
GPU–Accelerated Texture Analysis Using Steerable
Riesz Wavelets

Abstract—Visual pattern recognition is a key research topic
in the field of image processing and computer vision with many
applications including medical diagnosis, identification and classi-
fication tasks. Texture analysis based on steerable Riesz wavelets
is powerful, but requires computing pixel–wise operations re-
sulting in a run time in the order of days when large volumes
of data are processed. To overcome this limitation we propose
a Graphics Processing Unit (GPU) based solution. A standard
CPU version is used as starting point for the development of
baseline GPU versions. To further increase the performance, and
to overcome compute and memory limitations we apply a series
of optimization techniques, leading to five versions in total. The
best performing GPU solution ensures a speed–up of 93x for the
parallelized section of the application and of 29.6x for the entire
application. Furthermore, we show that a higher Riesz order
and/or a higher image resolution further increases the speed–up.

Keywords—Medical imaging, GPU, parallel processing, texture
analysis.

I. INTRODUCTION

Textured pattern recognition is a key research topic in
computer vision. One of the fundamental concepts in pattern
recognition is the characterization of the local organization
of image scales and directions to identify visually different
patterns [1]. Although much research has been carried out on
this topic [2], [3], [4], [5], [6], [7], it has proven difficult to
elegantly exploit the potential of local attributes for classifica-
tion. Depeursinge et al. proposed an iterative multi–scale and
rotation–covariant texture learning approach using steerable
Riesz wavelets [8], [9]. The framework allows learning local
computational models of patterns. Subsequently, the models
yield feature vectors that are optimally discriminant for a
given problem. Classification accuracies of up to 98.4% was
reported on texture databases such as Outex1. However, the
high accuracy comes at the expense of an algorithm run time
of the order of several days for large databases. To improve its
usefulness for image analysis, parallelization of computations
on graphics processing units (GPU) is proposed in this paper.

GPUs are dedicated video processors, frequently used
to accelerate a wide range of compute–intensive applica-
tions [10]. Typically, these applications rely on heterogeneous
CPU–GPU hardware configurations. Whereas the CPU runs
the sequential part, the GPU runs the parallel part by calling
specific functions, called kernels, that use a very large number
of threads. The GPU is organized into streaming multiproces-
sors, whereas each multiprocessor contains several cores and
different types of memory (shared memory, registers, etc.) [11]
which depend on the GPU architecture. Since the GPU is espe-
cially well–suited to address problems that can be expressed as

1http://www.outex.oulu.fi/, as of 7 May 2015.

Fig. 1. An illustration of the process to determine the texture signature
Γ8
c of a simple pattern (shown in the bottom–left corner) using an 8th–order

Riesz filterbank (shown at the top) is presented here. Γ8
c is constructed as a

weighted linear combination of Riesz filters and shown in the bottom–right
corner. A quick visual inspection reveals that the reconstructed template is
indeed similar to the basic pattern element in the original image [8].

data–parallel computations with high arithmetic intensity (the
ratio of arithmetic operations to memory operations) [12], our
goal is to explore the GPU–based acceleration of classification
tasks relying on steerable Riesz wavelets.

II. METHODS

A. Texture Analysis

There exist a family of basic image filters, of which
Riesz filters are a member, that can be used to reproduce
any image pattern using a proper weighting of the filters
being used. One may also do the reverse and decompose
any pattern using the same filters. The weighting parameters
needed to recompose the pattern may then be calculated and
would exactly characterize the image in question. For any
new pattern, the responses of aligned Riesz filters may be
calculated and subsequently compared with those of known
pattern classes via a classifier in order to determine if both
depict the same pattern. This concept is at the basis of the
classification task being carried out in this paper.

N th–order Riesz wavelets are used here to learn texture
signatures or, in other words, the basic pattern underlying a
target texture. At the top of Fig. 1, a set of 8th–order Riesz
filters are shown. When they are combined using learned
weights wc, the basic pattern contained in the test image
shown on the bottom–left of the figure is recreated and is
shown on the bottom–right. The first step in the process of
texture learning involves the convolution of Riesz filters with
the training images containing the texture of interest in order



Riesz 
texture 
analysis

Riesz 
Energy

computation

2-class 
OVA SVM 

computationTraining image Riesz coefficients SVM coefficients

Energies

Energies

Class c

Class c'

Fig. 2. Training images containing a target pattern are first convolved with
Riesz filters to obtain Riesz coefficients. The Riesz energies are calculated
from them and separated according to classes c and c′. They are then fed to
a two–class SVM classifier using a OVA strategy to obtain the class–specific
weights wc of the linear combination of the Riesz filters for building the
signature Γc. The process is repeated for all classes c to obtain C sets of
coefficients.

to obtain Riesz coefficients. The respective energies contained
within them are then calculated. Subsequently, the energies of
the coefficients of each Riesz filter are used to create Support
Vector Machine (SVM) models (i.e., a separating hyperplane
with the direction vector wc) while following a one–versus–all
(OVA) supervised learning strategy [8]. The coefficients that
the SVMs assigned to each Riesz filter (i.e., wc) correspond
to a first estimate of the signature for that pattern. A new
feature space is built based on the response of the multi–
scale Riesz coefficients steered for each pixel to maximize
the local weighted sum of Riesz coefficients. These maximum
local responses are used to build the final feature vector that
can be used for texture classification. Fig. 2 provides a visual
representation of the texture analysis workflow that has just
been described. Next, the process is repeated C times (i.e. for
all textures classes in the database) and all C texture signatures
are stored.

Local alignment of Riesz coefficients of a training or test
image is then carried out for the training images using, one–
by–one, the saved signatures Gammac. The resulting C aligned
coefficients are then concatenated into a multi–dimensional
feature space. A new SVM classifier is trained using the feature
vectors of the training images. Finally, for any new pattern to
be classified, its feature vector is computed as just described
and based on this feature vector, the SVM classifier is used to
assign the new pattern to one of the previously–learnt patterns.
In the rest of this section, more details for the above process
is provided.

1) Learning the texture signatures: The images are first
convolved with Riesz filters in order to obtain the correspond-
ing Riesz coefficients. For 2–D images, the N th–order Riesz
transform RN yield N + 1 components as [13]:

RN{f}(x)=(R(0,N){f}(x),...,R(n,N−n){f}(x),...,R(N,0){f}(x))
T

. (1)

The local response of each component R(n,N−n) of an
image f(x) rotated by an arbitrary angle θ is derived analyti-
cally from the above components of the Riesz filterbank via a
steering matrix Aθ as:

RN{fθ}(0) = AθRN{f}(0). (2)

Image

Feature vector component C

Riesz coefficients

Feature vector component 2

Feature vector component 1

Riesz
texture
analysis

Align
coefficients

using Gamma
2

Align
coefficients

using Gamma
c

Riesz coefficients

Riesz coefficients

Align
coefficients

using Gamma
1

Feature Vector

Fig. 3. Riesz coefficients for training and test images are calculated and
locally aligned using each texture signature, Gammac, in turn. The resulting
coefficients for each Gammac are concatenated to form the final feature vector
for classification.

Multi–scale versions of these filterbanks are created by com-
bining the Riesz transform with Simoncellis multi–resolution
framework.

For classification, a weighting of the energies of the
responses of the Riesz components E(R(n,N−n){f}(x)) is
required. The energies associated with each of the components
is calculated. The goal is to build an optimal multi–scale
texture signature ΓNc of class c from a linear combination of
the Riesz components as:

ΓN
c =w1(R(0,N))s1+w2(R(1,N−1))s1+···+wJ(N+1)(R(N,0))sJ . (3)

where sj , j = 1, ..., J is the scale index and w contains the
weights of the Riesz components. In Fig. 1, Γ8

c for a given
texture of class c, order N = 8 and a fixed scale is shown.

The training images available have C different but known
textures. First, they are separated according to their class c,
where c ∈ {1, 2, ..., C}. For each class c, there is a set c′ such
that c′ ∈ {1, 2, ..., C}−{c}. Two–class SVMs are used C times
to find the optimal separation between the Riesz energies of
class c and c′, which corresponds to weights w in Eq. (3).

2) Getting Texture Features for Training and Test Images:
In this step, the Riesz coefficients obtained in the previous step
are steered at each pixel position in order to locally alignment
them.

For every image I at each position xp (i.e., each pixel),
the initial Riesz coefficients for a certain pattern are steered to
the maximize the response of ΓNc in Eq. (3). The response of
the signature steered by θ is:

ΓN,θc = wTAθRN . (4)

At the position xp, the θdom angle that maximizes the response
of ΓN,θc is:

θdom(xp) := argmax
θ∈[0,π]

(wTAθRN{f})(xp). (5)

A matrix Θ(x) is obtained for all xp. Subsequently, Riesz
coefficients from all scales are steered using a unique angle
matrix Θ(x). The above can be done analytically for each
pattern [8]. The locally aligned Riesz coefficients for each
pattern are then concatenated as shown in Fig. 3 in order



TABLE I. PERCENTAGE OF TIME SPENT BY EACH MAJOR COMPONENT
WITHIN CPU BASED APPLICATION.

Component %Time

Generation of Riesz energies 0.03
Creating matrices and computing SVM coeffi-
cients for ONE versus ALL (others) comparison

0.001

Alignment of signatures (see Equation 5) 99.289
Evaluation using SVM and post-processing 0.67

to obtain the final feature vector corresponding to image I .
Finally, a new SVM classifier is trained using the computed
feature vectors and it can subsequently be used for the final
classification of patterns.

Table I outlines the main components of the algorithm
and the corresponding percentage of the total run time. This
analysis indicates that alignment of signatures is by far the
most compute intensive operation of the application.

Therefore, the block diagram presented in Fig. 4 illustrates
the most time–consuming workflow component within the
algorithm. First, for each image pixel the computation of
the maximum response of a given texture signature requires
solving a N th–order trigonometric polynomial (i.e., the lines
of the steering matrix Aθ, see [8]). A N th–order equation
is then analytically solved for each pixel of the image. After
performing a series of mathematical computations on the real
solutions of the N th–order correlated polynomial the responses
of ΓNc are calculated. The first part of the computation involves
applying trigonometric functions (arc-tangent, sine and cosine)
on each real root, followed by element-wise multiplications
on the resulting M th–order vectors, where M ≤ N represents
the number of real roots, while the second part involves the
use of 4 × (N + 1)3 mathematical operations (element-wise
multiplications and additions) at polynomial root level. The
maximum is subsequently extracted and the rotation angles
are derived from it.

Riesz coefficients alignment averaged 99.28% of the total
run time, of which 0.43% corresponds to forming polynomials,
3.29% to solving polynomials, 3.61% to computing trigono-
metric operations, 92.43% to calculating responses and 0.24%
to extracting the maximum response.

Since Riesz coefficients alignment is computationally ex-
pensive and all computations can be performed independently
for all pixels, the GPU becomes a well-suited option for
greatly decreasing run time and significantly improving the
usefulness of the Riesz–based texture classification proposed
by Depeursinge et al.

B. Baseline GPU–based Implementations

We first introduce a baseline GPU based implementation of
the texture learning approach. Texture analysis is mostly used
in medical diagnosis and clinical research, hence, due to the
strict accuracy requirements, all computations are performed
in double precision. The GPU based implementation (called
GPUBase) covers the learning/detection stage, representing the
actual computation of the feature vector. Since computing the
responses ΓNc takes around 99.28% of the execution time, it
represents the main focus of the parallelization activities.

A significant amount of data is required to reside on
the GPU (requiring expensive copy operations), whereas the

Riesz
coefficients

Angles

Part of algorithm ported to GPU

Intermediate
trigonometric

operations

Calculating
Responses

of
Γ

c
N

Extracting
Maximum
response 

of Γ
c
N

Forming
polynomial

Finding
roots

of
polynomial

Riesz
templates

Fig. 4. Part of the workflow around the pixel–wise local alignment of Riesz
coefficients using the Riesz templates, Gammac, is represented here. Riesz
coefficients and templates are first used to form the polynomial to be solved in
order to obtain the matrix of angles for local alignment. Next, the roots of the
polynomial are found. Following some intermediate trigonometric operations,
the responses of the templates are calculated. Finally, the maximal response
is determined and the matrix of angles for local alignment is derived from it.
Since this part of the algorithm is the most time–consuming and massively
parallel (it must be computed for each image pixel independently), it is mapped
on to the GPU for acceleration.

number of actual computations required for computing the
responses ΓNc is small. Hence, since the compute intensity
is significantly lower than the capabilities of current GPUs,
the memory access latency cannot be hidden, but only miti-
gated with large data caches. This limits the throughput and
we identify as main approach for performance improvement
an increase in compute intensity [14]. To increase compute
intensity the implementation covers also the computation of
polynomial roots and the maximum response extraction, along
with a series of other operations that include trigonometric
operations applied to the computed roots.

In the execution configuration the threads and the thread–
blocks are organized into 2–D structures, with a total number
of threads equal to dimX × dimY , where dimX and dimY
represent the height and width attributes for the image. Each
thread sets a number of N values in the feature vector V ,
where N is the Riesz order.

The GPUBase version is divided into two parts: the compu-
tation of polynomial roots and the feature vector computation.
In the first part, each thread stores all N + 1 coefficients of
the associated polynomial, and all real roots are computed.
To determine these roots, we combine Newton’s method that
allows us to approximate one root of a polynomial with
Horner’s method for polynomial long division [15]. In the
second stage, the feature vector is built by regional averaging
of the energies. Each thread updates locations (based on the
number of real roots found by the thread) from the feature
vector. Therefore, a repetitive loop structure is used to browse
through the maximum N features handled by a thread. Each
feature is computed iteratively, based on the previously deter-
mined values. This introduces three additional repetitive loop
structures, leading to a significant increase in the amount of
work performed by each thread.

Next, the local orientations of each template are optimized
to maximize their response, which is carried out by aligning
Riesz components based on the dominant orientation of the
signatures [8]. For the GPUBase version these steps are
included in the kernel, since no additional data are required.

C. Enhanced GPU–based Implementations

Since data in the GPUBase version are stored in the
global memory, and the performance of the kernel is primarily



Fig. 5. Simplified kernel code for (a) GPUBase, and (b) GPUReg.

affected by the global memory bandwidth, we first address this
aspect.

1) Register Usage: Registers are fast on chip memory,
having almost no latency when read/write operations are per-
formed. We use registers to store data that are otherwise repeat-
edly loaded: for the GPUBase version this strategy is applied
for the values computed through trigonometric and associated
operations. In each of the above mentioned cases, each thread
requires loading and storing data from/to global memory. Since
several intermediate computations are performed, by placing
the partial results into registers, and merging the repetitive
loop structures, a new enhanced implementation is obtained
(GPUReg). Instead of having 7 repetitive instructions and 3
additional buffers stored in the global memory, we use only
4 repetitive instructions and 3 registers (Fig. 5). To further
reduce global memory access, we introduce another version
(GPURegGlM), in which we store the arc-tangent value for a
root in an additional register. First the data are read from the
register and stored into the global memory as it is required
in the end, then, for the sine and cosine operations, the data
cached in the register are used.

2) Shared Memory Usage: Beside registers, GPUs provide
another fast on–chip memory that can be used for shar-
ing data at block level, with low latency: shared memory.
While optimizations with shared memory should in theory
improve the performance in memory–bound applications, its
effectiveness may be limited by the constraints imposed by
the GPU compute architecture and limited on–chip memory
capacity [16]. Specifically, since the storage of the majority
of the data in shared memory could lead to an exceeding of

TABLE II. EXECUTION TIMES [S] OF IMPLEMENTATIONS FOR A
SINGLE TIME STEP, WHEN RIESZ ORDER AND IMAGE SIZE ARE SET TO 8

AND 128X128 RESPECTIVELY.

Method Execution Method
time [s] speed–up

GPUBase 0.088 ± 0.009 56-68x
GPUReg 0.058 ± 0.006 85-103x
GPURegGlM 0.065 ± 0.005 78-89x
GPUShM 0.105 ± 0.010 47-56x
GPUShMTha 0.071 ± 0.012 65-91x
CPUBaseline 5.413 ± 0.055

the maximum amount of available memory when higher Riesz
order and/or higher image resolution are employed, the utility
of this type of memory is limited herein.

The starting point for the new kernel is the GPUReg
version. Only one data set (describing the weights of the Riesz
components based on SVM coefficients) is small enough to
not exceed the maximum size of the shared memory. For the
first strategy, GPUtShM, threads within a block read the values
they handle from global memory and store them in the shared
memory. The drawback is that we write in the shared memory
only if the local index is less than (N+1). Thus, if N is much
lower than the total number of threads within a block, only a
small number of threads writes in the shared memory array,
leading to divergent branches and hence to serialization. Since
access to shared memory is faster than global memory access,
shared memory can also be used to store data that cannot be
put into registers and are repeatedly accessed by a thread [17].
For this approach (GPUShMTha) we use again the GPUReg
implementation as starting point.

We observe that there are data that are accessed multiple
times by each thread. In GPUReg it was pre–allocated in the
global memory such that each thread had a certain number
of locations for storing its values. Because the values are
computed entirely on the GPU and because the same data
are not shared among multiple threads, we only change the
memory space in which data are stored without any need of
synchronization.

III. RESULTS

We evaluate the different texture learning strategies using
a hardware configuration based on an Intel Core i7 3.8 GHz
processor with 64GB of memory and a NVIDIA GeForce
GTX TITAN Black (Kepler architecture) GPU, configured with
48KB of shared memory and 16KB of L1 cache, compute
capability 3.5 and the CUDA toolkit version 6.0. The overall
workflow of the application is implemented in Matlab, and
the parallelizable components are implemented in C++ for the
CPU based version, and in CUDA for the GPU-based versions.
We first analyse the execution times for a configuration with
a Riesz order of 8 and an image size of 128× 128 (the CPU
C++ based version, CPUBaseline, was considered alongside
the 5 GPU based versions). The results are shown in Table II.

All GPU–based versions lead to a significant speed–up
compared to the CPU–based version. The best performance
is obtained for GPUReg, leading to a significant reduction of
the execution time (98.9%), as compared to CPUBaseline. We
display in Table III the resource allocation for the various
GPU–based versions. We chose the total number of threads



TABLE III. RESOURCE ALLOCATION FOR THE GPU BASED VERSIONS
ON THE GTX TITAN BLACK CARD.

Method Threads Blocks Reg. Shared Total num- Total num- Instr. ex-
per per per memory ber of 64 ber of 64 ecuted
block SM thread per block bit global bit global

[bytes] load instr. store instr.

GPUBase 1024 16 42 - 38437470 7890346 26679619
GPUReg 1024 16 46 - 23794569 7628589 22694175
GPUReGlM 1024 16 46 - 23784178 7628589 22694175
GPUShM 256 64 42 72 16220106 7628589 23550904
GPUShMTha 256 64 43 16384 23767794 7618198 23638963

TABLE IV. EXECUTION TIMES [S] OF THE ENTIRE MATLAB
RIESZ–BASED TEXTURE CLASSIFICATION WHERE THE PARALLELIZED

PARTS IMPLEMENTED IN C/C++ AND CUDA WERE INTEGRATED.

Execution time [s]
MATLAB MATLAB

Component Sub-component + CPU + GPU

Generation of Riesz energies 78.884 78.884
Creating matrices and com-
puting SVM coefficients

3.32 3.32

Alignment of signatures Pre-processing 1574.06 1574.06
Alignment of Riesz
coefficients

249431.04 2897.058

Post-processing 2340.09 1729.721
Evaluation using SVM 1729.721 1729.721
Total 255157.115 8623.133

to be equal to image width × image height. Regarding
the distribution of threads and blocks: while for most of the
versions we adopted a standard number of 1024 threads per
block, for the versions that use shared memory the number of
threads is limited by the maximum size of this type of memory.

The GPUBase version is bandwidth limited since there is
a large global memory access requirement. GPUReg improves
data reuse and reduces global memory accesses by employing
additional registers. Computational time is 34% smaller than
for the GPUBase version. The GPURegGlM version continues
to reduce global memory load operations by using an addi-
tional register and as a result the execution time compared to
the baseline GPUBase is decreased by 26%, but it increases
slightly when compared to GPUReg: the larger number of
registers limits the number of blocks of threads that can run
simultaneously.

Next, shared memory is used in two versions to reduce
latencies and global bandwidth usage: when data are not
shared between threads but are repeatedly used by a thread
(GPUShMTha), or when multiple threads share the same data
(GPUShM). The first version only performs 19.3% faster than
GPUBase. The kernel is limited by the shared memory size and
therefore occupancy decreases. The second implementation
performs slower than the baseline GPUBase version due to
the massive warp serialization requirements.

Next, we determined the computation time of the entire ap-
plication, when using the best performing GPU based version
GPUReg and the CPU based version CPUBaseline. The results
are displayed in Table IV. The computation time decreases
from 70.87 hours to 2.39 hours (speed–up of 29.58x).

The Riesz order and the image size have a considerable
impact on the execution time results, since they affect the

(a)

(b)

Fig. 6. Comparison of speed–up obtained with the best GPU based
implementation over the CPU based implementation with different (a) Riesz
orders and (b) image dimensions.

level of parallelism. We considered the best performing GPU
based implementation and determined the speed–up of the
parallelizable part for: (a) four different Riesz orders (8, 10,
12 and 14) with image size set constant at 128x128, and (b)
four different image sizes (128× 128, 256× 256, 512× 512,
1024×1024) with Riesz order N = 8 (Fig. 6). When the Riesz
order increases from 8 to 14 the speed–up changes from 93x
to 148x. Similarly, as the image size increases to 1024×1024,
the speed–up increases to 235x. The results indicate that once
the image resolution increases beyond a certain threshold the
speed–up curve flattens since the occupation of the GPU
decreases substantially (due to the larger number of registers).

IV. CONCLUSIONS

In this paper we introduced several GPU–based imple-
mentations for iterative texture learning. To obtain the best
speed–up on the GPU, starting from a baseline version, we
have applied a series of optimization techniques to overcome
compute and memory limitations. Overall the implementation
with the optimized register usage performed best, reducing the
execution time from 70.87 to 2.39 hours.

The results obtained for different optimization techniques
indicate that it is difficult to predict apriori the most successful
strategy, and extensive tests are required to determine the best
approach.

Future work will focus on a more efficient usage of the
GPU cache memory and the development of a framework for
using a multi–GPU strategy. Such a framework is required for



high Riesz orders and/or large images, and should automati-
cally distribute the workload to the various GPUs in a cluster.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007–2013) in the context of the MD–Paedigree project
under grant agreement 600932, and the Swiss National Science
Foundation under grant PZ00P2 154891.

REFERENCES

[1] On the existence of neurones in the human visual system selectively
sensitive to the orientation and size of retinal images. Journal of
Physiology, 203(1):237–260, 1969.

[2] An information processing approach to understanding the visual cortex.
Technical report, Massachusetts Institute of Technology, 1980.

[3] Is local dominant orientation necessary for the classifcation of rotation
invariant texture. In Neurocomputing, volume 116, pages 182–191,
2013.

[4] Textural features for image classification. IEEE Transactions on
Systems, Man and Cybernetics, 3(6):610 – 621, 1973.

[5] Visual pattern discrimination. IRE Transactions on Information Theory,
8(2):84–92, 1962.

[6] Textural features corresponding to visual perception. IEEE Transactions
on Systems, Man and Cybernetics, 8(2):460–473, 1978.

[7] Local features and kernels for classification of texture and object
categories: A comprehensive study. International Journal of Computer
Vision, 73(2):213–238, 2007.

[8] Rotation–covariant texture learning using steerable riesz wavelets. IEEE
Transactions on Image Processing, 23(2):898–908, 2014.

[9] Rotation–covariant visual concept detection using steerable riesz
wavelets and bags of visual words. In SPIE Wavelets and Sparsity
XV, volume 8858, 2013.

[10] Programming Massively Parallel Processors: A Hands-on Approach.
Elsevier, 2010.

[11] NVIDIA Corporation. NVIDIA Kepler GK110 Architecture Whitepaper,
2010.

[12] NVIDIA Corporation. CUDA, Compute unifed device architecture
Programming Guide, v5.5 edition, 2013.

[13] Steerable pyramids and tight wavelet frames in L2(Rd). IEEE
Transactions on Image Processing, 20(10):2705–2721, 2011.

[14] Kernelet: High-throughput gpu kernel executions with dynamic slicing
and scheduling. IEEE Transactions on Parallel and Distributed Systems,
25(6):1522–1523, 2014.

[15] Numerical analysis. Springer, 1997.
[16] Optimizing stencil computations for nvidia kepler gpus. International

Workshop on High-Performance Stencil Computations, pages 1–7, 2014.
[17] Double precision stencil computations on kepler gpus. System Theory,

Control and Computing, pages 123 – 127, 2014.


