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Abstract— We describe a texture classification system that
identifies lung tissue patterns from high–resolution computed
tomography (HRCT) images of patients affected with interstitial
lung diseases (ILD). This pattern recognition task is part of
an image–based diagnostic aid system for ILDs. Five lung
tissue patterns (healthy, emphysema, ground glass, fibrosis and
microdules) selected from a multimedia database are classified
using the overcomplete discrete wavelet frame decompostion
combined with grey–level histogram features. The overall
multiclass accuracy reaches 92.5% of correct matches while
combining the two types of features, which are found to be
complementary.

I. INTRODUCTION

Diagnosing Interstitial Lung Disease (ILD) is regarded
as a difficult task, even for specialists, as many forms of
the disease are rare and thus little experience exists. The
diagnosis of ILD is established from the interpretation of
several clinical parameters of the patient in addition to
radiological findings [1]. Detection of pathologic lung tissue
patterns is the first step towards an image–based computer–
aided diagnosis system [2]. When the chest x–ray does
not carry enough elements to finalize the diagnosis, high–
resolution computed tomography (HRCT) is used to provide
an accurate assessment of lung tissue patterns [3]. HRCT
produces three–dimensional (3D) images of the pulmonary
volumes, avoids the superposition of anatomic structures, and
is well suited for the assessment of lung tissue texture. The
taxonomy used by radiologists to interpret patterns in HRCT
images often relates to texture properties, which suggest that
texture analysis is relevant to the characterisation of ILD
which is typically diffuse.

Texture analysis in digital image processing has been an
active research domain over more than thirty years. In [4],
texture in digital images is defined as nonfigurative and
cellularly organized areas of pixels. Such patterns can be
described by a given spatial organisation of grey levels
(e.g., random, periodic). Early examples of texture features
are the autocorrelation function, textural edginess, measure-
ments derived from mathematical morphology, run–length
and gray–level co–occurence matrices, the latter being the
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most popular of the lot [4, 5]. Unfortunately, building co–
occurence matrices from HRCT images where grey–levels
are corresponding to Hounsfield Units (H.U.) with values
from –1000 H.U. (air) to 1500 H.U. (high density bones) is
unrealistic because the number of possible co-occurrences
is simply too large to be stored and estimated reliably.
This can be handled by compressing the grey scale or by
considering an alternative representation in terms of sums
and differences [6]. Complementary to the characterization
of spatial dependencies, the distribution of grey–level values
can be studied through statistical measures of grey–level
histograms. The Fourier transform has also been proposed
for texture analysis, based on the property that some image
patterns (especially periodic ones) are well described in terms
of sinusoidal components [5, 7]. However, the latter is not
appropriate for segmentation because the Fourier transform
is global.

An attractive solution for carrying out a more local texture
analysis, which also takes into account scale, is to use
the wavelet transform (WT) [8]. Wavelets are mathemati-
cal analysis functions that decompose signals into different
subbands, and then analyse each component with a reso-
lution matching its scale (the analysed image is iteratively
subsampled by a factor of 2 in the standard dyadic discrete
version). The WT is particularly well suited for the repre-
sentation of piecewise-smooth signals, as well as stochastic
processes with a fractal-like behavior, which partly explains
their success in biomedical imaging applications [9, 10].
Wavelets come into two flavors: bases or frames. Wavelet
bases provide a one-to-one decomposition (that may be
orthogonal or not), which makes them ideally suited for
image compression. They have a fast implementation, but
their main drawback is their lack of translation invariance.
Wavelet frames, on the other hand, are redundant and offer
more flexibility for image analysis. Moreover, one can easily
obtain a translation-invariant frame from a wavelet basis by
removing the sub-sampling part of the algorithm; this yields
a discrete wavelet frame (DWF) which performs well for
texture analysis [11, 12]. When compared to the WT, the
DWF tends to decrease the variability of the estimated texture
features thereby improving classification performance.

A. Texture analysis for lung tissue classification

The majority of papers describing image–based computer–
aided diagnosis for lung diseases use texture features to
classify lung tissue patterns. In [13], Aisen et al. describe a
physician–in–the–loop content–based image retrieval system
in which the physician delineates a suspicious region of



interest (ROI). The system then matches the ROI against
reference ROIs in images in JPEG (and not DICOM) that
are already indexed in the database through co–occurences
matrices, grey–level distributions and size of the ROI. The
evaluation of this tool in [14] suggests that it improves
diagnosis, particularly for nonspecialist radiologists. How-
ever, the clustering of grey–level values in H.U. can have a
critical influence on the efficiency of co–occurence matrices
to characterise lung tissue patterns.

Non–linear binning of grey–level values for co–occurence
matrices is proposed in [15] in order to quantify lung tissue
fibrosis in HRCT data. This approach is less suitable for
carrying out quantitative analysis of several classes of lung
tissue patterns at once.

In [16], six lung tissue patterns in HRCT data are classified
using an adaptive multiple feature method. 22 texture fea-
tures are extracted from grey–level distribution, run–length,
and co–occurence matrix along with fractal analysis based on
the Brownian motion model principle. This approach consists
of weighting several features to obtain a classification of
the patterns from a training set. The extension of this
feature set to 3D in [17] shows noticeable improvement in
classification accuracy of lung tissue patterns. However, no
features measuring spatial frequencies are used.

A quincunx wavelet transform along with support vector
machines (SVM) are used in [18] to classify 5 lung tis-
sue patterns. Nevertheless, the classification task is slightly
biased since the training set contains an equal number of
instances for each of the five patterns, which is usually not
the case in clinical practice.

Despite those works, there has not yet been any direct
attempt in addressing the problem of the classification of
healthy tissue versus pathological ones, which is the first step
for building a diagnosis system for ILD. Here, we present
some preliminary results concerning the application of the
redundant discrete wavelet frame (DWF) transform to the
classification of HRCT images. We consider 5 types of lung
tissue patterns associated with ILD.

B. Wavelet frames

The discrete wavelet frame (DWF) decomposition de-
scribed in [11] consists of analysing the input image f(x) in
terms of the overcomplete family of templates

S = {g1(x − l), . . . , gI(x − l), hI(x − l)}l∈Z2

where hi stands for a lowpass filter at iteration i and gi a
family of highpass filters with i = 1, . . . , I . The associated
decomposition algorithm is{

Gi(x) := 〈gi(x − l), f(x)〉l2
HI(x) := 〈hI(x − l), f(x)〉l2 (1)

where 〈·, ·〉l2 is the l2 scalar product. Gi contains coefficients
generated by the convolution of the image with the highpass
filters at iteration i and HI the convolution of the image with
the lowpass filter at the last iteration I . More details together
with a justification of the method can be found in [11].

TABLE I

DISTRIBUTION OF THE ROIS PER CLASS OF LUNG TISSUE PATTERN

healthy emphysema ground glass fibrosis micronodules

# of ROIs 77 72 113 64 155

# of patients 10 5 13 11 5

II. MATERIAL & METHODS

The dataset used is part of an internal multimedia database
of ILD cases [19, 20]. For each case in the database, 99
clinical parameters related to the 15 most frequent ILDs are
filled in and relevant non-injected HRCT image series with
slice thickness < 3mm are annotated by experienced radiol-
ogists through a graphical user interface (GUI) implemented
in Java. The interface was adapted in order to meet the
needs of the radiologists for the various annotation tasks; it
allows high–quality annotations in 3D HRCT data. The data
acquisition is still in process; the database actually contains
95 cases with full clinical parameters from which 52 HRCT
image series are annotated with 675 ROIs distributed into
12 different classes of lung tissue patterns, including healthy
tissue. In this study, the five most frequent patterns in 1mm
slice thickness (without contrast agent) are selected from the
multimedia database in order to test the set of texture fea-
tures. The selected patterns are healthy, emphysema, ground
glass, fibrosis and micronodules. Distributions of the ROIs
are detailed in Table I.

The algorithm for the extraction of the texture features
(including wavelet frames) from DICOM files was imple-
mented as an ImageJ1 plugin in Java, and the classification
was carried out using the free data mining software R2.

III. RESULTS

A. Feature extraction

1) Wavelet frames: The algorithm used to compute the
wavelet frame coefficients Gi(x) and HI(x) directly imple-
ments equation (1). A family of B-splines of third order are
used as wavelet basis [21]. The coefficients Hi(x) resulting
from the convolutions with lowpass filters hi are kept for
each iteration i in order to investigate continuous components
of the lung tissue patterns at different scales. Moreover the
l2–norm of the composite coefficients Ci(x) is computed for
each iteration as follows:

Ci(x) =
√

(GxHy)2i (x) + (GyHx)2i (x) (2)

where (GxHy)i(x) and (GyHx)i(x) are the coefficients
resulting from the convolution with the highpass filter on x
and with the lowpass filter on y, and vice versa. The norm of
both is computed because we believe that no directionality is
contained in lung tissue textures. To extract higher-frequency
features at smaller scales, the input images are upsampled by
a factor of 2n. The images are containing values in H.U.. The
mean µ and the variance σ of the coefficients Gi(x), Ci(x)

1http://rsb.info.nih.gov/ij/
2http://www.r-project.org/



and Hi(x) are computed over all ROIs for each iteration i
(scale) to create the feature vector

( µ, σ(G1(xR)) µ, σ(C1(xR)) µ, σ(H1(xR)) . . .

. . . µ, σ(GI (xR)) µ, σ(CI(xR)) µ, σ(HI (xR) )

where xR denotes the points belonging to the ROI.

2) Grey–level histograms & specific features: Since grey–
level values of the pixels in HRCT images are expressed in
H.U., each pixel value corresponds univoquely to densities
of the anatomic organs and thus allows the identification
of lung tissue components. In order to take advantage of
this, histograms of pixel values are computed over each
ROI. In addition, the percentage of air pixels (i.e. pixels
with value < -1000 H.U.) is computed as an additional fea-
ture. Features related to grey–level values of HRCT images
showed good discriminative properties for the separation of
five lung tissue patterns in [20].

B. Classification algorithm

In order to quantify the discriminative properties of our
texture features, we use a k–nearest neighbor (k–nn) clas-
sifier with euclidean distance computed between normalised
feature vectors. Each feature is normalised using a linear
mapping between 0 and 1 from each realisation. No weight-
ing is used for the combination of heterogeneous features.
A leave–one–out cross–validation is carried out to compute
the classification accuracy. We use the function knn.cv of the
package class of the free software R.

C. Classification results

We investigated the relevant scales of the DWF by per-
forming a multi-class classification of the five patterns with a
1–nearest neighbor. Global accuracies using only coefficients
from the first iteration of the DWF are shown in Figure 1.
Since the original images are sampled by a factor 2n,
the sampling factor is inversely proportional to the scales
contained in the patterns.
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Fig. 1. Overall accuracies at iterative scales. The sampling factor 2n is
inversely proportional to the studied scale.

The optimal number of bins for computing histogram fea-
tures is iteratively found by maximising the overall accuracy
(Figure 2). Only histogram texture features are used.

In order to study which patterns are effectively discrim-
inated by the combination of features from DWF (using
the original image upsampled by 4 and 5 iterations) with
histograms (40 bins) and percentage of air pixels, a confusion
matrix is built (see Table II).
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Fig. 2. Overall accuracies for varying number of bins, using the best
number of nearest neighbors for each.

TABLE II

CONFUSION MATRIX OF COMBINED FEATURES

healthy emphysema ground glass fibrosis micronodules

healthy 71 (92.2%) 0 1 0 5

emphysema 0 72 (100%) 0 0 0

ground glass 1 5 98 (86.7%) 0 9

fibrosis 0 0 4 60 (93.8%) 0

micronodules 6 0 1 4 144 (92.9%)

The comparison of accuracies of DWF, histograms plus
percentage of air pixels, and the combination is illustrated in
Figure 3.
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Fig. 3. Comparison of accuracies of classification using histogram plus
air percentage, discrete wavelet frames (DWF) and the combination of all
features applied to each pattern versus all and to the multiclass configuration.

IV. INTERPRETATION

The results in Figure 1 show that smaller scales allow
better discrimination of patterns. Indeed, in spite of the fact
that upsampling images without carrying out interpolation
introduces high–frequency artefacts, the best overall accuracy
is reached with upsampled original images with a factor of
2. However, we believe that each pattern contains specific
scales and the effect of the scale has to be studied for each
of them. Higher accuracy can be reached by using the DWF
with quincux wavelets where scales increase by a factor
of

√
2 instead of 2 at each iteration [22]. Indeed, relevant

information can be hidden between two consecutive scales.
The optimal number of bins for grey–level histograms (40) is
choosen as a trade–off between accuracy and dimensionality
of the feature space. Using a large number of bins does not
significantly improve the overall classification and increases
the dimensionality of the feature space considerably. A
non–linear binning can be effective as the majority of the
information is contained in low H.U. values.



The confusion matrix in Table II shows how the combined
features can separate each pattern. The 72 ROIs showing
emphysema, which is characterised by the destruction of
lung tissue (air), are 100% correctly classified. In this case,
features such as percentage of air pixels are much more
relevant compared to frequential analysis. Ground glass
is the most difficult to classify and is confused 9 times
with micronodules. This can be explained by the lack of
intermediate scales with the DWF, where the size of the
little nodules in micronodules is not correctly matched by the
scaled templates. These observations seem to be validated
by the respective accuracies in Figure 3 where DWF is
not accurate to classify emphysema and micronodules. For
patterns ground glass and fibrosis, the DWF shows superior
dicrimination performance. This can be explained by the fact
that fibrosis is charactised by sharp transitions between high
density tissue and small air bubbles.

The combination of histogram and DWF features shows
improvement in classification accuracy for all patterns except
healthy, and is particularly effective when carrying out
multiclass classification.

We believe that using extra data associated with the images
such as clinical parameters can improve the classification
accuracy. Only very rarely can radiologists interpret images
without taking into account the medical context. For exam-
ple, a healthy lung of a 20–year–old and a 70–year–old have
completely different characteristics. Moreover, 99 clinical
parameters are available for each case in the database.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We used texture features to classify lung tissue patterns
in HRCT data. The dataset used is in accordance with
the clinical application, and the pattern recognition task is
ready to be used in computer–aided diagnosis for ILDs.
Texture features extracted from DWF and grey–level his-
tograms show to be complementary and allow a multiclass
classification of 5 patterns with an overall accuracy of 92.5%.
The main weaknesses of the presented technique are the lack
of resolution in scales with the DWF decomposition, along
with required feature weighting while merging features from
different origins.

B. Future Work

In order to avoid the introduction of high frequencies
while upsampling the images, we plan to use interpolation
(e.g. Gaussian blurring or spline interpolation). A possible
solution to the lack of scales with the DWF is to use the re-
dundant quincunx wavelet transform, where each successive
lower resolution level is scaled by a factor of

√
2 [22], or to

convolve the image with given templates at selected scales
(e.g. convolution with scaled Gabor functions). In order to
combine visual features with clinical parameters, we plan to
use support vectors machines (SVM). Finally, an extension of
2D texture features to 3D is planned in order to fully exploit
information in 3D HRCT data, which showed significative
improvement in classification accuracy in [17].
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