
A Python Framework for Exhaustive Machine Learning Algorithms and Features
Evaluations

Fabien Dubosson*, Stefano Bromuri,*† and Michael Schumacher*

*AISLab, HES-SO Valais//Wallis
†Management, Science and Technology,Open University of the Netherlands

{fabien.dubosson,michael.schumacher}@hevs.ch
stefano.bromuri@ou.nl

Abstract—Machine learning domain has grown quickly the
last few years, in particular in the mobile eHealth domain.
In the context of the D1NAMO project, we aimed to detect
hypoglycemia on Type 1 diabetes patients by using their ECG,
recorded with a sport-like chest belt. In order to know if the
data contain enough information for this classification task, we
needed to apply and evaluate machine learning algorithms on
several kinds of features. We have built a Python toolbox for
this reason. It is built on top of the scikit-learn toolbox and it
allows evaluating a defined set of machine learning algorithms
on a defined set of features extractors, taking care of applying
good machine learning techniques such as cross-validation or
parameters grid-search. The resulting framework can be used
as a first analysis toolbox to investigate the potential of the
data. It can also be used to fine-tune parameters of machine
learning algorithms or parameters of features extractors. In
this paper we explain the motivation of such a framework,
we present its structure and we show a case study presenting
negative results that we could quickly spot using our toolbox.

Keywords-machine learning; python; framework; evaluation;
features; grid search

I. INTRODUCTION

Machine learning is becoming more and more used in
all sorts of fields nowadays. The personal health field is
also following this trend, partly due to the quantified-self
movement that makes the number of mobile health devices
– such as the Fitbit1 or the Jawbone Up2 – increase. These
devices are generating a lot of data, such as continuous heart-
rate signals or accelerometers output. Machine learning is
useful for this analysis of the large amount of collected data
and the extraction of knowledge from it.

The D1NAMO project aims at defining a personal health
system [1] to monitor diabetes type 1 patients by using
their physiological signals. In D1NAMO we want to use
machine learning to achieve a non-invasive hypo/hyper-
glycemia detection. Physiological signals are acquired by
the Zephyr BioHarness 33, which is a sport-like chest belt.
The use of machine learning permits to identify points of
interest in the signal or to summarize the data.

1https://www.fitbit.com/
2https://jawbone.com/up
3http://www.zephyranywhere.com/products/bioharness-3

The traditional machine learning pipeline is usually com-
posed of the following steps:
• Data acquisition
• Data pre-processing (formatting, cleaning, )
• Features selection and extraction
• Model selection and training
• Evaluation
The two most important steps are the Features selection

and extraction and the Model selection and training. A
careful selection of the features and model is important as
it impacts highly the overall efficiency of the process. On
the other hand, the Data acquisition is usually limited by
the projects settings – such as the experiment setup and the
devices used – making it difficult to change once the project
has been started. The Data pre-processing is a needed step
in order to keep relevant data in a usable format. All signal
processing meant to be useful for the feature extraction,
such as normalization for instance, are excluded from this
definition. Hence, this step does not offer much place for
improvement. Finally the Evaluation is used to measure,
analyze and compare the efficiency of the algorithms.

The selection of the features and of the model can
be achieved in two ways. First by using some domain-
knowledge, like selecting the features that are known to
contain the needed information and selecting the model that
has proven to be successful on this kind of features. The
alternative option is to select a set of features and a set
of machine learning algorithms of interest, and to do an
exhaustive evaluation on the cross product of these two sets.

This paper presents a machine learning framework that
allows an exhaustive search over a set of features extractors
and a set of machine learning algorithms. There are two
main usages for it: firstly analyzing of the data in order to
see the potential of the data to address the research problem,
and secondly at the end adjusting the parameters of the
classification algorithms and features extractors in order to
maximize efficiency.

Most of the existing Python machine learning frameworks
are tools that provide machine learning algorithms, with
some differences in the proposed algorithms or in their
implementations. Some of them are for instance written



in pure Python, some others are written in CPython [2],
or some others are using theano [3], [4] – a CPU/GPU
array processing framework – as backend. The framework
presented in this paper differentiates from these ones as it
is not offering machine learning algorithms, but it is based
on them and offers a higher-level way to apply exhaustively
a set of machine learning algorithms.

The framework also uses several packages from the
Python ecosystem. The scikit-learn [5] project is a python
framework offering machine learning algorithms implemen-
tation in Python with a coherent API [6]. Our framework is
built on top of it for the machine learning part. There are also
some alternatives such as pylearn2 [7], pyML or PyBrain,
but scikit-learn was chosen for its large set of algorithm and
its coherent API. The part of the code dealing with data is
built on top of pandas [8]. A large consensus in the Python
community is to use numpy [9] as the building block for
numerical computations, and most of the above-mentioned
Python packages are built on it. This allows to easily share
the matrices and data between all the packages.

The works that are probably the most related to the frame-
work of this paper are the self-made scripts of researchers,
which are already doing this kind of machine learning work-
flow. Our toolbox tries to provide an extendable abstraction
of the data, and has already showed its usefulness when
porting another dataset to the framework with ease: the
same code for the algorithms and the features has been used
without modifications on both datasets, the only work having
been needed is the database wrappers

The rest of this paper starts with a presentation of the
D1NAMO project in the section II. The following section,
III, describes our toolbox and finally section IV is presenting
its usage in a case study: we are presenting negative results
concerning the problem of detecting hypoglycemia with only
one lead ECG, and showing that by means of our framework
we simplify the experimental set up allowing researchers
to quickly obtain a set of results to decide how to further
proceed with the data.

II. THE D1NAMO PROJECT

Diabetes type 1 is an autoimmune disease that affects
the insulin level of a patient. Once a patient is affected by
diabetes type 1, the only possible treatment is insulin shots
several times a day to keep the insulin level under control
and keep the risk of hypoglycemia low [10]. Unfortunately,
intensively controlled glycemia levels get patients to have a
higher outcome from the perspective of microvascular and
macrovascular complications of diabetes type 1, meaning
that there exist a trade-off between limiting the amounts of
hypoglycemia of the patient and limiting the occurrence of
cardiovascular diseases later in the patient life.

Consequently, understanding the physiological counter-
regulatory responses caused by hypoglycemia with respect to
the usage of insulin would allow to improve the management

Figure 1. The D1NAMO platform

of hypoglycemic episodes. Also, observing the physiological
values of a patient before, during and after occurrences of
hypoglycemia would permit to have a better understanding
of the phenomenon as well as to allow a non-invasive
prediction of hypoglycemic episodes. Furthermore, being
able to predict hypoglycemia given the level of activity of
the patient during the day and the week would allow doctors
to act preemptively toward the hypoglycemia. The use of the
D1NAMO personal health system will allow to:
• Monitor the activity of the patient.
• Provide informative feedback to the patient and the

doctor about the physical activities performed and their
impact on diet and medication.

• Detecting symptoms of hypoglycemic attacks in order
to provide early alerts to the doctors.

• The built models will permit to construct a platform
helping patients and medical doctors to monitor the
disease:

In the preliminary phase of the project, the Zephyr
BioHarness 3 was chosen as device to acquire patient’s
physiological signals. This device monitors three variables:
the Electrocardiogram (ECG), the breathing amplitude and
3D accelerations. It is also providing higher level aggregated
information at a lower rate (1 per second or 1 per minute),
such as the heart rate, the breathing rate, the posture, the
activity level and some others. The setup of D1NAMO
generates around 15 hours of data daily for each signal.

The platform we are developing for D1NAMO is com-
posed of different entities. There is first the Zephyr BioHar-
ness 3 sensor that is used to acquire physiological signals of
the patient. This device is connected with Bluetooth to an
Android application that collects the data continuously and
stores it on the smartphone. Each five minutes (customiz-
able), the application is sending the accumulated raw data
to a server through a REST web service. The server analyzes
the incoming data in order to detect abnormal events. It also
stores the signals in a PostgreSQL database. Finally there is
a web interface that allows to query the database, allowing
the patient and his medical doctor to verify and analyze the
patient’s situation. Figure 1 offers a high-level picture of this
solution.

In order to implement the intelligence in the server that



will detect the hypo- and hyper-glycemic events, some re-
search has to be made to find which conjunction of machine
learning and features brings the best results. To have relevant
results, we started a framework to work with physiological
signals. It has been created so it is possible to extend it to
other time-series signals.

III. PRESENTATION OF THE FRAMEWORK

The platform can be seen as the equivalent of a series of
Python scripts that are traditionally written by researchers
when tackling a machine learning problem. There are parts
for reading the data, applying some signal processing steps,
some machine learning algorithms and outputting the results
to files. The toolbox can be seen as a way to abstract
some components of this process to allow the reuse of
code and algorithms, while trying to apply some good
machine learning practices such as cross-validation. It is also
designed to avoid common mistakes, such as the models
being trained on the testing set, or the features extracting
knowledge from the testing data.

A. Libraries
The framework is built on top of several Python libraries

that are widely adopted in the Python community. The base
building block is numpy for all numerical computations. It
is also used by most of the python packages, allowing an
easy way to pass data along all of them.

In order to share the data among the whole framework, the
pandas4 package is used, offering a notion of Dataframe
and a lot of functions to work on it. It is often compared
to the dataframe of the R language, offering more or
less equivalent features. Dataframes can be seen as
two-dimensional arrays in which columns can be named.
All sequences of data in the framework are passed as
Dataframes, the columns being the different signals, the
rows being the observations in the time-series.

The framework is using the scikit-learn API [6] for
interacting with machine learning algorithms. This allows
running most of the algorithms from the scikit-learn pack-
age, and to easily apply the parameters grid-search system
that it provides. It is also possible to use other packages that
offers wrappers for the scikit-learn API, such as for instance
keras5, a deep learning python package.

The plotting of results is made with matplotlib [11], a
tool already used in the scientific community for creating
plots. There is a packages called seaborn6 built on top of
it, which provides a higher-level interface for creating plots
and customizing them.

B. Structure
The framework is composed of four Python sub-packages,

as shown in Figure 2. The core package groups the central

4http://pandas.pydata.org/
5http://keras.io/
6https://stanford.edu/∼mwaskom/software/seaborn/

Figure 2. The structure of the framework

concepts of the framework. The naming conventions defined
in conventions.py allow all parts of the code to know
how to access a specific signal. Without a convention,
some databases would name the columns “ECG” and some
others “EcgWaveform”. The convention defines a Signal
enumeration providing for instance a Signal.ECG that any
part of the code can use to refer to this signal. If a new
type of signal needs to be supported, it should be added in
the conventions. The sequence.py file provides an object
representing a continuous observation of some physiologi-
cal signals in a Dataframe format. It can be annotated
with any key-value information, such as “patient=1203” or
“class=hyper”. The dataset.py file provides a Python
object representing an entity grouping all sequences be-
longing to the same dataset. It also offers some filtering
possibilities to access only sequences that have keywords
that are fulfilling a given predicate. This is useful to access
all sequences concerning a given patient, or corresponding to
a given class. The classifier.py and features.py
files both provide an abstract definition of what are the
notions of classifier and features extractors
in the framework. All algorithms that are children of these
two classes can be used within the evaluations without extra
work.

The dataset package is a logical entity to group the
different wrappers that read a specific dataset on the disk.
For now only D1NAMO is supported, and the d1namo.py
file provides the wrapper that is reads the data from the files
in the format used by the framework. Adding the support for
a new dataset consists creating a new Python file and making
it to read the data into Sequences objects, then grouping
them inside a Dataset object. Thanks to this structure, it



is possible to use the new dataset with already existing code
and algorithms.

The processing package provides functions and algorithms
to work on the data. They are grouped by domains, such
as ecg, frequency, neural network, machine learning, and so
on. All functions in these files are working with Sequence
objects (or Datasets more generally). This allows to use
the already implemented functionalities and algorithms on
new datasets easily, as all data are sharing the same structure.
Functionalities should still check the conformity of the given
data (like the existence of a specific signal for instance) as
not all datasets provide the same set of signals.

Finally the utils package offers some unrelated helper
functions. For now it has an os module that wraps some
operating system functions in an easier application program
interface (API). The decorators.py file provides some
Python decorators that offer an easy way to add behaviours
to functions, such as @debug that makes an interactive
prompt to appear if a bug arises during the execution of
the function, @skip that makes a given function to be
skipped, or even @pre and @post to check for pre- and
post-conditions.

C. Functionalities

The framework is then completed by a run.py script
that uses the different components to run the evaluations.
The pseudo-code of its main loop is the following:

data = load(dataset)
for classifier in classifiers:
for extractor in features_extractors:
for cv in cross_validations:

train, test = split_train_test(cv, data)
train_feat, test_feats = extractor(train, test)
best_model = grid_search(classifier, train_feat)
predicted = best_model(test_feat)
scores.append(classifier,

extractor,
metrics(predicted, test))

The script first load the data with the Python object that
has been created for the given dataset. Then it iterates
through all the machine learning algorithms and features
extractors given lists, in order to apply each algorithm on
top of each extracted features. For this it first does a cross-
validation loop, in which a parameters grid-search will be
applied to select the best model. Once the model has been
selected, the score of the current cross-validated iteration is
kept in an list for being used in the reporting at the end.

The extraction of the features is not done at the level of
the first loop. This would offer much better performances as
it would be done only once for all classifiers, but doing it
after the train/test split permits to avoid a typical machine
learning error for some kind of features: if the features
extraction includes some knowledge about the data, it should
be done only on the train set. For instance if the feature
is the distance from an observation to three centroids of
the dataset, using the testing data to compute the centroids

Figure 3. PQRST points of an ECG beat.

would already include some knowledge about them in the
features, biasing the results.

The builtin random library, as well as numpy.random,
allows to set a seed for initializing the random number
generator. Setting the seed at the beginning of an experiment
permits to reproduce the results in a deterministic way.
Being able to reproduce experiments is important for doing
scientific research and also from the software development
perspective. It allows to run again an experiment to debug it
or to identify what was happening. This is only possible
as long as there is no concurrency involved with thread
of multiprocessing, because the order in which algorithms
are accessing random number would change between sub-
sequent runs.

The script supports some command-line flags, such as:
• --debug to get an interactive prompt in case of error.

It simplifies the debugging as it is possible to directly
inspect variables.

• --cv n to set the number of cross-validation to n.
• --gs n to set the number of cross-validation inside

the parameters grid-search to n.
• --seed n to set the seed of the random number

generator.

IV. CASE STUDY

We present in this section our case study. Some scientific
papers showed that ECG has information, which allows to
predict hypoglycemia events. ECG measures the electrical
activity of the heart and our sensor is specifically acquiring
an I-lead ECG signal. This ECG is usually characterized
by the QRS points and the P and T waves, as shown in the
Figure 3. Several publications [12]–[14] showed a decrease
in the QT interval during hypoglycemia periods with a
medical setup. Being a sport-like chest belt, the contact of
the electrode with the skin is sensitive to movements and
therefore the quality of the signal is less good than an ECG
acquired with medical devices. In order to verify if the ECG
can be used with our setup to detect hypoglycemia, we need
to test different features and different algorithms.

The D1NAMO dataset consists of two datasets, one ac-
quired on healthy patients, and one acquired on diabetic
patients with nearly the same setup. The data acquisition



Figure 4. The daily D1NAMO glucose measurements

on the diabetic patients is not yet finished, we decided in
the meantime to prepare our algorithms on the dataset of
healthy people, which is already complete.

The healthy people dataset has been acquired on 20
patients, wearing the sensor for four consecutive days.
The setups for healthy patients and diabetic patients are
slightly different, as the glucose measurement is done with a
continuous glucose monitoring for type 1 diabetic patients.
Healthy people have measured their glucose level with a
Bayer Contour XT six times a day. This difference would
have implied some code change in a traditional workflow, but
with our framework only the code dealing with the database
needs to be created in order to reuse the existing code with
exactly the same algorithms/features.

For the purpose of this study, we extracted 355 sequences
of two minutes ECG around each glucose measurements of
healthy people. All glucose measurements of all patients are
shown in the Figure 4, the dotted red line being the mean,
the blue areas the 75th and 95th percentile. We annotated
all points being bigger than 6.9 as “hyper”-glycemia, all
points being below 4.2 as “hypo”-glycemia, and all the
others as “normal”. Taking a 2 minutes signal around each
glucose measurement represents 309 “normal” sequences,
38 “hyper” and 8 “hypo”.

For this case study we implemented 3 types of features
extractor that contains the QT interval information in differ-
ent forms:
• Histograms of QT interval
• Histograms Derivative of the QT interval
• 10 bins Histogram of polynomial coefficient of PQRST

fitting
The histograms are used with 2, 5, 10, 50 and 100 bins

each, the polynomial fitting within orders from 1 to 8. All
this together represents 18 different kinds of features. We
also choose to use three machine learning Algorithms:
• K-Nearest neighbors (KNN)
• Support Vector Machine (SVM)
• Random Forest (RF)
The KNN is selected for its simplicity as a learning

algorithm. The SVM and RF because a large-scale study
[15] ranked these as the best algorithms and showed that
both of these algorithms are averaging more than 90% of
the best scores among a lot of classifiers in a large variety
of classification tasks. They will thus give a good indication
of what is possible to achieve with machine learning.

The dataset is loaded in the right format using the Python
object that should be written independently for each dataset:

dataset = D1Dataset(D1PATH)

The definition of features extractors and machine learning
algorithms to use is done by defining an array with all
elements:

classifiers = [
KNN(),
RandomForest(),
SVM()]

extractors = [
algo(bins)
for algo in [QTFeatureExtractor,

QTDerivativeFeatureExtractor]
for bins in [2, 5, 10, 50, 100]]

extractors += [
PolynomialPQRSTFeaturesExtractor(x)
for x in [1, 2, 3, 4, 5, 6, 7, 8]]

Once all these elements are defined, it is possible to
use the run_evaluations function that will take care
of applying the different features extractors and machine
learning algorithms on the dataset. This function takes also
care of running a cross-validation. The generic side of this
function is possible thanks to the defined APIs and formats
gluing the different parts of the framework together. The
prior score is to compute the prior probability on the dataset
in order to plot it in the report:

evaluations = run_evaluations(dataset,
classifiers,
extractors)

prior = compute_prior_scores(dataset)
report(evaluations, prior)

Running the scripts logs the output both to the screen and
to a file named with the current timestamp in order to keep
track of the previous runs. It also does the same in another
file for the reported errors. The output also contains the
initial random number generator seed, allowing to reproduce
the experiment afterward in case of need. The output looks
as follows:

SEED: 833596236
PRIOR: 87.04%

====================================================
Random Forest Classifier
Polynomial PQRST features extractor with 3 deg, 10 bins
----------------------------------------------------
Classification report

precision recall f1-score support

hypo 0.00 0.00 0.00 8
hyper 0.00 0.00 0.00 38



Figure 5. Part of the overview plot generated by the framework

normal 0.87 1.00 0.93 309

avg / total 0.76 0.87 0.81 355

----------------------------------------------------
Confusion matrix

[[ 0 0 8]
[ 0 0 38]
[ 0 0 309]]
====================================================

This is only the result of the first combination of classifiers
and features extractors. The output contains which classifiers
and features extractors were used, a classification report with
some metrics (class by class and in average), and finally the
confusion matrix. The rows and columns of the confusion
matrix are the same as in the classification report. The full
log contains one entry for each combination of classifiers
and features extractors. At the end of the log there is a table,
which summarizes the average accuracy, precision and recall
of each one of them. This table is also written in a CSV
file for an possible treatment later. The report generates a
plot offering an easy to read overview of all combinations
performance, as shown in Figure 5. In this plot, the blue line
represents the prior probability, and each line represents an
evaluated combination.

The full plot shows that no feature (whatever the selected
machine learning algorithm is) outreaches the prior prob-
ability of the dataset. The evaluation with the Polynomial
features extractors achieved the score of the prior by clas-
sifying all classes as “normal”, the majority class. For the
rest of the features, the higher the features dimension are
(histogram of 50, 100), the better it seems to work. On
this classification task with these particular features, the RF
algorithm in general is less efficient than the KNN, which
in turns is less efficient in general than the SVM. The small
number of evaluations, 54 in this case study, does not allow
to infer any general conclusion about the classifiers.

The fact that no setup allows to do better than the prior, in
conjunction of the results of [15], lets us quickly know that
the probability of having better results by playing with ma-
chine learning algorithms and/or parameters is fairly small,
and that our features will probably not allow to classify
hypo/hyper/normo-glycemia in the form as they currently
are. Instead, other ways of improving the classification has

to be used, such as applying better signal pre-processing to
improve ECGs, by using accelerometers for instance.

V. DISCUSSION

This publication is presenting a Python framework that
offers a way to apply and compare machine learning algo-
rithms and features extractors on top of physiological data. It
is also taking care at applying good machine learning prac-
tices such as cross-validation and parameters grid-search,
and ensures that some mistakes are not appearing, such as
the classification labels kept in the testing data, or features
including some knowledge about testing data.

Conceptually this toolbox does not differ from what
scientists are used to do when they are working on a
research problem including machine learning, which means
writing hand-made scripts. But by abstracting the notion
of a Datasets, by defining naming conventions for signals,
by selecting an API for machine learning methods call and
by choosing a common format for all data, this framework
offers the possibility to write reusable machine learning tasks
in a way that allows to apply exhaustive search over a set of
algorithms and features. This also permits to write reusable
code.

The presented case study shows that this framework may
be used as a first analysis toolbox to get an idea about how
well features are working. Later it can also be used to fine-
tune some parameters of the algorithms or of the features.

In the future the framework can be extended to support
more types of signals. This can be done easily by simply
defining their names in the conventions. The real support
for signals comes from the functions that are able to treat
them. Extending the set of algorithms that support signals
will be done while working on a dataset that requires them.
The framework is missing unit testing for now. A refactoring
and code cleanup of the framework would be needed before
going further in releasing it under an open-source license.
Some extensions of this framework would be useful, such
as a support for parameters configuration files that would
allow to define the classifiers, features, parameters space,
without the need of coding them. This will also simplify the
management of different setups.

ACKNOWLEDGMENT

This research has been financed by the Nano-Tera.ch
initiative through the D1NAMO project.

REFERENCES

[1] S. Bromuri, S. Puricel, R. Schumann, J. Krampf, J. Ruiz,
and M. Schumacher, “An expert personal health system to
monitor patients affected by gestational diabetes mellitus: A
feasibility study,” in: Journal of Ambient Intelligence and
Smart Environments, Ios Press, 2015.

[2] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn,
and K. Smith, “Cython: The best of both worlds,” Computing
in Science and Engineering, vol. 13.2, pp. 31–39, 2011.



[3] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Good-
fellow, A. Bergeron, N. Bouchard, and Y. Bengio, “Theano:
new features and speed improvements,” Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

[4] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio,
“Theano: a CPU and GPU math expression compiler,” in Pro-
ceedings of the Python for Scientific Computing Conference
(SciPy), Jun. 2010, oral Presentation.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[6] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller,
O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler,
R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux,
“API design for machine learning software: experiences from
the scikit-learn project,” in ECML PKDD Workshop: Lan-
guages for Data Mining and Machine Learning, 2013, pp.
108–122.

[7] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin,
M. Mirza, R. Pascanu, J. Bergstra, F. Bastien, and
Y. Bengio, “Pylearn2: a machine learning research library,”
arXiv preprint arXiv:1308.4214, 2013. [Online]. Available:
http://arxiv.org/abs/1308.4214

[8] W. McKinney, “Data structures for statistical computing in
python,” in Proceedings of the 9th Python in Science Confer-
ence, S. van der Walt and J. Millman, Eds., 2010, pp. 51 –
56.

[9] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The
numpy array: a structure for efficient numerical computation,”
Computing in Science & Engineering, vol. 13, no. 2, pp. 22–
30, 2011.

[10] C. B. Smith, P. Choudhary, A. Pernet, D. Hopkins, and
S. A. Amiel, “Hypoglycemia unawareness is associated with
reduced adherence to therapeutic decisions in patients with
type 1 diabetes evidence from a clinical audit,” Diabetes Care,
vol. 32, no. 7, pp. 1196–1198, 2009.

[11] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Com-
puting In Science & Engineering, vol. 9, no. 3, pp. 90–95,
2007.

[12] T. F. Christensen, L. Tarnow, J. Randløv, L. Kristensen,
J. Struijk, E. Eldrup, and O. K. Hejlesen, “Qt interval prolon-
gation during spontaneous episodes of hypoglycaemia in type
1 diabetes: the impact of heart rate correction,” Diabetologia,
vol. 53, no. 9, pp. 2036–2041, 2010.

[13] T. Christensen, I. Lewinsky, L. Kristensen, J. Randlov,
J. Poulsen, E. Eldrup, C. Pater, O. K. Hejlesen, and J. Struijk,
“Qt interval prolongation during rapid fall in blood glucose
in type i diabetes,” in Computers in Cardiology, 2007. IEEE,
2007, pp. 345–348.

[14] G. Gruden, S. Giunti, F. Barutta, N. Chaturvedi, D. R. Witte,
M. Tricarico, J. H. Fuller, P. C. Perin, and G. Bruno, “Qtc
interval prolongation is independently associated with severe
hypoglycemic attacks in type 1 diabetes from the eurodiab
iddm complications study,” Diabetes care, vol. 35, no. 1, pp.
125–127, 2012.

[15] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of
unsupervised feature learning and deep learning for time-
series modeling,” Pattern Recognition Letters, vol. 42, pp.
11–24, 2014.


