best–performing parameter combinations. We evaluated our framework77

with two use–cases in the article: lung tissue identification in Computed Tomography (CT) images78

using (I) Support Vector Machines (SVMs) based on a Radial Basis Function (RBF) kernel and (II)79

Random Forests (RFs). Results for both grid and random search strategies are provided. The main80

contributions of the article concern the practical design, implementation and testing of a distributed81

parameter optimization framework, leveraging software such as Hadoop and ZooKeeper in order to82

enable efficient distributed execution and synchronization, intelligently monitoring the global evolution83

of the grid search and canceling poorly performing tasks based on several user–defined criteria, on84

real data and with a real problem in a scenario potentially similar to many research groups in data85

science. This has not been done so far, to the best of our knowledge. A second contribution is the86

developed simulation tool that allows estimating costs and benefits for a large number of scenarios prior87

3 http://hadoop.apache.org/, as of 18 February 2016
4 http://spark.apache.org/, as of 18 February 2016
5 http://storm.apache.org/, as of 18 February 2016

http://hadoop.apache.org/
http://spark.apache.org/
http://storm.apache.org/

Version May 6, 2016 submitted to J. Imaging 4 of 25

to choosing the solution that is optimal for specific constraints. Compared to other publications with88

a more theoretical focus on hyperparameter optimization algorithms or system design principles, such89

as [2,5–9], this paper describes a distributed framework which is already implemented and working90

and has been tested on medical imaging data as an example application field. Only a small number of91

parameters were optimized in this case but the same framework also applies to larger parameter spaces.92

The rest of the article is structured as follows : Section 2 discusses existing projects, tools and articles93

related to the task of hyperparameter optimization. Section 3 presents the datasets, existing tools and94

algorithms that were used. The implementation of the developed framework and the experimental results95

obtained are detailed in Section 4. The findings and limitations are discussed in Section 5. Finally,96

conclusions are drawn and future work is outlined in Section 6.97

2. Related Work98

Extensive research has already been conducted in the field of optimizing and improving on the99

classical grid parameter search model and achieving more efficient hyperparameter optimization in the100

context of machine learning applications. In 2002, Chapelle et al. proposed a method for tuning kernel101

parameters of SVMs using a gradient descent algorithm [10]. A method for evolutionary tuning of102

hyperparameters in SVMs using Gaussian kernels was proposed in [7]. Bergstra et al. [2] showed that103

using random search instead of a pure grid search (in the same setting) can yield equivalent or better104

results in a fraction of the computation time. Snoek et al. proposed methods for performing Bayesian105

optimization of various machine learning algorithms, which supports parallel execution on multiple106

cores and can reach or surpass human expert–level optimization in various use–cases [9]. Bergstra et107

al. also proposed novel techniques for hyperparameter optimization using a Gaussian process approach108

in order to train neural networks and Deep Belief Networks (DBNs). They proposed the Tree–structured109

Parzen Estimator (TPE) approach and discuss the parallelization of their techniques using GPUs [11].110

These papers discuss more the theoretical aspects of optimization, presenting algorithms but not concrete111

implementations on a distributed computing architecture.112

An extension to the concept of Sequential Model–Based Optimization (SMBO) was proposed113

in [6], allowing for general algorithm configuration in a cluster of computers. The paper’s focus is114

oriented towards the commercial CPLEX solution and not an open–source solution such as Hadoop.115

Auto–WEKA, described in [8], goes beyond simply optimizing the hyperparameters of a given machine116

learning method, allowing for an automatic selection of an efficient algorithm among a wide range117

of classification approaches, including those implemented in the Waikato Environment for Knowledge118

Analysis (WEKA) machine learning software, but no distributed architecture is discussed in the article.119

Another noteworthy publication is the work by Luo [5], who presents the vision and design concepts120

(but no description of the implementation) of a system aiming to enable very large–scale machine121

learning on clinical data, using tools such as Apache Spark and its MLlib machine learning library.122

The design includes clinical parameter extraction, feature construction and automatic model selection123

and tuning, with the goal of allowing healthcare researchers with limited computing expertise to easily124

build predictive models.125

Version May 6, 2016 submitted to J. Imaging 5 of 25

Several tools and frameworks have also been released, such as the SUrrogate MOdeling (SUMO)126

Toolbox [12] that enables model selection and hyperparameter optimization. It supports grid or cluster127

computing but it is geared towards more traditional grid infrastructures such as the Sun/Oracle Grid128

Engine, rather than more modern solutions such as Apache Hadoop, Apache Spark, etc. Another129

example is Hyperopt [13], a Python library for model selection and hyperparameter optimization that130

supports distributed execution in a cluster using MongoDB 6 for inter–process communication, currently131

for random search and TPE algorithms7. It does not take advantage of the robust task scheduling132

and distributed storage features provided by frameworks like Apache Hadoop. In the field of scalable133

machine learning, Apache Mahout8 allows running several classification algorithms (such as Random134

Forests or Hidden Markov Models) as well as clustering algorithms (k–Means Clustering, Spectral135

Clustering, etc.) directly on a Hadoop cluster [4], but it does not address hyperparameter optimization136

directly and also does not currently provide implementations for certain important classification137

algorithms such as SVMs. The MLlib machine learning library9 provides similar features, using the138

Apache Spark processing engine instead of Hadoop. Sparks et al. describe the TuPAQ system in [14],139

an extension of the MLbase 10 platform, which is based on Apache Spark’s MLlib library. TuPAQ allows140

automatically finding and training predictive models on an Apache Spark cluster. It does not mention a141

simulation tool that could help estimating the costs of running experiments of varying complexity in a142

Cloud environment.143

Regarding the early termination of unpromising results (pruning the search space of a parameter144

search) in a distributed setting, [15] describes a distributed learning method using the multi–armed bandit145

approach with multiple players. SMBO can also incorporate criteria based on multi–armed bandits [11].146

This is also related to the early termination approaches proposed in this paper that are based on the first147

experiments and cutoff parameters based on our experiences.148

However, articles describing a distributed parameter search setup in detail, including the framework149

used and an evaluation with real–world clinical data, are scarce. A previous experiment on a much150

smaller scale was conducted in [3], where various medical imaging use–cases were analyzed and151

accelerated using Hadoop. A more naive termination clause was used in a similar SVM optimization152

problem, where suboptimal tasks were canceled based on a single decision taken after processing a fixed153

number of patients for each parameter combination, based solely on a reference time set by the fastest154

task reaching the given milestone. The approach taken in this paper is more advanced and flexible, as155

it cancels tasks during the whole duration of the job, based on an evolving reference value set by all156

running tasks.157

In this article we describe a very practical approach in detail, based on the Hadoop framework that158

is easy to set up and manage in a small computing environment, but also easily scalable for larger159

6 http://mongodb.org/, as of 18 February 2016
7 http://jaberg.github.io/hyperopt/, as of 18 February 2016
8 http://mahout.apache.org, as of 18 February 2016
9 http://spark.apache.org/mllib/, as of 18 February 2016
10 http://mlbase.org

http://mongodb.org/
http://jaberg.github.io/hyperopt/
http://mahout.apache.org
http://spark.apache.org/mllib/
http://mlbase.org

Version May 6, 2016 submitted to J. Imaging 6 of 25

Table 1. Visual aspect and distribution of the 32× 32 blocks per class of lung tissue pattern.
A patient may have several types of lung disorders.

visual
aspect

tissue type healthy emphysema ground glass fibrosis micronodules

hand–drawn ROIs 150 101 427 473 297

32× 32 blocks 5167 1127 2313 3113 6133

patients 7 6 32 37 16

experiments and supported by many Cloud infrastructure providers if the locally available resources160

become insufficient.161

3. Material and Methods162

This section describes the datasets, tools and experimental setup used for developing and testing163

the parallel parameter search framework. It also details the testing use–cases used to evaluate the164

framework and the adaptive criteria for canceling tasks corresponding to parameter combinations leading165

to suboptimal classification performance.166

3.1. Datasets167

The medical image classification task used for this article consists of the identification of five lung168

texture patterns associated with interstitial lung diseases in high–resolution CT images [16]. The image169

instances consist of 2D 32x32 blocks represented in terms of the energies of sixth–order aligned Riesz170

wavelet coefficients [17,18], yielding a feature space with 59 dimensions when concatenated with 23171

intensity–based features. The distribution and visual aspect of the lung tissue types (including the number172

of hand–drawn Regions of Interest (ROIs), blocks and patients) are detailed in Table 1. Going towards173

full 3D data analysis also increases runtime for this use case even more but the current data with larger174

inter–slice distance does not allow for this.175

3.2. Existing Tools176

The developed framework relied on Apache Hadoop11 and can be used with any kind of parameter177

search problem. Hadoop is a distributed storage and computation tool that supports the MapReduce178

programming model made popular by Google [19] (among others, such as Apache Spark or Apache179

Storm). Use of Hadoop is frequent in medium–sized research groups in data science, as it is quick and180

easy to set up and use, also on heterogeneous infrastructures.181

11 http://hadoop.apache.org/, as of 24 February 2016

http://hadoop.apache.org/

Version May 6, 2016 submitted to J. Imaging 7 of 25

The MapReduce model is used in the context of our experiments, as it is simple and fits our needs182

well. It separates large tasks into 2 phases, called “Map” and “Reduce”. In a typical setting, the “Map”183

phase splits a set of input data into multiple parts, which are further processed in parallel and produce184

intermediate outputs. The “Reduce” phase aggregates the intermediate outputs to produce the final job185

result. In the context of this article, we only implemented the “Map” phase, as no aggregation was186

required on the output of this first phase.187

Hadoop consists of two main components. The first is a distributed data storage system called Hadoop188

Distributed File System (HDFS) that manages the storage of extremely large files in a distributed,189

reliable and fault–tolerant manner. It was used for data input and output when running computations.190

A detailed description of HDFS can be found in [20]. The second component is the distributed data191

processing system that was called Hadoop MapReduce in early versions of the software and Yet Another192

Resource Negotiator (YARN) since version 2.0 of Hadoop. The reason behind the name change is193

that the programming algorithm was decoupled from the execution framework in the second generation194

of Hadoop, allowing for more flexible use of different distributed programming paradigms, i.e., it195

is not restricted to the batch–oriented MapReduce framework [21] anymore. This can also provide196

opportunities for making the developed framework evolve towards new paradigms and use–cases.197

The synchronization of distributed parallel tasks was performed with Apache ZooKeeper12. The focus198

of this tool is to provide highly reliable distributed coordination [22]. The architecture of ZooKeeper199

supports redundancy and can therefore provide high availability. The data are stored in the computation200

nodes and are saved under hierarchical name spaces, similar to a file system or other tree structures.201

The simulation tool used for estimating the runtime of a Hadoop job under given conditions (as well202

as tweaking parameters of the experiments) was programmed in Java and is detailed in Section 4.2. It203

uses the output of one full Hadoop job as a baseline for running simulations. The WEKA Data Mining204

Software [23] was used for the implementation of the SVM and RF classifiers.205

3.3. Hardware and Hadoop Cluster206

The in–house Hadoop cluster consisted of:207

• 21 nodes including a majority of 8–core CPU desktop stations with 16 Gigabytes (GBs) of208

Random–Access Memory (RAM), as well as 4 more powerful machines (24 cores and 64GB209

of RAM, 24 cores and 96GB of RAM, 40 cores and 128GB of RAM, 64 cores and 128GB of210

RAM).211

• Gigabit Ethernet network connections between all nodes.212

• A total of 152 simultaneous Map tasks (number of cores attributed to Hadoop in the cluster) and213

26 simultaneous Reduce tasks. The total is given by the number of tasks that were assigned to the214

Hadoop cluster on each node, both for the Map and Reduce phases.215

12 http://zookeeper.apache.org/, as of 24 February 2016

http://zookeeper.apache.org/

Version May 6, 2016 submitted to J. Imaging 8 of 25

Figure 1. Schema of the in–house Hadoop cluster, showing all the nodes and the number of
assigned Map tasks.

Figure 1 shows a schema of the cluster of machines, listing all the nodes and the network configuration, as216

well as the number of Map tasks assigned to each computer, as nodes are configured according to their217

computing power. All desktop machines are commonly used by researchers during the day, therefore218

only a subset (usually about 50%) of CPU cores and main memory are attributed to the Hadoop cluster.219

Previous research showed that the daily normal usage of machines has little impact on the duration of220

Hadoop jobs in our environment [3].221

3.4. Classification Algorithms222

Two classification algorithms were used and optimized for the categorization of the lung tissue types:223

SVMs and RFs. An extension to other tasks is easily possible but these two are characteristic for many224

other techniques and both are frequently used in machine learning and medical imaging.225

SVMs have shown to be effective to categorize texture in wavelet feature spaces [24] and in particular226

for lung tissue [25]. Kernel SVMs implicitly map feature vectors vi to a higher–dimensional space by227

using a kernel function K(vi,vj). We used the RBF kernel given by the multidimensional Gaussian228

function229

K(vi,vj) = e
−||vi−vj ||

2

2γ . (1)

SVMs build separating hyperplanes in the higher–dimensional space considering a two–class230

problem. Two parallel hyperplanes are constructed symmetrically on each side of the hyperplane that231

separates the two classes. The goal of SVMs is to maximize the distance between the two external232

hyperplanes, called the margin [26]. This yields the decision function f(vi), which minimizes the233

functional234

Version May 6, 2016 submitted to J. Imaging 9 of 25

||f ||K + C

N∑
i=1

max(0, 1− yif(vi))
2, (2)

with ||f ||K the norm of the reproducing kernel Hilbert space defined by the kernel function K, N the235

total number of feature vectors, and yi the class labels (i.e., yi ∈ {−1, 1}). The parameter C determines236

the cost attributed to errors and requires optimization to tune the bias–variance trade–off. For multiclass237

classification, several one–versus–all classifiers are built and the model with the highest decision function238

determines the predicted class. Two parameters are being optimized for SVMs: the cost C and the239

parameter of the Gaussian kernel γ.240

RFs consist of building ensembles of Decision Trees (DTs) [27]. Each DT is built on a subset of241

features and a subset of training vectors (i.e., bagging). The DTs divide the feature space successively242

by choosing primarily features with the highest information gain [28]. The final class prediction of RFs243

is obtained as the mean prediction of all individual trees. Three parameters are being optimized for RFs:244

the number of generated random trees T , and for each DT: the number of randomly selected features F245

and the maximum tree depth D.246

3.5. Task Cancellation Criteria247

The following is a description of the method used for deciding which hyperparameter combinations248

to keep during the execution of the experiments on the Hadoop cluster. The classification accuracy acck249

associated with one set of hyperparameters is monitored throughout the execution of the k folds of the250

CV. In order to determine if a hyperparameter combination is performing well, the first considered251

criterion is whether the value of acc appears to be stable for the given combination over the k folds of252

the CV. The mean accuracy µacc is updated each time a new value for this hyperparameter combination253

is available (i.e., each time that a new fold of the CV has completed) and added to a list of values. At254

the same time, the variance σacc is calculated for the set of recorded mean accuracies over a “sliding255

window” of size Wk. Finally, the gradient of the variance is determined over these Wk values as ∂σacc
∂k

,256

k ∈ [1, . . . ,Wk]. ∂σacc
∂k

was computed using least squares regression. If the gradient is ∂σacc
∂k

<= 0,257

the estimated classification accuracy was considered to be stable, otherwise the evolution of the mean258

accuracy is deemed to be unstable and no decision is taken yet about the cancellation of this combination.259

When the accuracy is found to be stable, the second step consists of comparing one or more criteria of260

the current combination of parameters against the global evolution of the classification accuracy given261

by all other parameter combinations. Two criteria are considered:262

• Is the current mean accuracy of the combination µacc lower than the global mean accuracy (minus263

a margin of ∆acc)?264

• Is the current mean runtime of 1 task for the combination longer than the global mean runtime for265

1 task (multiplied by a factor of ∆t)?266

The first criterion is monitoring the accuracy of the current hyperparameter combination. Given that σacc267

is considered to be stable, the chance that the accuracy associated with this combination of parameters268

improves significantly later is relatively small. Therefore, the combination is canceled if its current269

Version May 6, 2016 submitted to J. Imaging 10 of 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A

cc
u

ra
cy

Runtime

Combination 1 : well-performing Combination 2 : low accuracy Combination 3 : high runtime

Variance stable

&

Accuracy below average

Variance stable

&

Runtime above average

0

0.01

0.02

0.03

0.04

0.05

0.06

V
ar

ia
n

ce

Runtime

Sliding window

size Wk

Figure 2. Illustration of the task cancellation process for SVMs. The top graph shows
the evolution of the mean accuracy µacc and the bottom graph plots the evolution of the
variance thereof for 3 parameter combinations (well–performing, low accuracy and high
runtime). The cancellation checks are performed for each combination only when at least
Wk variance values are available and the evolution of the variance is considered to be stable
(see Section 3.5).

accuracy is lower than the current global accuracy. The second criterion works in a similar fashion but270

is based on the runtime of the tasks. Indeed, for certain classifiers such as SVMs the longer the time to271

achieve convergence, the higher the likelihood of a bad performance [3]. For this reason, abnormally272

time–consuming parameter combinations are also canceled, because they generally yield suboptimal273

results and more importantly have a significant impact (as much as one order of magnitude higher274

than average runtimes) on the overall runtime of the experiment when not canceled. ∆acc and ∆t can275

be tuned to balance between overall computational time and classification performance. Additionally,276

each criterion can be individually enabled or disabled, as not all classifiers follow the same behavior.277

Algorithm 1 outlines the process described above, with current mean values for the accuracy and runtime278

being obtained first (both global and for the given parameter combination pComb), followed by the set279

of variances of size Wk. Subsequently, the stability test described in this section is performed, as well280

as the performance checks (accuracy and runtime) in case of a stable evolution. If the combination is281

performing poorly, its status is set to ’cancelled’. Figure 2 shows an illustration of how the cancellation282

process works with 3 parameter combinations: a well–performing combination, a combination with283

suboptimal accuracy and a combination with above–average runtime.284

Version May 6, 2016 submitted to J. Imaging 11 of 25

Algorithm 1 Parameter combination cancellation
1: function CANCELPARAMETER(pComb)
2: µaccGlobal ← currGlobalMeanAcc()
3: µacc ← currMeanAcc(pComb)
4: µtimeGlobal ← currGlobalMeanRuntime()
5: µtime ← currMeanRuntime(pComb)
6: setOf σacc ← currVarsOfMeanAccs(pComb)
7: if varIsStable(setOf σacc) then
8: if µacc < µaccGlobal −∆acc or µtime > µtimeGlobal −∆t then
9: pComb.status← ′cancelled′

10: end if
11: end if
12: end function

4. Results285

This section describes the implementation of the framework and experimental results obtained.286

4.1. Implementation of the Hadoop–based Execution Framework287

4.1.1. Standard Run288

The following list outlines all the chronological steps for running a distributed parameter search using289

the framework, but without optimization (i.e., no task cancellation). This is referred to as the standard290

run.291

1. An input file containing a hash table with all the possible combinations of parameter values and292

patient identifiers (the latter was used for performing a Leave–One–Patient–Out (LOPO) CV) is293

created (one combination per line). This hash table was based on parameter ranges specified by294

the user. In the case of a random search, the user simply specifies the lower and upper bounds of295

each parameter, the values are then generated randomly within this space. The order of the lines296

was randomized in order to avoid executing a large number of similarly complex tasks at the same297

time. The file is then uploaded to the HDFS where it serves as the input file of the Hadoop job.298

2. The Hadoop job starts, splitting the workload into N/M Map tasks, where N is the total number299

of lines in the file and M is a variable defining how many lines a single task should process. M300

can be tweaked in order to avoid having Map tasks that are extremely short (less than 10 seconds).301

Map tasks that are too short can impact the runtime of a Hadoop job in a non–negligible fashion302

due to overhead caused by starting and managing Hadoop tasks.303

3. Each task executes a setup function (only once per Map task) that contains the following steps:304

(a) Load the dataset and prepare it for use (in this case, set the instance class attribute).305

(b) Normalize the dataset: the feature values were scaled to [0, 1].306

Version May 6, 2016 submitted to J. Imaging 12 of 25

4. Each task executes the Map function (M times per task) that consists of one fold of the LOPO CV:307

(a) Split the data into a training set containing all the instances of the dataset except for those308

of the current patient and a testing set containing all the instances of the current patient.309

(b) Build the classifier using the current combination of parameters (for example C and γ in the310

SVM use–case) and the training set.311

(c) Classify each instance of the test set using the previously built classifier model.312

(d) Get the number of total and correctly classified instances and write them as the output of the313

function.314

The above process is shown in Algorithm 2.315

Algorithm 2 Execution Framework - Standard Run
1: generateInput()
2: startJob()
3: for all task ∈ N/Mtasks do
4: loadDataset() → Setup (1× per task)
5: prepareDataset()
6: normalizeDataset()
7: for all pComb ∈MpCombinations do →Map (M× per task)
8: tStart ← NOW

9: classifierArgs ← pComb.classifierArgs

10: patientID ← pComb.patientID

11: configureClassifier(classifierArgs)
12: splitDataSet(patientID) → LOPO
13: trainClassifier(trainingSet)
14: result ←classifyTestSet(testSet)
15: tEnd ← NOW

16: acc ← result .correct/result .total

17: runtime ← tEnd − tStart

18: writeOutput(acc, result .correct , result .total , patientID , runtime)
19: end for
20: end for

4.1.2. Optimized Run316

When activating the mode that cancels suboptimal tasks (referred to as optimized run, see Section317

3.5), the process was slightly modified :318

1. Before the job starts, various “znodes” (i.e., znodes are files persisted in memory on the ZooKeeper319

server) are initialized for storing parameter combination accuracy values, a list of canceled320

parameter combinations, etc.321

Version May 6, 2016 submitted to J. Imaging 13 of 25

2. During the setup (point 3 of the previous list), a connection to the ZooKeeper object is established322

and the variables for canceling tasks are attributed.323

3. At the start of the Map function (point 4 of the previous list), a check is performed to identify if the324

parameter combination was already canceled. If this is the case, the function returns immediately,325

otherwise the classification is performed as usual.326

4. Once the classification is finished, several values in the ZooKeeper server are updated :327

(a) The number of total and correctly classified instances, as well as the runtime of the tasks for328

the given parameter combination are incremented.329

(b) The current accuracy of the given parameter combination was added to the330

DescriptiveStatistics object (part of the Apache Commons Math library13), which331

allows easy calculations of statistical values (e.g., µacc, σacc) on an evolving set of data.332

(c) The current variance σacc (computed from all existing accuracies for the given parameter333

combination) is added to a circular buffer of size Wk. This buffer is further used to calculate334

the gradient of the variance evolution over the last Wk values.335

(d) The number of total and correctly classified instances, as well as the runtime of the tasks for336

the global job are incremented.337

5. At the end of the Map function, a check is performed whether the current parameter combination338

needs to be canceled or not. This check takes into account the following variables:339

(a) Variance over the last Wk values is stable, i.e. ∂σacc
∂k

<= 0. If the gradient is positive, it is340

assumed that the values are still changing significantly and the parameter combination is not341

canceled.342

(b) Mean accuracy of the given parameter combination. If µacc is smaller than the mean global343

accuracy of all parameter combinations minus a ∆acc (set to 0.05 in our experiments),344

the parameter combination is canceled (or blacklisted), i.e. the classification step in all345

subsequent Map tasks of the corresponding parameter combination will not be executed.346

(c) Mean runtime of the given parameter combination. If the latter is longer than the mean global347

runtime of all parameter combinations multiplied by a ∆t (set to 2.0 in our experiments), the348

parameter combination is canceled, i.e. the classification step in subsequent Map tasks of the349

corresponding parameter combination is not executed.350

The above process is shown in Algorithm 3, where differences with the standard run (Algorithm 2) are351

highlighted.352

13 http://commons.apache.org/proper/commons-math/, as of 24 February 2016

http://commons.apache.org/proper/commons-math/

Version May 6, 2016 submitted to J. Imaging 14 of 25

Algorithm 3 Execution Framework - Optimized Run (differences with Algorithm 2 are highlighted)
1: generateInput()
2: initSyncFields()
3: startJob()
4: for all task ∈ N/Mtasks do
5: loadDataset() → Setup (1× per task)
6: prepareDataset()
7: normalizeDataset()
8: initStatsObjects()
9: for all pComb ∈ MpCombinations do → Map (M× per task)

10: if pComb.status = ′cancelled′) then
11: continue → Skip cancelled iterations
12: end if
13: tStart ← NOW

14: classifierArgs ← pComb.classifierArgs

15: patientID ← pComb.patientID

16: configureClassifier(classifierArgs)
17: splitDataSet(patientID) → LOPO
18: trainClassifier(trainingSet)
19: result ←classifyTestSet(testSet)
20: tEnd ← NOW

21: acc ← result .correct/result .total

22: runtime ← tEnd − tStart

23: writeOutput(acc, result .correct , result .total , patientID , runtime)
24: updateSyncFields(pComb, result .correct , result .total , runtime)
25: cancelParameter(pComb)
26: end for
27: end for

Version May 6, 2016 submitted to J. Imaging 15 of 25

4.2. Implementation of the Simulation Tool353

Time is often a limiting factor when running experiments, and it can have a strong influence on354

the achieved results. Having a tool that can run simulated grid search experiments (modeled after355

the real–world Hadoop–based framework) in a single machine in order to approximate runtime and356

give indications about the expected performance can help in designing experiments, choosing sensible357

margins for parameter cancellation (see Section 3.5), estimating the required scale of computation358

cluster, as well as calculating the cost of running the experiment in a cloud–based "Pay–as–you–go"359

platform. This section details the implementation of this tool: the behavior of the real–world Hadoop360

implementation was closely reproduced, with the following characteristics and differences:361

• The results of a Hadoop experiment (containing the runtime of each task) are loaded into the362

simulator Java class: they will serve as a baseline for simulating Hadoop jobs with different363

amounts of available computation tasks and different values for the termination criteria margins,364

for example.365

• A “time step” counter is initialized and incremented in milliseconds, simulating the passage of366

time.367

• A queue of running tasks (of size T , representing the number of Map tasks in the simulated cluster)368

is populated.369

• After each millisecond, the starting / ending tasks are managed and the cancellation checks are370

performed like on the Hadoop cluster. The major difference is that instead of using the ZooKeeper371

distributed synchronization system, simple Java data structures are used (hash maps, lists, etc.) for372

monitoring the evolution of parameter combination performance.373

• Each time a task completes, another pending task is added to the queue of running tasks. This374

behavior is the same as in Hadoop.375

• At the end of the simulated Hadoop job (all tasks are processed), statistics about the simulated376

job are given as an output: total duration of the job (if executed in a real cluster of a given size),377

number of canceled parameters, maximum achieved accuracy, etc.378

The goal is to have a tool that can provide an approximation of the average runtime of a task for a given379

machine learning scenario, including the variance in processing time for different parameter values. A380

real small–scale experiment with a coarse grid can be run to get a clear idea of these values, that can381

then serve as a base for a simulated experiment at a much larger scale. If running a real experiment382

before simulation is not desired or feasible, the tool can also easily use an average runtime per task (with383

margins to represent shorter and longer tasks) directly input by the user after performing some local384

empirical tests.385

Version May 6, 2016 submitted to J. Imaging 16 of 25

4.3. Experimental Results386

Several experiments were performed:387

• Determining the speedups that can be obtained (with and without task cancellation) compared to388

a serial execution on a single computer.389

• Verifying whether the best parameter combination is kept when canceling tasks,390

• Comparing the runtime and performance between grid and random search,391

• Investigating if the developed simulation tool can provide a realistic approximation of the runtime392

of an experiment under varying conditions.393

4.3.1. Grid Search394

The first experiments were conducted with the classical grid parameter search strategy. All395

the experiments were run using the Hadoop cluster configuration described in Section 3.3. When396

the objective function (e.g., classification accuracy) is expected to be smooth through consecutive397

parameters, the grid search is expected to lead to reproducibly good results with a trade–off between398

grid size and the probability to find the maximum performance (or be at least very close to it).399

For both use–cases (RF and SVM), the Hadoop job was run twice : once based on the standard run400

mode, where no tasks were canceled during the execution of the job and once based on the optimized401

run mode, where tasks corresponding to suboptimal parameter combinations were canceled. The results402

are presented in Table 2. An estimation of the time required to run the computation serially on a single403

computer is provided in the first column. The estimation is based on the runtime recorded for each Map404

task, purely for the classification part, therefore excluding the overhead produced by Hadoop for starting405

and managing tasks.406

The grid parameter search domain is defined as follows:407

• For the SVM use–case, two parameters are being optimized.408

1. The cost C, varying from 0 to 100 in increments of 10 (and C = 0 is replaced with C = 1).409

2. The kernel parameter G, varying from −2.0 to 2.0 in increments of 0.1 (actual kernel value410

is computed by γ = 10G)411

• For the RF use–case, three parameters are being optimized.412

1. The number of trees in the random forest T , varying from 0 to 1000 in increments of 10 (and413

T = 0 is replaced with T = 10)414

2. The maximum tree depth D, varying from 0 to 4 in increments of 1 (where D = 0 signifies415

that the depth is not restricted)416

3. The number of randomly selected features F for testing at each node, varying from 1 to417

2 ∗
√
N in increments of 1 (where N is the total number of features, in this case 58)418

Version May 6, 2016 submitted to J. Imaging 17 of 25

Table 2. Experimental results showing the comparison between an estimation of running the
grid parameter search on a single computer and running it on the in–house Hadoop cluster
in the standard run and optimized run configurations, for both use–cases (RF and SVM).
The indication in brackets [...] for the “Best accuracy” value in the optimized run column
shows whether the best or second best achieved accuracy of the standard run was kept
running.

RF Optimization
Single computer
(estimation)

Hadoop cluster
(standard run)

Hadoop cluster
(optimized run)

Job Execution time 302d 00h 15m 24s 51h 27m 03s 19h 52m 05s
Total combinations 651,460 651,460 651,460
Lines per task N/A 20 20
Total Map tasks N/A 32,573 32,573
Number of canceled
parameter combinations

N/A 0 5052 / 7500

Best accuracy 0.73762 0.73762 0.73756 [2nd BEST]
Speedup 1x ~141x ~364x

SVM Optimization
Single computer
(estimation)

Hadoop cluster
(standard run)

Hadoop cluster
(optimized run)

Job Execution time 52d 17h 27m 10s 8h 49m 51s 4h 40m 57s
Total combinations 38,786 38,786 38,786
Lines per task N/A 2 2
Total Map tasks N/A 19,393 19,393
Number of canceled
parameter combinations

N/A 0 236 / 451

Best accuracy 0.77999 0.77999 0.77999 [BEST]
Speedup 1x ~143x ~270x

Version May 6, 2016 submitted to J. Imaging 18 of 25

Table 3. Comparison between running a grid parameter search and a random search (with
the same number of combinations), with and without task cancellation, for optimizing the
hyper–parameters of the SVM experiment.

Grid search and random search comparison — SVM experiment
Grid search
(standard run)

Random search
(standard run)

Grid search
(optimized run)

Random search
(optimized run)

Job Execution time 8h 49m 51s 8h 14m 32s 4h 40m 57s 4h 08m 44s
Number of canceled
parameter combinations

0 0 236 / 451 254/451

Best accuracy 0.77999 0.78033 0.77999 0.78045

4.3.2. Random Search419

Two more experiments were run using the random search strategy for the SVM use–case in order420

to demonstrate the flexibility of the developed framework and investigate the possible improvements in421

terms of runtime and maximum achieved classification accuracy. Very good and efficient results were422

reported for Random Search in the past despite the fact that the results are not necessarily reproducible423

and thus non–optimal results are a risk, albeit with low probability [2]. In order to allow fair comparisons424

with grid search, the same number of points used were generated randomly in the search space based on425

a uniform distribution, using the same upper and lower bounds. The comparison of the results is shown426

in Table 3. The runtimes and results are in this case very close to the ones obtained with the grid search.427

A series of random search experiments using a varying number of randomly sampled points were428

also conducted, in order to analyze the evolution of both the runtime of the Hadoop job as well as the429

maximum achieved accuracy. The results are shown in Figure 3.430

Finally, multiple iterations (20 in total) of the same random search experiment (using 25% of the431

original number of points, i.e. 112 combinations) were run in order to determine the Relative Standard432

Deviation (RSD) of the maximum accuracy obtained as well as the job runtime. The results are shown433

in Figure 4.434

4.4. Simulation results and validation435

Once the output of a standard run was available, it was fed into the simulation tool to estimate the436

runtime of the same job under different conditions. For instance, the number of simultaneous Map tasks437

can be increased to approximate the runtime on a larger Hadoop cluster. Similarly, the ∆acc and ∆t task438

cancellation margins can be adjusted to evaluate the time–performance trade–off (i.e., smaller margins439

will lead to faster runtimes but increase the risk of canceling optimal parameter combinations).440

To validate whether the simulation tool can produce realistic results, the SVM grid search use–case441

was executed four times in the Hadoop cluster:442

• standard run and optimized run with 152 Map tasks, ∆acc = 0.05 and ∆t = 2.0443

• standard run and optimized run with 64 Map tasks, ∆acc = 0.05 and ∆t = 2.0444

Version May 6, 2016 submitted to J. Imaging 19 of 25

00:00:00

01:12:00

02:24:00

03:36:00

04:48:00

06:00:00

07:12:00

08:24:00

09:36:00

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

Jo
b

 R
u

n
ti

m
e

M
ax

 A
cc

u
ra

cy

Percentage of random points used

Without Cancellation

Max Accuracy Job Runtime

00:00:00

00:28:48

00:57:36

01:26:24

01:55:12

02:24:00

02:52:48

03:21:36

03:50:24

04:19:12

04:48:00

0.762

0.764

0.766

0.768

0.77

0.772

0.774

0.776

0.778

0.78

0.782

Jo
b

 R
u

n
ti

m
e

Percentage of random points used

M
ax

 A
cc

u
ra

cy

With Cancellation

Max Accuracy Job Runtime

Figure 3. The graphs display the evolution of the maximum obtained accuracy and the
total runtime of the SVM random search experiment (in both the standard and optimized
run configurations) for a shrinking number of randomly selected points in the search space
of the hyperparameters. 100% is equivalent to all 451 parameter combinations used in the
comparison with the grid search method, 75% corresponds to 338 combinations, etc.

00:00:00

00:14:24

00:28:48

00:43:12

00:57:36

01:12:00

01:26:24

01:40:48

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Jo
b

 R
u

n
ti

m
e

Job n°

M
ax

 A
cc

u
ra

cy

Variability

Max Accuracy Job Runtime

RSD Accuracy :
0.13%

RSD Runtime:
6.98%

Figure 4. The graph shows the variability of the maximum obtained accuracy and the total
runtime of the SVM random search experiment in the optimized run configuration, using
25% of the original 451 parameter combinations used in the comparison between grid and
random search. The Relative Standard Deviation (RSD) of the maximum accuracy is 0.13%
and the RSD of the job runtime is 6.98%.

Version May 6, 2016 submitted to J. Imaging 20 of 25

Table 4. Validation of the simulation tool.

SVM - standard run
Experimental result Simulation result Relative difference

152 Map tasks (baseline) 9h 26m 04s 9h 17m 56s -1.43%
64 Map tasks 19h 42m 31s 21h 39m 57s +9.93%

SVM - optimized run
Experimental result Simulation result Relative difference

152 Map tasks (baseline) 4h 40m 57s 5h 16m 19s +12.58%
64 Map tasks 9h 24m 54s 12h 17m 49s +30.61%

0

1

2

3

4

5

6

7

8

9

10

0.775

0.777

0.779

0.781

0.783

0.785

0
0
.0
2

0
.0
4

0
.0
6

0
.0
8

0
.1

0
.1
2

0
.1
4

0
.1
6

0
.1
8

0
.2

0
.2
2

0
.2
4

0
.2
6

0
.2
8

0
.3

0
.3
2

0
.3
4

0
.3
6

0
.3
8

0
.4

0
.4
2

0
.4
4

0
.4
6

0
.4
8

0
.5

Jo
b

 r
u

n
ti

m
e

 (
h

o
u

rs
)

M
ax

im
u

m
 a

cc
u

ra
cy

Δ Accuracy

max_accuracy best_accuracy runtime

Figure 5. Graph displaying the evolution of the maximum obtained accuracy and the total
runtime of the SVM grid search experiment for a growing margin ∆acc.

The results of the first two executions with 152 tasks are used as the input for running four simulations445

with the same number of Map tasks as the runs listed above. The results are shown in Table 4. A446

fixed 3–second overhead (determined by empirical tests) was added to the runtime of each task in order447

to simulate the impact of Hadoop task setup. Moreover, an interesting opportunity provided by the448

simulation tool is to evaluate the effect of the cancellation margins ∆acc and ∆t on the maximum449

accuracy achieved. By gradually changing these values for the results of the SVM grid search450

experiment, Figures 5 and 6 are created. Results with cancellation are less precise in the simulations451

compared to results without task cancellations.452

5. Discussion453

Three major observations can be deduced from the experimental results: first of all, the speedup454

achieved by simply distributing a grid parameter search is very substantial, with the total runtime for455

the search accelerated by a factor of 141x (RF) and 143x (SVM), when compared to an estimation of a456

serial execution on a single computer (see Table 2). It also shows that the total runtime decreases almost457

linearly as the number of nodes (and therefore available Map tasks) in the Hadoop cluster increases.458

Version May 6, 2016 submitted to J. Imaging 21 of 25

0

2

4

6

8

10

12

14

0.775

0.777

0.779

0.781

0.783

0.785

1
.0
1

1
.0
3

1
.0
5

1
.0
7

1
.0
9

1
.1
1

1
.1
3

1
.1
5

1
.1
7

1
.1
9

1
.2
1

1
.2
3

1
.2
5

1
.2
7

1
.2
9

1
.3
1

1
.3
3

1
.3
5

1
.3
7

1
.3
9

1
.4
1

1
.4
3

1
.4
5

1
.4
7

1
.4
9

1
.5
1

Jo
b

 r
u

n
ti

m
e

 (
h

o
u

rs
)

M
ax

im
u

m
 a

cc
u

ra
cy

Δ Time

max_accuracy best_accuracy runtime

Figure 6. Graph displaying the evolution of the maximum obtained accuracy and the total
runtime of the SVM grid search experiment for a growing factor ∆t.

Second, adding the accuracy and runtime check and canceling suboptimal parameter combinations459

allows decreasing the runtime even further, by a factor close to or greater than 2x in both use–cases460

without any significant impact on the maximum achieved accuracy. It also shows that the framework461

performed well for two different types of classifiers and with a different number of hyperparameters.462

Third, the results show that several parameter search strategies are supported and work well with the463

developed framework. The random search experiments ran slightly faster than the grid search using the464

same number of points and gave equivalent results both with and without task cancellation (see Table 3).465

Moreover, reducing the number of random points yielded equivalent results in a fraction of the time466

needed for the grid search experiments. Repeated experiments also showed that the variability in terms467

of runtime and achieved performance is minimal. Random search thus provides an interesting option,468

also in the simulation tool.469

The proposed simulation tool was successfully used to estimate job runtimes using a varying number470

of tasks, with a relative difference of ~10% between the real–world experiment and the simulation for471

the standard run using a smaller number of simultaneous tasks (64, see Table 4). For the optimized472

run, the errors were larger, about ~12.5% when simulating with the original amount of Map tasks,473

and ~30.6% when using the smaller number of tasks. Moreover, the simulation provided insights into474

the effect of varying the cancellation conditions on the maximum achieved classification accuracy and475

overall job runtime without requiring to run a battery of lengthy Hadoop jobs. The latter can be used to476

reduce costs when using “Pay–as–you–go” computing resources in the cloud, which might in the future477

become the main computation source for many research departments in any case.478

Some limitations of this work include the LOPO CV, which could benefit from an added inner479

Cross–Validation (CV) performed on the training set, in order to reduce the risk of overfitting.480

Fortunately this is entirely possible with our framework and is well–suited for parallelizing the task481

even further. Another limitation concerns the simulation tool, which currently works based only on the482

results of an real–world experiment. Although it is still interesting to use it on a small–scale experiment483

and then extrapolate the data to a more exhaustive experiment, the tool could benefit from a completely484

Version May 6, 2016 submitted to J. Imaging 22 of 25

simulated mode, where tasks are generated dynamically using an average runtime of tasks input by the485

user (and adapted with various factors to better represent the variability in runtime of a given experiment486

and the execution on a distributed framework).487

6. Conclusions488

The developed framework allows speeding up hyperparameter optimization for medical image489

classification significantly and easily (both for grid search and random sampling). The distributed nature490

of the execution environment is leveraged for reducing the search space and gaining further wall–time.491

The simulation tool allows estimating the runtime and results of medical texture analysis experiments492

under various conditions, as well as extracting information such as a measure of the time–performance493

trade–off of varying the cancellation margins. These tools can be used in a large variety of tasks that494

include both image analysis and machine learning aspects. The system using Hadoop is relatively easy to495

set up and we expect that many groups can make such optimizations in a much faster way using the results496

of this article. Indeed, the dramatic reduction in runtime using only a local computing infrastructure can497

enable the execution of experiments at a scale that may have been dismissed previously, ensuring to498

get the best–possible results in the optimization of classification or similar tasks in a very reasonable499

amount of time. The simulation environment can also help analyze performance and cost trade–offs500

when optimizing parameters and potentially using cloud environments, allowing to give cost estimates.501

The framework was evaluated with machine learning algorithms with a small number of502

hyperparameters (i.e., two for SVMs and three for RFs). In future work, the framework is planned to503

be tested with other datasets and more classifiers in order to validate its flexibility, potentially also with504

approaches such as deep learning that can use several million hyperparameters and usually rely on GPU505

computing [29], often supported by cloud providers as well. It is also planned to run comparative and506

larger–scale experiments on a cloud–computing platform instead of using the local Hadoop infrastructure507

to compare the influence of a mixed environment on runtime, as this can depend much more on508

the available bandwidth. More advanced task cancellation criteria could also be implemented (e.g.509

bandit–based method) to allow for more fine–grained control over the tasks to keep. Moreover, adding510

more sophisticated parameter search strategies to the framework, such as Bayesian optimization or511

gradient descent, could help improve the system even further, even though it will increase the complexity.512

Acknowledgments513

This work was supported by the Swiss National Science Foundation under grant PZ00P2_154891.514

Author Contributions515

Roger Schaer implemented the tools for running the grid parameter search in parallel, ran the516

experiments, measured the results and wrote large parts of the article. Henning Müller provided ideas for517

running the system and setting up the hardware infrastructure. Adrien Depeursinge provided the tested518

image analysis and machine learning scenario and optimized the tools.519

Conflicts of Interest520

Version May 6, 2016 submitted to J. Imaging 23 of 25

“The authors declare no conflict of interest”.521

References522

1. Kim, J. Iterated Grid Search Algorithm on Unimodal Criteria. PhD thesis, Virginia Polytechnic523

Institute and State University, 1997.524

2. Bergstra, J.; Bengio, Y. Random Search for Hyper-parameter Optimization. J. Mach. Learn.525

Res. 2012, 13, 281–305.526

3. Markonis, D.; Schaer, R.; Eggel, I.; Müller, H.; Depeursinge, A. Using MapReduce for527

Large–scale Medical Image Analysis 2015. [arXiv:cs.DC/arXiv:1510.06937].528

4. Owen, S.; Anil, R.; Dunning, T.; Friedman, E. Mahout in Action; Manning Publications Co.:529

Greenwich, CT, USA, 2011.530

5. Luo, G. MLBCD: a machine learning tool for big clinical data. Health Information Science and531

Systems 2015, 3, 3.532

6. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-based Optimization for General533

Algorithm Configuration. Proceedings of the 5th International Conference on Learning and534

Intelligent Optimization; Springer-Verlag: Berlin, Heidelberg, 2011; LION’05, pp. 507–523.535

7. Friedrichs, F.; Igel, C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 2005,536

64, 107–117.537

8. Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined Selection538

and Hyperparameter Optimization of Classification Algorithms. Proceedings of the 19th ACM539

SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: New York,540

NY, USA, 2013; KDD ’13, pp. 847–855.541

9. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning542

Algorithms. In Advances in Neural Information Processing Systems 25; Pereira, F.; Burges,543

C.J.C.; Bottou, L.; Weinberger, K.Q., Eds.; Curran Associates, Inc., 2012; pp. 2951–2959.544

10. Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing Multiple Parameters for Support545

Vector Machines. Machine Learning 2002, 46, 131–159.546

11. Bergstra, J.S.; Bardenet, R.; Bengio, Y.; KÃl’gl, B. Algorithms for Hyper-Parameter547

Optimization. In Advances in Neural Information Processing Systems 24; Shawe-Taylor, J.;548

Zemel, R.S.; Bartlett, P.L.; Pereira, F.; Weinberger, K.Q., Eds.; Curran Associates, Inc., 2011;549

pp. 2546–2554.550

12. Gorissen, D.; Couckuyt, I.; Demeester, P.; Dhaene, T.; Crombecq, K. A Surrogate Modeling551

and Adaptive Sampling Toolbox for Computer Based Design. J. Mach. Learn. Res. 2010,552

11, 2051–2055.553

13. Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; Cox, D.D. Hyperopt: a Python library for554

model selection and hyperparameter optimization. Computational Science & Discovery 2015,555

8, 014008.556

14. Sparks, E.R.; Talwalkar, A.; Haas, D.; Franklin, M.J.; Jordan, M.I.; Kraska, T. Automating557

Model Search for Large Scale Machine Learning. Proceedings of the Sixth ACM Symposium on558

Cloud Computing; ACM: New York, NY, USA, 2015; SoCC ’15, pp. 368–380.559

http://xxx.lanl.gov/abs/arXiv:1510.06937

Version May 6, 2016 submitted to J. Imaging 24 of 25

15. Liu, K.; Zhao, Q. Distributed Learning in Multi-Armed Bandit With Multiple Players. IEEE560

Transactions on Signal Processing 2010, 58, 5667–5681.561

16. Depeursinge, A.; Vargas, A.; Platon, A.; Geissbuhler, A.; Poletti, P.A.; Müller, H. Building a562

Reference Multimedia Database for Interstitial Lung Diseases. Computerized Medical Imaging563

and Graphics 2012, 36, 227–238.564

17. Depeursinge, A.; Foncubierta-Rodríguez, A.; Van De Ville, D.; Müller, H. Multiscale Lung565

Texture Signature Learning Using The Riesz Transform. Medical Image Computing and566

Computer–Assisted Intervention MICCAI 2012. Springer Berlin / Heidelberg, 2012, Vol. 7512,567

Lecture Notes in Computer Science, pp. 517–524.568

18. Depeursinge, A.; Foncubierta-Rodríguez, A.; Van De Ville, D.; Müller, H. Rotation–covariant569

texture learning using steerable Riesz wavelets. IEEE Transactions on Image Processing 2014,570

23, 898–908.571

19. Dean, J.; Ghemawat, S. MapReduce: simplified data processing on large clusters. Proceedings572

of the 6th conference on Symposium on Opearting Systems Design & Implementation - Volume573

6; USENIX Association: Berkeley, CA, USA, 2004; OSDI’04, pp. 10–10.574

20. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The Hadoop Distributed File System.575

Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies576

(MSST); IEEE Computer Society: Washington, DC, USA, 2010; MSST ’10, pp. 1–10.577

21. Vavilapalli, V.K.; Murthy, A.C.; Douglas, C.; Agarwal, S.; Konar, M.; Evans, R.; Graves,578

T.; Lowe, J.; Shah, H.; Seth, S.; Saha, B.; Curino, C.; O’Malley, O.; Radia, S.; Reed, B.;579

Baldeschwieler, E. Apache Hadoop YARN: Yet Another Resource Negotiator. Proceedings580

of the 4th Annual Symposium on Cloud Computing; ACM: New York, NY, USA, 2013; SOCC581

’13, pp. 5:1–5:16.582

22. Hunt, P.; Konar, M.; Junqueira, F.P.; Reed, B. ZooKeeper: Wait-free Coordination for583

Internet-scale Systems. Proceedings of the 2010 USENIX Conference on USENIX Annual584

Technical Conference; USENIX Association: Berkeley, CA, USA, 2010; USENIXATC’10, pp.585

11–11.586

23. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data587

Mining Software: An Update. SIGKDD Explor. Newsl. 2009, 11, 10–18.588

24. Li, S.; Kwok, J.T.; Zhu, H.; Wang, Y. Texture classification using the support vector machines.589

Pattern Recognition 2003, 36, 2883–2893.590

25. Depeursinge, A.; Iavindrasana, J.; Hidki, A.; Cohen, G.; Geissbuhler, A.; Platon, A.; Poletti, P.A.;591

Müller, H. Comparative Performance Analysis of State–of–the–Art Classification Algorithms592

Applied to Lung Tissue Categorization. Journal of Digital Imaging 2010, 23, 18–30.593

26. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, 1995.594

27. Breiman, L. Random Forests. Machine Learning 2001, 45, 5–32.595

28. Quinlan, R.J. Induction of decision trees. Machine Learning 1986, 1, 81–106.596

29. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional597

Neural Networks. In Advances in Neural Information Processing Systems 25; Pereira, F.; Burges,598

C.J.C.; Bottou, L.; Weinberger, K.Q., Eds.; Curran Associates, Inc., 2012; pp. 1097–1105.599

Version May 6, 2016 submitted to J. Imaging 25 of 25

c© May 6, 2016 by the authors; submitted to J. Imaging for possible open access600

publication under the terms and conditions of the Creative Commons Attribution license601

http://creativecommons.org/licenses/by/4.0/.602

	Introduction
	Related Work
	Material and Methods
	Datasets
	Existing Tools
	Hardware and Hadoop Cluster
	Classification Algorithms
	Task Cancellation Criteria

	Results
	Implementation of the Hadoop–based Execution Framework
	Standard Run
	Optimized Run

	Implementation of the Simulation Tool
	Experimental Results
	Grid Search
	Random Search

	Simulation results and validation

	Discussion
	Conclusions

