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ABSTRACT
This paper discusses the results of the LifeCLEF 2014 mul-
timedia identification challenges with regards to the require-
ments of real-world ecological surveillance systems. In par-
ticular, we study the identification performances of the eval-
uated systems as a function of the ordinariness or rarity of
the species in the dataset. This allows us to assess the abil-
ity of the underlying methods to be robust to heavily tailed
distributions such as the ones encountered in real-world col-
lections of life observations. Results show that all methods
are more or less affected by the long-tail curse but that the
best methods making use of classifiers with good discrimi-
nation capacities do resist pretty well to the phenomenon.

1. INTRODUCTION
LifeCLEF [14]1 is one of the lab of the CLEF2 evaluation

forum dedicated to the evaluation of multimedia-oriented
life species identification systems. Using multimedia iden-
tification tools is considered as one of the most promising
solutions to help bridging the taxonomic gap and build ac-
curate knowledge of the identity, the geographic distribu-
tion and the evolution of living species [16, 3, 21, 18, 1, 20,
11]. Unfortunately, the performance of the state-of-the-art
multimedia analysis techniques on such data is still not well
understood and is far from reaching the real world’s require-
ments in terms of identification tools. The LifeCLEF lab
proposes to evaluate these challenges around 3 tasks related
to multimedia information retrieval and fine-grained classi-
fication problems in 3 living worlds. Each task is based on

1www.lifeclef.org
2www.clef-initiative.eu
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large and real-world data and the measured challenges are
defined in collaboration with biologists and environmental
stakeholders in order to reflect realistic usage scenarios. As
the purpose of this paper is to focus on a deeper analysis
of the raw results of the 2014 campaign, we let the reader
refer to the complete overview of the lab [13] for the details
about each of the task including the data description, the
metrics, the run formats, etc. We here only synthetise the
main lines of each task:

PlantCLEF: an image-based plant identification task
organized in the continuity of the three previous plant iden-
tification challenges of ImageCLEF in 2011 [7], 2012 [8]
and 2013 [12]. The 2014 PlantCLEF dataset was composed
of 60,962 pictures belonging to 19,504 observations of 500
species of trees, herbs and ferns living in a European region
centered around France. This data was collected by 1,608
members of TelaBotanica3, a French speaking social network
of 23,000 amateur and expert botanists. Each picture be-
longs to one of the 7 types of view reported in the meta-data
(entire plant, fruit, leaf, flower, stem, branch, leaf scan) and
is associated with a single plant observation identifier allow-
ing to link it with the other pictures of the same individual
plant (observed the same day by the same person).

BirdCLEF: an audio-based bird identification task
based on the audio recordings collected by Xeno-canto4, a
web-based community of bird sound recordists worldwide
with about 1,500 active contributors that have already col-
lected more than 150,000 recordings of about 9,000 species.
Nearly 500 species from Brazilian forests are used in the
BirdCLEF dataset totalling about 14,000 recordings pro-
duced by hundreds of users.

FishCLEF: a video-based fish identification task based
on the Fish4Knowledge5 underwater video repository, which

3http://www.tela-botanica.org/
4http://www.xeno-canto.org/
5www.fish4knowledge.eu
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contains about 700k 10-minutes video clips that were taken
in the past five years to monitor Taiwan’s coral reefs. More
specifically, the FishCLEF dataset consists of about 3,000
videos with several tens of thousands of detected fish in-
stances that were identified for the 10 most common species.

127 research groups worldwide registered to at least one
task of the lab and 22 of them did cross the finish line by
submitting runs (27 runs for the plant task, 29 runs for the
bird task, 6 runs for the fish task). Details on the methods
used in the runs and the results achieved by all teams are
synthesised in the overview working notes of each task [10, 9,
5]. Overall, quite impressive identification rates are achieved
by the best runs of each task with mean average precision
scores close to 0.5 for the hundreds of species of the bird or
the plant task, and up to 0.95 for the 10 species of the fish
task.

2. THE BIG PROBLEM WITH DATA
Building effective multimedia analysis and machine learn-

ing techniques is unfortunately not the only side of the tax-
onomic gap problem. Whatever the used algorithms, the
availability of rich and appropriate training data is actually
as much challenging towards setting-up powerful identifica-
tion tools at large scales. If we look at the popular Ima-
geNet dataset [6], widely used for the evaluation of large-
scale image classification methods, it is essential to notice
that the average number of training images per category is
in the range 600-1200. And this is actually several orders of
magnitude richer than most existing collections of multime-
dia life observations. Even Encyclopedia Of Life6, which is
the world largest data centralization effort concerning mul-
timedia data for life on earth, does not have more than few
images per class of interest for the vast majority of species.
Thanks to the integration of hundreds of large expert collec-
tions built in the past, the global plant index is for instance
now approximating the 700K images, which is an outstand-
ing number. But from a machine learning point of view,
the problem is that these images are scattered across tens of
thousands distinct taxa and across tens of distinct types of
views or organs in a given taxon.

Figure 1: Long tail distribution of Bugwood-
Forestry Images dataset

6http://eol.org/

Overall, as discussed in [11], most existing multimedia col-
lections suffer from one or several problems preventing their
easy use as training data. The long-tail problem is one of
the most recurrent one, particularly in the context of col-
laborative data. The symptom is that the distribution of
the number of samples per species generally follows a long-
tailed distribution, with very few species well populated, and
a vast majority of species with one or few images. This more
generally reflects the heterogeneous knowledge that we have
on plants and animals, with huge volume of information on
widespread and useful species for human beings, and very
few information (in term of geographical distribution, mor-
phological description, etc.) on most of the plant species of
a given area. A rather good average number of multimedia
documents per taxon can therefore be misleading regarding
the real coverage of all species. Figure 2 illustrates such dis-
tribution on the Bugwood7-ForestryImages8 dataset which
includes 187K images of about 18K plants species of eco-
nomic concern. Similarly, Figures 3 and 4 presents the long-
tailed distribution of the number of observations per species
within the plant and the bird datasets used for LifeCLEF
2014 challenges. It notably shows that the plant dataset is
more heavily tailed than the bird dataset. This is partially
due to the natural ordinariness distribution of the species
but also to the different characteristics of the social net-
works who collected the data (less contributors to the bird
dataset but with a more homogeneous and wider expertise).
But still for the plant dataset, the set of the kept species
in LifeCLEF challenge is only the tip of the iceberg as il-
lustrated by Figure 2 that presents the distribution of the
whole Pl@ntNet dataset [11] which is the largest existing one
concerning the French flora. As shown on the graph, the 500
hundred species of the PlantCLEF dataset (coloured in red)
are mainly concentrated at the head of the distribution and
therefore rather focus on the most common species regard-
less the rich biodiversity existing in the country (estimated
to about 6000 plant species). If we now remind that the
vast majority of the hundreds of thousands of plant species
on earth are even more incomplete, it gives a nice picture
of the hardly challenging problem we are facing in order to
build well balanced and well populated training data. The
ecosystems that possess the highest plant diversity are ac-
tually also the least studied and understood (particularly
tropical and Mediterranean regions). It is consequently very
difficult to collect in these regions as much data as in well
covered areas such as France.

3. ORDINARINESS-AWARE EVALUATION
OF LIFECLEF RUNS

In order to cover a sufficient biodiversity, it is therefore
crucial that multimedia identification tools also work for the
species in the long tail and not only on the most populated
and popular species. In this paper, we thus propose to anal-
yse the results of the LifeCLEF 2014 challenge with regard
to the ability of the systems to deal with the less popu-
lated classes. For each of the three tasks, we therefore split
the species in 3 categories according to the number of ob-
servations populating these species in the datasets. The 3
resulting splits are illustrated in Figures 3, 4 and 5. For

7http://www.bugwood.org/
8http://www.forestryimages.org/



Figure 2: Long tail distribution of the whole
Pl@ntNet dataset (with PlantCLEF 2014 subset in
red)

Figure 3: Distribution of PlantCLEF 2014 dataset -
split in 3 ordinariness categories

the three challenges, the category A of species (blue) cor-
responds to the most populated species (i.e. the tip of the
distribution), the category B (red) corresponds to interme-
diate species with a mean number of observations, the cat-
egory C (green) corresponds to the less populated species
in the long tail. Note that for the fish task, as the total
number of species is very low (restricted to the 10 most
common species), we only included one specie in the long
tail category C so that the results will be statistically less
relevant than for the bird and the plant task. For the bird
and the plant datasets, we used the same thresholds on the
cumulated distributions to define the categories (cat. A is
represented by the 20 first percents of the observations be-
longing to the most populated species, cat. B by the 35 next
percents of the observations, cat. C by the 35 last percents).

Based on these ordinariness categories A, B and C, we
computed a per-category score for all the runs submitted to
LifeCLEF. This was done by first computing the per-species
official score of each run and then averaging the scores of
the species that belong to the same category (details of
the scores used for each task can be found in their respec-
tive CLEF working notes [9, 10, 5]). Results are displayed
within Figures 7, 6 and 8 (for the fish video challenge we only
considered subtask 3). Note that the initial ranking of the
runs has been preserved in accordance to the overall official
score of each run. This allows analysing if the per-category

Figure 4: Distribution of BirdCLEF 2014 dataset -
split in 3 ordinariness categories

Figure 5: Distribution of FishCLEF 2014 dataset -
split in 3 ordinariness categories

rankings of the methods differ from that global one (and/or
between each others). Besides, the graphs allow checking
whether the overall performance of a given run is achieved
to the detriment of the less populated species. To further
quantify this biodiversity-friendliness, we also displayed on
the graph the coefficient of variation of each run (i.e. the
standard deviation of across the 3 categorical scores divided
by their mean).

A first overall conclusion is that the performances of all
runs degrade with the ordinariness of the targeted species
(i.e. none of the evaluated run has a lower score on category
A than on category B and this is also the case for cate-
gory A ∪ B vs. category C). This is clearly not surprising
and simply demonstrates that all participants use common
statistical machine learning strategies whose performances
are correlated with the classes statistics. As it was not an
objective of the measured challenges, none of the partici-
pants did specifically try to emphasize the less populated
species or to balance the classes. This raises the question
of whether it would be meaningful to foster rare species in
the evaluation protocol of future LifeCLEF challenges (e.g.
through a biodiversity-friendly evaluation metric or through
a balanced distribution of the queries across the classes). On
one side, this would bias the evaluation because the natu-
ral distribution of the data somehow reflects the usage of a
real-world identification system in which the most common
species attract the most user requests [11]. Maximising the
average score across all the observations consequently also



Figure 6: BirdCLEF results detailed by ordinariness categories

meets the objective of maximizing the average user satisfac-
tion. But on the other side, boosting the visibility of the
less populated species in a real-world application might help
compensating the long-tail curse in the long term. This
might degrade the brute-force performances on the most
common queries but on the other side, when a user meets
a rare plant or animal, this would give him more chance
to identify it and consequently enrich the system with this
useful observation. In other words, this would stabilize the
positive feedback loop typically observed in crowdsourced
information systems that tends to accentuate the inequali-
ties and put too much emphasis on the most popular items
(e.g. the distribution of user ratings in a social network
tends to be more and more heavily tailed when their num-
ber increases [17]).
Now, the most important question is whether the methods
used by the different participants are equally biodiversity-
friendly or not. Let us first start with the bird task results
(cf. Figure 6). For this challenge, we can observe that the
overall ranking of the runs remains roughly the same what-
ever the category (A,B or C). This means that none of the
methods is critically more affected by the long-tail issue than
the other ones. Some variations can however be observed.
The per-category scores of MNB TSA runs are notably more
homogeneous than the ones of QMUL (with a variation co-
efficient of 0.19 vs. 0.28 for the best run of each team). That
means that in addition to be better on average, the runs of
MNB TSA are also more biodiversity-friendly. This confirms
the good skills of the segment-probabilities features used by
this group [15] as well as the good capacity of the ensemble

of randomized decision trees they are using as classifier. On
the contrary, the per-category scores of INRIA Zenith runs
are a little bit more scattered than the others as illustrated
by the emerging blue peak of INRIA Zenith Run 2 and the
higher values of the variation coefficient (0, 38 for Run 1).
As discussed again later for the plant task, this might be
due to the use of a K-NN majority voting classifier on top of
their discriminant features selection and matching scheme.
Finally, the Run 1 of HLT is particularly compact across
the three categories (with a very low variation coefficient of
0.11). This is presumably due to the local temporal pooling
strategy they used exclusively in that run. But as the over-
all performance of that run is rather low, its ability to well
identify the less populated species remains much lower than
the best runs of the challenge.
If we now look at the fish task results (cf. Figure 8), we
can observe that here again the ranking of the runs is pre-
served for the three categories but that the variations in
the homogeneity of the scores are much more accentuated.
Whereas all runs have achieved comparable performances
on the category A, the performances of the I3S runs clearly
crashed on the less populated species leading to very bad
biodiversity-friendliness values (variation coefficient greater
than 1.0). As discussed in the working note of the fish task
[5], the lower performances of the I3S runs are mainly due to
their fish detection algorithm that has a much lower recall
than the ViBe [2] background modeling approach used in the
baseline. Interestingly, we can see here that the deficit of re-
call is mainly concentrated on the less populated species in
the dataset that are probably also the less visible ones in the



Figure 7: PlantCLEF results detailed by ordinariness categories

video contents (smaller fishes and/or less numerous ones).
The results of the plant task (Figure 7) are probably the
most informative ones concerning our biodiversity-friendliness
analysis. The more heavily-tailed distribution of the plant
dataset actually accentuates its impact on the methods that
are the most sensitive to multi-class imbalanced problems.
This is typically the case for the runs of SZTE, FINKI and
PlantNet that result in high values of the variation coeffi-
cient and low classification scores for the species belonging
to the long-tail. The common point of all these runs is that
they rely on instance-based classifiers that are more directly
dependent on the features density and thus more sensitive to
imbalanced problems. The most affected runs are the ones
of SZTE and FINKI that directly use a K-NN classifier on
global visual features. The two best runs of PlantNet (2 and
3) do better resist because of the use of a Borda count to
fuse the different features and organ modalities instead of
the weighted majority voting strategy used in run 1 and 4.
On the contrary, using large margin classifiers appears to be
a rather good strategy to limit the inequalities between the
different categories of species. This mainly concerns the runs
of IBM AU, BME TMIT and Sanbanci Okan whose varia-
tion coefficients values are all lower than 0, 38. But there are
still some important variations between them meaning that
other factors enter the equation. The three first runs of IBM
[4] do notably clearly outperform all other runs in terms of
variant coefficient. Similarly to the bird task, this shows that
in addition to be the best runs on average, the runs of IBM
AU are also the most biodiversity-friendly. The classification
score of the best of their run on category C is impressively

better than the classification score of any other teams on
all categories. This confirms that using linear support vec-
tors on top of high-dimensional fisher vectors is definitely a
good strategy to reach state-of-the-art performances on this
benchmark. But as the runs of BME TMIT are based on the
same strategy it also shows that as often the devil is in the
details. Main differences inferred from the working notes of
both participants [4, 19] concern the use of (i) color moment
features in addition to SIFT (ii) power normalization of the
fisher vectors (iii) a 512 components GMM model instead of
256 (iv) the use of a linear support vector machine rather
than a RBF kernel in the BME MIT runs (v) an observation-
oriented split of the data for cross-validation.
A last interesting insight we can derive from the plant task
results concerns the last run of IBM AU (IBM AU Run 4 )
which is the only one purely based on a deep convolutional
neural network. Because of the relatively low average num-
ber of training samples per class it actually failed in learn-
ing as good visual features as the hand-tuned features of the
PlantNet runs. But from the biodiversity-friendliness point
of view, it clearly outperformed them, presumably thanks to
the much better generalization capacity of the last fully con-
nected layers of the network compared to the instance-based
classification scheme employed in the PlantNet runs.

4. CONCLUSION AND PERSPECTIVES
This paper reported a complementary analysis of the raw

results of the LifeCLEF 2014 challenge with regard to the
biodiversity-friendliness of the evaluated methods, i.e their
capacity to well classify both the most and the less popu-



Figure 8: FishCLEF results detailed by ordinariness
categories

lated species. The good news is that the best performing
methods of each task are also the most biodiversity-friendly
ones. The question of whether we should introduce a specific
biodiversity-friendly evaluation metric for future LifeCLEF
campaigns is consequently less critical. It simply appears
that well designed discriminant classification schemes are
naturally more robust to the long-tail curse and finally pro-
vides relatively good performances even on the less popu-
lated classes of the long tail. This however has to be miti-
gated by the fact that the species used in the evaluations are
still the tip of the iceberg and that the real long tail still has
to come out. For the upcoming LifeCLEF evaluations, we
will study the feasibility of providing more species as well as
the feasibility of authorizing any other external training data
to further increase the biodiversity cover of our challenges.
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