
SOFT FALL DETECTION
USING MACHINE LEARNING in WEARABLE

DEVICES
Dominique Genoud, Vincent Cuendet

Institute of Information Systems,
University of Applied Sciences Western Switzerland

(HES-SO), Sierre, Switzerland
Email: dominique.genoud@hes-so.ch,vincent.cuendet@alumni.hes-so.ch

Julien Torrent
FST,

Fondation Suisse pour les Téléthèses
Neuchâtel, Switzerland
Email: torrent@fst.ch

Abstract—Wearable watches provide very useful linear accel-
eration information that can be use to detect falls. However
falls not from a standing position are difficult to spot among
other normal activities. This paper describes methods, based
on pattern recognition using machine learning, to improve the
detection of “soft falls”. The values of the linear accelerometers
are combined in a robust vector that will be presented as input
to the algorithms. The performance of these different machine
learning algorithms is discussed and then, based on the best
scoring method, the size of the time window fed to the system
is studied. The best experiments lead to results showing more
than 0.9 AUC on a real dataset. In a second part, a prototype
implementation on an Android platform using the best results
obtained during the experiments is described.

I. INTRODUCTION

Wearable devices have the ability to follow people wherever
they go and record their movements. For disabled or elderly
people this monitoring can make a crucial difference as it
will allow them to stay at home and keep their independence
as long as possible. For example correctly detecting people
falling has a huge impact on public health which triggered a
very active research in this area these last 15 years. According
to the WHO (World Health Organization) between 28% and
35% of people older than 65 years old fall at least once a
year and these accidents are responsible of about 40% of
the total recorded injuries [1]. To address this problem many
approaches are proposed, some require to install video cameras
and movement detectors to follow people and detect abnormal
changes in their movements, others require to wear multiple
sensors in the chest and along the legs. All those solutions are
pretty expensive, invasive and require a lot of tunning to give
results in the field.
Fortunately, with the rise of relatively cheap and accurate
wearable sensors like smart watches, real-time reactivity (i.e.
a couple of seconds) can be considered for production appli-
cations.
The problem addressed here will be to detect falls among
normal daily activities using continuously monitored sensor’s
signals. There are many ways to regroup fall detection systems,
some are based on the identification of different phases [7]

Fig. 1. Previous fall detection on the FST dataset using Threshold Based
Measures (TBM)

other on variations of the acceleration [8] and some on the
different kind of sensors used [9]. The experiments described
here will focus on the the data provided by wearables as they
look the most promising nowadays.
In the current state-of-the-art of wearable devices used to
detect falls, the most common features are based on the
information provided by one or more accelerometers [11]–
[13], [16]–[18] that will detect rapid change in movements.
In addition more and more often data from gyroscopes or
altimeters [19], [20] are available to precise the position of
the user. To detect events on the signal of these devices the
main approaches are either to fix a threshold (TBM, threshold
based measure) on sensor values or to construct a machine
learning model based on the signal analysis [10], [16]. Mixed
approaches exists also [12] and are a good compromise in case
of limited resources.

The work presented here is based on experiments recorded
on real cases of falls [2] and completes previous studies [3]
that used TBM (figure 1) to distinguish between hard falls
(falling from the standing position) and normal activities
(walking, sitting,climbing steps, freestyle). Other research
team obtained similar results on hard falls like Kau & al.
[14] or Albert & al. [16]. However, the previous results (see
figure 1) show that it was very difficult to detect soft falls



Fig. 2. This table describe the raw input features produced by the sensors.
The experiments described here will only use the 3 axes linear accelerations
and the activities labels.

(defined as falls from other starting point than the standing
position, like for exemple sliding from a chair).
The experiments described here will address the detection of
these soft falls by using machine learning algorithms (MLa).
After a description of the data used for the experiments
in section III, the performances of different MLa will be
compared in section IV and improvement of the input data
will be described in the section V.
Finally the last part of this paper will describe a prototype
solution based on our machine learning system and
implemented as real time system on a wearable devices
running on Android OS (section VI).

II. METHODOLOGY

Classically machine learning systems operate in two phases:
First a ML algorithm is trained with real data and a model of
the observed data is constructed. This phase is often called the
training phase. Then a test phase will use the model trained
previously to validate its performance. To assess properly the
quality of the model the test data should not have been seen
during the training process.
The dataset available to construct the system is accordingly
split into 2 distinct parts: the training set and the test set. There
are multiple popular ways to split the training and test set, all
of them have some advantages and drawbacks [4]. In this work
we will use a randomly sampled 50% of the full dataset to
learn our task and 50% to test the learned models. In order to
increase the statistical relevance of the results, the train/test
process is repeated 20 times with a new random selection
for each algorithm. Moreover as for some experiments in the
second part of this work we have few data for the soft fall
category, a leave-one-out scoring [4] was used, proved more
robust in such cases.

As the task on this paper will focus on how to separate the
soft falls from other activities that are not falls, this implies
that the hard falls (from a standing position) are removed
from the dataset (see section III). Thus, the task that will be

TABLE I
DATASET USED IN THE SOFT FALL EXPERIMENTS, THE MEAN DURATION

OF A RECORD IS AROUND 24.5 SECONDS. THE SAMPLES ARE TAKEN
EVERY 20MS

Labels Nr Records Nr Samples

Soft Fall 475 145’865

Other activities 2651 12’990’095

considered here will be to classify [4] the data in 2 categories
(classes): soft falls against other activities.

To measure the separation of 2 classes we will use a
well accepted scoring method that is called AUC (Area
Under the Curve) [4] of a ROC curve (Receiver Opreating
Characteristic) [4]. The AUC has the advantage of being
independent of an a priori threshold but can be easily related
to other measures like specificity and sensitivity [24].

III. DATA PREPARATION AND DATASET

The data used in the following experiments come from real
recordings made on two different smart watches (LG-G [21],
Moto360 [22]) that are producing the features described in
the figure 2 every 20ms (50Hz). An Android application [2]
collects and processes the data from the wearable devices.
Multiple sessions involving 16 persons performing diverse
activities like soft falls with or without residual activities,
sitting, walking, running, climbing steps up or down were
recorded. Then, following Wang & Shi [23] we kept only
the 3 linear accelerometers as they determined that the linear
accelerometers provide convincing results and limit the pro-
cessing time required to detect the falls. The table I shows the
statistics of dataset extracted from the raw data and available
for the experiments. The linear accelerometers values are
accelerations without the influence of the gravity. The figure 3
shows an example of a rear soft fall and of a climbing up stairs
activity and how similar they can be.

Data pre-processing of the accelerometers

For stability purpose we didn’t use the raw values of the 3
linear acceleration sensors but, following the equation III, the
norm of the resulting vector Vn :

Vn(i) =
√
(ax(i))2 + (ay(i))2 + (az(i))2

with i the sample number. and ax,y,z are the linear acceleration
along the three axes x, y, z

After a first inspection of the soft falls pattern we decided
to feed the inputs of the MLa classifiers with records of 200
vectors Vn which represent a time window of

20 ∗ 200 = 4000ms



Fig. 3. Example of soft fall signal vs other activity

TABLE II
PERFORMANCE OF POPULAR MACHINE LEARNING ALGORITHMS, AUC
(AREA UNDER CURVE) AND CONFIDENCE INTERVALE (CI) AT α = 95%

RANDOM REFERS TO RANDOM INPUT SCORING AND LOO TO
LEAVE-ONE-OUT SCORING

ML Algorithm AUC/random AUC/loo

Decision Tree 0.63 ± 0.02 0.68 ± 0.02

DT Forest 0.90 ± 0.01 0.90 ± 0.01
KNN 0.82 ± 0.02 0.81 ± 0.02

MLP 0.72 ± 0.02 0.71 ± 0.02

IV. BEST ALGORITHM SELECTION

Following the methodology described in section II we split
the dataset in 2 parts by randomly taking half the records
to construct the training set and the other half for the test
set. We also ran a leave-on-out experiment to cross check
the obtained results. As many MLa have some convergence
problem when the ratio of samples between classes is not
equilibrated we use a simple bootstrap sampling method [15]
to balance the training data. Moreover as Neural Network like
the Multi-Layer Perceptrons (MLP) have problems if the input
features are not normalized, we do compute some z-score
normalizations [4] of the input features on the training records
and we reuse the same normalization on the test set.
The machine learning algorithms compared here are imple-
mented on Knime [5], a widely used data mining platform
(see figure 4). The detailed mathematical equations and con-
vergences of the algorithms used can be found in [4]:

1) Decision Tree: The decision trees (also called C4.5) use
a gini index computation on each feature of the input
data to find the best separation of the classes.

2) Decision Tree Ensemble (DT Ensemble): this algorithm
will learn an ensemble of decision trees (also called
random forest), for the experiments we used a maximum
of 300 trees and an information gain ratio as distance
measure.

TABLE III
PERFORMANCE OF THE FOREST TREES ACCORDING TO THE ANALYSIS
WINDOW DURATION, AUC (AREA UNDER CURVE) AND CONFIDENCE

INTERVALE AT α = 95%. THE SOFT FALLS% IS THE QUANTITY OF SOFT
FALLS IN THE DATASET

Window [ms] Nr records soft fall% DTE-AUC

100 1012 46.64 0.78 ± 0.01

200 1012 46.64 0.77 ± 0.01

2000 926 43.30 0.91 ± 0.01

4000 637 23.70 0.90 ± 0.01

8000 527 7.78 0.87 ± 0.02

3) K Nearest neighbors (KNN): the nearest neighbor is
configured with a maximum of 50 neighbors.

4) Neural networks, multilayer perceptrons (MLP): the
values fed to the input neurons are z-score normalized
and the neural network is configured with one hidden
layer of 10 neurons.

Results

The results obtained with this setup are shown on the
table II. We can observe that the Decision Tree Ensemble
scores clearly the best and outperform the results obtained
by the other algorithms like the MLP cited very often in
the litterature [12], [14], [16], [19], [20]. By observing the
classification errors made by the MLa it was possible to
determine that some activities like climbing down stairs were
often detected as soft falls. Among many way to solve this
confusion, like adding frequency components for example,
a possibility was also to better capture the details of the
fall pattern by adapting the analysis time window. This
approach will be described in the section V. Interestingly
the leave-one-out scoring does not give significantly different
results which is a good sign of the robustess of the dataset.
The confidence intervale on the AUC is computed according
to Hanley & McNeil [6].

V. IMPROVE THE DETECTION WINDOW

The duration of the record that will contain the shape of a
soft fall was determined empirically in our first experiments.
So, in order to optimize the time window that will give us the
best classification results, we have setup different record time
windows. Then, we have built a system using the Decision
Tree Ensemble, our best performing algorithm (see section IV)
and fed it with time windows varying from 100 ms to 8
seconds. As the number of records available varies greatly
upon the duration of the window, we used a leave-on-out
scoring (see section II) to have the same kind of scoring for
all the experiments.

Results

The results can be seen on table III. There is a small
difference in performance by using 4000 ms over 2000 ms



Fig. 4. Example of Knime workflow that shows the methodology used: Data preparation, algorithm selection and scoring

but is not significant if we look at the confidence interval.
However, dividing by 2 the analysis window has a great
impact on the resources needed to process the signal, a major
concern when deploying a system on a mobile device. Thus,
this result will be exploited during the implementation phase
(see section VI) and tuned in a way that the results stay robust.

VI. IMPLEMENTATION

The implementation of the experiments in a real-life sys-
tem is the next, logical, step to capitalize on demonstrated
elements. This step pursue several objectives: first, target an
existing and affordable hardware, second being able to convey
usability, especially for elderly people, and third offer confi-
dence through robustness and precision. We chose an Android
platform because of its large user base on mobile devices that
is spreading from entry level to specialized terminals. The
export in a shareable form of the produced model is done
using the PMML (Predictive Model Markup Format) format,
generated from Knime platform. The methodology to get a
consumable XML file differs from the precedent experiments
as the data separation between train and test datasets is done
using a stratified sampling with a random seed [4]. This choice
is driven by the necessity to reduce the prediction model size
and its footprint on production system. Then, the consumption
of the model is done by the open-source library jpmml-
evaluator. The selection of this code base was motivated by its
full support of the latest PMML standards without incurring
additional costs. The precision of the system is guaranteed by
the use of the MLa approach and the selected options described
in the section V.

Fig. 5. Implementation scheme for the soft falls detections.

The system work-flow, shown in figure 5, is composed by
daemon collecting data from device sensors which stores them
in a memory buffer and from a process which evaluates the
stored content every second [2]. It interacts with the end-user
and finally triggers an alarm if necessary. A detection flow
analyzes the data contained in the buffer every second, then
the decision tree model evaluates the 100 input samples, and
finally if no fall is detected the process ends. In case of soft fall
detection, a message is displayed to the user who can decide to
cancel the flow. In that case the process ends, otherwise, after
a parametrized time-frame, for example 15 seconds, the alarm
is relayed by e-mail or SMS to list of predefined contacts [2].



VII. CONCLUSION

The experiments releted in this paper show that it is
possible to obtain robust results to detect soft falls at
more than 0.9 AUC by using machine learning algorithms
on 2 seconds recording windows. The best algorithm is
the Decision Tree Ensemble that was constantly better than
others. We also confirmed that using the norm Vn of the linear
accelerations on the 3 axes x, y, z gives better results than
multiple others tests (like the use of frequency components
or the angle of the accelerations). Future work to improve
the detection of soft falls will be to add new input features
like gyroscopic and compass informations for example. As
the system implemented is good enough to be used in real
production, the main improvement will certainly be to analyze
the errors happening in special cases and retrain the machine
learning algorithms able to capture this kind of problems in
their modeling.
Finally, the architecture presented in this work combined with
the already efficient threshold detection for hard falls respond
to the objectives of a real application. Indeed, it allows a
deployment on a widely used platform, uses standards, keep
the interaction with the end-user as simple as possible and
yet offers the necessary control and detection capacity to
be efficient, thus minimizing wrong alarms and enforcing
confidence in the system.

ACKNOWLEDGMENT

The authors would like to thank the Fondation Suisse pour
les Téléthèses for its support and its very important help
during the cleanup of the dataset of the project.

REFERENCES

[1] World Healt Organization. WHO Global Report on Falls Prevention in
Older Age. World Health Organization, 2007.

[2] Torrent, J., Triki, M., Khner, D., Nicolet, M., Sieber, G., Vallat, M.,
Chassot, C., Edelman, R., Aebi, R., & Nedjmeddin, B. Développement
d’un dispositif innovant de détection de chute à l’aide d’une smartwatch
Android FST - Fondation Suisse pour les Téléthèses, To be published
Neuchtel 2016

[3] Kostopoulos, P., Nunes, T., Slavi, K., Deriaz, M., & Torrent, J. Increased
Fall Detection Accuracy in an Accelerometer-Based Algorithm Consider-
ing Residual Movement. fstlab.ch, 2014.

[4] Berthold, M., Borgelt, C., Hppner, F. & Klawonn, F. Guide to Intelligent
Data Analysis, How to Intelligently Make Sense of Real Data. Springer,
ISBN 978-1-84882-259-7, 2010.

[5] Berthold, M., Cebron, N., Dill, F., Gabriel, T., Kötter, T., Meinl, T., Ohl,
P., Sieb, C., Thiel, K., & Wiswedel,B. KNIME: The Konstanz Information
Miner SPRINGER, Studies in Classification, Data Analysis, and
Knowledge Organization,ISBN 978-3-540-78239-1, GfKL 2007.

[6] Hanley JA & McNeil BJ. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. RADIOLOGY, Vol 143,
No1, pp 29-36, April 1982

[7] Noury, N., Rumeau, P., Bourke, A. K., OLaighin, G.,& Lundy, J. E. A
proposal for the classification and evaluation of fall detectors. IRBM,
pp. 340-349, 2008.

[8] Mubashr, M., Ling, S., & Luke, S. A survey on fall detection: Principles
and approaches. Neurocomputing, pp. 144-152, 2013.

[9] Perry, J. T., Kellog, S., Vaidya, S. M., Jong-Hoon, Y., Ali, H., &
Sharif, H. Survey and evaluation of real-time fall detection approaches.
Proceedings of the 6th International Symposium High-Capacity Optical
Networks and Enabling Technologies (pp. 158-164) 2009. Alexandria:
Institute of Electrical and Electronics Engineers.

[10] Igual, R., Medrano, C., & Plaza, I. Challenges, issues and trends in fall
detection systems BioMedical OnLine, 12:66, 2013.

[11] Li, Yanjun; Chen, Gan; Shen, Yueyun; Zhu, Yihua; Cheng, Zhen
Accelerometer-based fall detection sensor system for the elderly IEEE
International Conference on Cloud Computing and Intelligence Systems.
pp 1216-1220. 2012.

[12] Aguiar, Bruno; Tiago, Rocha; Joana, Silva; Inłs, Sousa Accelerometer-
based fall detection for smartphones IEEE International Symposium on
Medical Measurements and Applications (MeMeA), Lisboa. p1-6. 2014.

[13] Bagal, Fabio; Becker, Clemens; Capello, Angelo; Chiari, Lorenzo;
Aminian, Kamiar; Hausdorf, Jeffrey M.; Ziljlstra, Wiebren; Klenk, Jochen
Evaluation of Accelerometer-Based Fall Detection Algorithms on Real-
World Falls PLoS ONE 1-9. 2012.

[14] Kau, L.-J., & Chen, C.-S. A Smart Phone-Based Pocket Fall Accident
Detection, Positioning, and Rescue System. IEEE JOURNAL OF
BIOMEDICAL AND HEALTH INFORMATICS, VOL 19, NO 1, 44-
56.2015.

[15] Haibo He & Edwardo A. Garcia Learning from Imbalanced Data IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,
VOL. 21, NO. 9, SEPTEMBER 2009

[16] Albert, M. V., Kording, K., Herrman, M., & Jayaraman, A. Fall
Classification by Machine Learning Using Mobile Phones. U. H.
Christian Lovis, Ed. PLos ONE, pp. 1-6. 2012.

[17] Karantonis, Dean M.; Narayanan, Michael R.; Mathie, Merryn; Lovell,
Nigel H.; Celler, Branko G. Implementation of a Real-Time Human
Movement Classifier Using a Triaxial Accelerometer for Ambulatory
MonitoringIEEE IEEE TRANSACTIONS ON INFORMATION TECH-
NOLOGY IN BIOMEDICINE 2006 pp 156-167

[18] Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., & Vecchio,
A. A smartphone-based fall detection system. Pervasive and Mobile
Computing, 883-899. 2012.

[19] He, J., Hu, C., & Li, Y. An Autonomous Fall Detection and Alerting
System based on Mobile and Ubiquitous Computing. International
Conference on Ubiquitous Intelligence & Computing and 2013 IEEE 10th
International Conference on Autonomic & Trusted Computing (p. 539).
IEEE. 2013

[20] Ojetola, Olunkule; Gaura, Elena I.; Brusey, James Fall Detection with
Wearable SensorsSAFE (SmArt Fall dEtection) IEEE 2011 Seventh
International Conference on Intelligent Environments

[21] Smartphone LG-G
https://support.google.com/androidwear/answer/6056447?hl=en

[22] Smartphone Motorola 360
https://support.google.com/androidwear/answer/6088867?hl=en

[23] Wang, Ye; Bai, Xiang-yu Research of Fall Detection and Alarm
Applications for the Elderly IEEE 2013 International Conference
on Mechatronic Sciences, Electric Engineering and Computer (MEC)
Shenyang, China

[24] Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig
LM & al. Towards complete and accurate reporting of studies of diag-
nostic accuracy: the STARD initiative Clin Chem 2003;49:1-6.

[25] Zhu, Yunyue High Performance Data Mining in Time Series: Techniques
and Case Studies PhD thesis, Department of Computer Science, New
York University 2004

[26] Morent, D., Stathatos, K., Lin, W., Berthold, M. Comprehensive PMML
Preprocessing in KNIME ACM Proceedings of the 2011 workshop on
Predictive markup language modeling, pp28-31. 2011


