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Abstract Information retrieval algorithms have changed the way we manage and
use various data sources, such as images, music or multimedia collections. First,
free text information of documents from varying sources became accessible in ad-
dition to structured data in databases, initially for exact search and then for more
probabilistic models. Novel approaches enable content–based visual search of im-
ages using computerized image analysis making visual image content searchable
without requiring high quality manual annotations. Other multimedia data fol-
lowed such as video and music retrieval, sometimes based on techniques such as
extracting objects and classifying genre. 3D (surface) objects and solid textures
have also been produced in quickly increasing quantities, for example in medical
tomographic imaging. For these two types of 3D information sources, systems have
become available to characterize the objects or textures and search for similar vi-
sual content in large databases. With 3D moving sequences (i.e., 4D), in particular
medical imaging, even higher–dimensional data have become available for analysis
and retrieval and currently present many multimedia retrieval challenges.

This article systematically reviews current techniques in various fields of 3D
and 4D visual information retrieval and analyses the currently dominating appli-
cation areas. The employed techniques are analysed and regrouped to highlight
similarities and complementarities among them in order to guide the choice of op-
timal approaches for new 3D and 4D retrieval problems. Opportunities for future
applications conclude the article. 3D or higher–dimensional visual information re-
trieval is expected to grow quickly in the coming years and in this respect this
article can serve as a basis for designing new applications.
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1 Introduction

Multidimensional visual information encompasses a wide set of data containers
ranging from images (2D), videos (2D plus time), to 3D surface models of objects,
3D solid models such as tomographic medical images or 4D temporal series of
volume data. Images, volumes and videos are all part of multidimensional multi-
media data. However, a distinction is needed in order to separate the mature, well–
established 2D image retrieval domain from the developing higher dimensional (3D,
4D, 5D) retrieval domains. When a distinction between both data types is needed,
the terms low–dimensional visual information and high–dimensional visual infor-
mation will be used. In this work we use the term multidimensional information
referred to n–D visual data or objects with n equal or greater than two, including
images, videos, 3D models or 4D visual objects.

The amount of multidimensional data available has enormously increased in
the past years: e.g. the video hosting website YouTube1, founded in 2005, receives
more than 60 hours of new video every minute (in early 2012) [1]. Other domains,
such as medical imaging, produce an enormous amount of multidimensional in-
formation every day [8]. Such large quantities of data are difficult to manually
categorize for further access or reuse. Whereas some tasks may be suitable for
text–based retrieval, either with structured or free–text queries (e.g., retrieval of
press events or images of particular geographical regions), other domains require
specific retrieval paradigms to perform an efficient search in large databases, where
adding textual annotations is not feasible or subjective and error–prone (e.g., feel-
ings that are invoked by visual data). This is the case of high–dimensional visual
information, where understanding and interpreting is time–consuming and not so
intuitive: e.g., a 2D image can be understood immediately without interaction,
whereas a 3D volume or video requires either sliding through slices or browsing a
sequence through time. Figure 1 shows examples of interfaces for viewing high–
dimensional visual data. This also motivates the use of computer–based approaches
for analyzing high–dimensional data, due to the limitations of displaying dimen-
sions larger than three for human inspection. The use of additional data together
with visual–only information has proven to be valuable for retrieval and classifica-
tion purposes [35]. This extra information is often included in the same container
or file format: e.g. the DICOM2 standard enables the storage of metadata together
with images, providing context to the visual content [125,96]. However, not all do-
mains can deal with metadata to the same extent, and its usefulness is strongly
related to the application. E.g., in medical information retrieval, age can be a very
selective criteria for specific conditions and diseases, but not for others.

The aforementioned challenges, namely the complexity of the content as well as
the enormous size of the data collections, show an urgent need for visual content–
based retrieval systems. In the past decade multidimensional information retrieval
beyond 2D image retrieval has been attracting an increasing interest from the
research community [117,123]. Visual 2D image retrieval was extended to higher
dimensions. The number of publications in these fields has grown from dozens of
papers in the year 2000 to hundreds by the end of 2010. A query with the keywords
3D retrieval, video retrieval and image retrieval in the publication search system Sco-

1 http://www.youtube.com/, as of 3 May 2012.
2 Digital Imaging and Communications in Medicine.
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(a) 3D Slicer showing Multi–Planar Rendering (MPR) and a
slicing view of ultrasound imaging (http://www.slicer.org/,
as of 3 May 2012).

(b) OsiriX showing MPR and surface rendering of CT
(Computer Tomography) imaging for virtual endoscopy
(http://www.osirix-viewer.com/, as of 3 May 2012).

Fig. 1 Interfaces for viewing high–dimensional medical data showing the possibility of having
views through slices of the volume or render surface–based views of the 3D data.

pus3 clearly shows this trend for topics covering the “multidimensional” category
(see Figure 2). The highest growth period for multidimensional visual information
retrieval research occurred around the year 2005 when important contributions
were published: the Princeton benchmark initiative for 3D objects [116], the first
Shape Retrieval Contest (SHREC) [127] and comprehensive reviews of the litera-
ture on 3D object retrieval [17,123]. This analysis can be limited by the maturity
of the field: i.e., once a domain is well–stablished, researchers may tend to use less
often terms that are redundant within this community.

3 http://www.scopus.com/, as of 3 May 2012.
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Fig. 2 Evolution of the number of articles found in Scopus for various queries containing
the keyword retrieval in the title, keywords or abstract. 100% corresponds to the number of
articles found in 2010 for each category.

In this article, a review of the high–dimensional visual information retrieval
domain is presented, describing the most important applications and techniques
found in the literature. The aim of this article is to find similarities among tech-
niques across domains to foster cross–domain synergies between applications and
techniques. The article provides a brief description of the most common methods
available to researchers that face a high–dimensional retrieval task classified by
data dimensionality rather than content type. In this sense, it is complementary
to previously published reviews of content and concept–based retrieval systems for
images [118,113,97,30,4], videos [90,119] and 3D objects [123,17].

The rest of this paper is organized as follows: Section 2 describes the re-
view methodology used for the paper, Section 3 lists the main applications for
high–dimensional visual information retrieval, and Section 4 summarizes the most
widely employed techniques and how they differ from the ones used for 2D image
retrieval. The specific challenges for the high–dimensional case and conclusions are
explained in Section 5.

2 Methods

A systematic analysis of the research literature was executed to retrieve the re-
search trends in the field and the most important papers being published in the
last more than ten years. The research–oriented search engine Scopus was chosen
because of the large amount of publications that it indexes, including but not lim-
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ited to those published by Elsevier, Springer, ACM (Association for Computing
Machinery), IEEE (Institute of Electronic and Electrical Engineers) and SPIE.
Scopus might include fewer publications than Google Scholar but in general the
publications listed are of high quality and the references are complete. Most im-
portant journals and conferences dealing with multidimensional visual information
retrieval are covered. A set of queries were performed to find a total of 5564 rele-
vant publications (see Table 1). Abstracts were analyzed using an online keyword
extraction tool4 that provides stop–word lists for the English language. Results
were divided based on time periods for which the growth pace of the number of
publications is approximately stable according to Figure 2: publications before the
year 2000, publications from the year 2000 to 2005 and publications after 2005.
This allows obtaining a more detailed picture of what are the most important
trends in the field. Similar methods have previously been used to analyze the
impact of publications in [124].

Table 1 Number of papers retrieved by the Scopus search engine for various queries and time
periods.

(a) Query: 3D retrieval refined with shape, model or surface.

before 2001 2001-2005 after 2005 Total

Papers 125 514 1627 2266

(b) Query: visual information retrieval refined with 3D, 4D, 5D, mul-
tidimensional, image, volume or volumetric data and not video.

before 2001 2001-2005 after 2005 Total

Papers 15 40 84 139

(c) Query: video retrieval refined with visual or content–based.

before 2001 2001-2005 after 2005 Total

Papers 534 959 1666 3159

3 Applications

In this section, the main applications domain of multidimensional retrieval are
presented. Applications are regrouped based on the nature of their data as follows:
Section 3.1 deals with surface–based model retrieval, including watertight models
and polygon soup models. Section 3.2 takes into account full–support data, i.e.,
multidimensional data that can be defined as a solid volume in 3D or a hyper–
volume of higher dimensionality, also treating the case when images of two or more
dimensions are sampled in time, such as in general–purpose video or 3D+t medical
imaging.

4 http://www.tagcrowd.com/, as of 3 May 2012.
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3.1 Surface–based model retrieval

Model–based retrieval includes a set of applications requiring the ability to recog-
nize and retrieve 3D surfaces with similar shapes.

Definition 1 Let A,B be two subsets of a Euclidean space (see Eq. 1). The subsets are

said to have the same shape if there is a rotation matrix R, a not null scaling factor

s and a displacement vector d that transform every point y ∈ B into one point x ∈ A
satisfying Eq. 2.

A,B ⊆ Rn, (1)

x = sRy + d (2)

This definition of shape is often too rigid, and more flexible definitions are
used for practical applications. Some research communities define shape from a
topological point of view [34,43] whereas other applications stress the importance
of partial matching in shape analysis [93].

Results from the online text analysis tool in Figure 3 show that research moves
from technology–centered studies [101,131] based on general–purpose polygonal
retrieval [14,122] to application–focused research [19,68,99,146]. Another remark-
able trend is that face recognition is a novel yet active topic in multidimensional
research, with a high number of publications in the past ten years.

By far the most frequent application for model–based retrieval is general–
purpose object retrieval without a clear real–life application described by the
authors. Existing model–based datasets are particularly well suited for general–
purpose applications where the ground truth consists of widely accepted categories
(e.g., people, animals, buildings, etc.) [116]. On the other hand, it is often difficult
to find publicly available datasets specific to a certain topic, where most research
groups evaluate only their own datasets [43], as Bustos et al. describe in [17]. Some
of these topic–specific, real–life applications for model–based retrieval include, but
are not limited to:

– face recognition [85,111,134,145];
– retrieval of pieces for industry processes [25,28,43];
– retrieval of artistic and architectural objects [68,115].

Illustrations of the above mentioned applications are depicted in Figure 4.

3.2 Full–support retrieval

Surface–based model retrieval deals with external aspect of objects, specifically
with concepts like shape, structure or topology. In contrast, some applications
require knowledge of the internal aspects of visual data, dealing with concepts
like texture or density. These applications are covered by full–support data, which
describe objects across all possible dimensions.

The concept of full–support data can be described using signal processing con-
cepts such as the intrinsic dimension of a multiple variable signal [15]. The intrinsic
dimension of an N–variable signal is the minimum number M of variables needed
to represent the signal.
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Definition 2 The intrinsic dimension M of the signal f (see Eq. 3) is the smallest

number for which the relation in Eq. 4 is true for all x, for some M–variable function

g and M ×N not null matrix A.

f(x) = f(x1, x2, . . . , xN ), (3)

f(x) = g(Ax) (4)

In this section we consider the full–support case, i.e., when rank(A) = N , with
N ≥ 3, meaning signals that, requiring at least 3 variables to be indexed, are
described by the smallest possible number of variables.

Results from queries shown in Tables 1(b) and 1(c) were analyzed in order to
extract the most frequent applications. A further distinction can be made based on
the nature of the variables. The subset of applications where all variables are re-
ferring to spatial dimensions is described in Section 3.2.1 whereas the applications

structure(29)

data(25)

information(23)

cloud(18)

radiances (17) sensitive (17)

system(17) used(18)

optical (16)

sequence (15)

study(15)

variations (16)

database (14) depth (13)

analysis (11)

fields (12) function (11)

ligands (11)

parameters (12) project(11) provide (12)

results (11)

watermarks (12)

different (10)

geometry (10)

method (10)

spectral (10)

technique (10)

human (9)

performance (9) protein (9)

shown (9)

absorption (8) assimilation (7) based (8) body (8)

experiments (7)

height (7) layers (7)

measurements (8) molecules (7) mutations (8) o2 (8) observed (7)

programs (7)

ratio (8) scattering (8)

simulations (7)

team (7) test (8)

(a) Publications before 2001.

images (33)

methods (21)

subspace(22)

approach(17)

data (18)

function(18)

objects (16)

similarity(16)

based (14)

different(12) feature (12)

information (12)

number (12)
paper (13)

structure (12)

proposed (11)

algorithms (10) available (10)

database (9)

drug (9)

geometry (9) lighting (9)

provide (10) search (10)

vectors (9)

analysis (8)

descriptors (8) developed (8)

matching (8) measures (8)

point (8) polygonal (8) problem(8)

quasi-dense (8)

2d (7) applications (6)

classification (7) collection (7)

discriminating (6) experiments (7)

ligand (6) literature (6)

multiple (7)

pca (7)

requires (6) robust (7) space (7)

system (7) targets (7) tools (7)

(b) Publications between 2001 and 2005.

images (27)

objects (21)

camera(18)

approach(15)

face (17)

methods (16)

present(15)

algorithm(14)

paper(13)
performance (13)

recognition(13) results (13)

based (11)

curves (11)

matching (11)

pose (11)

structure (11)

field (10) lesion (10)

breast (9)

distance (9) facial (9)

point (9)

registration (9)

2d (8) applications (7)

computational (7) correspondences (7)

database (8) estimation (7)

illumination (7) kinetic (8)

novel (8)

representation (8) robust (7)

several (8) statistical (7) symmetries (7) system(7)

used (8)view (7)

body (6)

deformable (6) efficient (6) eigenvalues (6)

problem (6) real-time (6)

solid (6) spherical (6) tracking (6)

(c) Publications after 2005.

Fig. 3 Keywords found in 2266 abstracts from publications on surface–based model retrieval
regrouped by publication period.
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(a) Face recognition [145].

(b) Retrieval of mechanical pieces for industrial
processes [28].

(c) Retrieval of architectural objects [115].

Fig. 4 Examples of surface–based retrieval applications.

with intrinsic dimension equal or greater than 3 containing at least one variable
referring to time are considered in Section 3.2.2.

3.2.1 Spatial–only full–support data

Although the extension from 2D images to 3D might appear intuitive, acquisition
methods and applications have strongly limited the spread of retrieval techniques
for this type of data as shows the number of publications on the topic (see Ta-
ble 1(b)). Due to the opacity of matter, optic acquisition is often not possible for
these applications, so most of the techniques used for extracting the matter proper-
ties from within a volume are those capable of showing an insight into matter, such
as X–ray, magnetic resonance and ultrasound imaging or 3D confocal microscopy.
This list of techniques is enough to justify why the most frequent application for
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3D full–support retrieval is medical imaging, as it can be seen in the tag cloud
from Figure 5, where the keyword medical is among the most frequent terms found
in the texts.

Applications where full–support information is used for retrieval are the fol-
lowing:

– Medical image retrieval for computer–assisted diagnosis with a specific clinical
application [37].

– General purpose medical image retrieval for PACS (Picture Archival and Com-
munication System) browsing [13,59,75].

Retrieval and classification techniques are closely related, since both often have
identical feature–extraction steps; sometimes classification is achieved after a re-
trieval process. Retrieval has been defined as a classification task between rele-
vant and not relevant (usually without training data), for instance in the Binary

Independence Retrieval model [98]. For this reason a growth of the use of full–
support texture would make it possible to find retrieval systems based on existing
classification–based applications. E.g., in the geology field, several classification
applications have been proposed [55,57,71] and retrieval applications may evolve
from these as the techniques related to visual description of geological and other
three–dimensional data spread within the related community.

Fig. 5 Keywords found in 139 abstracts from full–support retrieval publications.

3.2.2 Space and time volumetric data

In concordance with the explosion of user–generated video content mentioned in
Section 1, there has been enormous efforts for video retrieval research in the past
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years. Video retrieval, as shown in Table 1(c), is by far the subtype of multidimen-
sional retrieval that received the highest attention also thanks to the availability
of large test collections created in the TRECVID benchmark.

Fig. 6 Keywords found in 3159 abstracts from video retrieval publications.

As can be seen in Figure 6, video retrieval often focuses on the understanding
of the semantics and syntactics of visual information to provide a way of index-
ing videos [6]. This includes scene classification and shot boundary detection [86],
an area where big efforts where made in the 1990’s [49,62]. With spoken text,
videos also have a possibility to extract semantic information from the sound. The
most common application for video retrieval is large–scale audiovisual collection
management [94,137]. Evaluation of video retrieval is also very active and stan-
dardized, with important contributions from TRECVID5, videoCLEF [83,84], and
MultimediaEval6.

4 Techniques for visual information retrieval

Efficient visual information retrieval requires facing two challenges: on the one
hand the problem of accurately describing the information encompassed in a visual

container is tackled by using computer vision and image processing, also known as
feature extraction. On the other hand the problem of dealing with large amounts
of complex information for achieving fast and accurate results that are relevant
to the query is approached by using machine learning and information retrieval
techniques. Figure 7 contains an overview of a generic visual information retrieval
system, distinguishing the visual description phase and the information retrieval
step.

Visual information can be retrieved in different ways. In some domains, it is
possible to define categorical elements that enable description and retrieval: e.g., a
film can be described in terms of the genre (comedy, drama, science–fiction, etc.).
Some domains require retrieving documents without attending to categories, but

5 http://trecvid.nist.gov/, as of 3 May 2012.
6 http://www.multimediaeval.org/, as of 3 May 3012.
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to similarities. E.g., a film can be described in terms of its length in minutes or
aspect ratio, and therefore similar films would have a similar length and aspect
ratio. This idea is further extended using the concept of feature vectors.

Definition 3 Let f1, f2, . . . , fn ∈ R be n numerical values representing n features or

characteristics that apply to visual information elements or documents. Then, a feature

space F ⊆ Rn can be constructed for all the valid values of f1, f2, . . . , fn where each

dimension is related to one of the features. A visual information element or document

X can then be mapped to a point in the feature space, the point represented by the

values of the features f1 = x1, f2 = x2, . . . , fn = xn for the document. The vector

x = (x1, x2, . . . , xn) ∈ F ⊆ Rn is called feature vector of the document X.

Two documents X and Y with feature vectors x and y are said to be similar if

d(x,y) < T is true for some distance measure d and a given threshold T .

In general, not only distances are used as similarity measures, other metrics
and (dis–)similarity measures can be used attending to the type of features used
and the desired properties of the retrieval system.

Techniques for defining feature vectors out of visual content in high dimensional
data are further explored in Section 4.1, the description of similarity, distance mea-
sures and other information retrieval techniques are outlined in Section 4.2 and
methods for fusing several retrieval techniques and feature vectors as well as meta-
data is explained in Section 4.3. Finally, Section 4.4 deals with the representation
challenges for high–dimensional visual information.

4.1 Visual information description

There are various approaches for describing visual information in multidimen-
sional data. The choice of one or another is often related to the application of the
retrieval system. For instance, for machine parts retrieval shape is more impor-
tant than texture, and therefore information extraction methods are focused on
shape and surface quantification. However, the main distinction among methods is
whether they are 3D–native or they use a divide and conquer approach to multidi-
mensionality, working on lower dimension spaces and aggregating this information
later on, e.g., analyzing 3D–images slice by slice.

4.1.1 High dimensional approaches

In this section we consider methods that obtain information from all dimensions
simultaneously: for instance, methods based on mapping properties of a 3D model
onto a 3D sphere but not those that map data onto a planar surface; similarly, we
consider high dimensional approaches that analyze images computing features in
3D neighborhoods as opposed to 2D neighborhoods. A distinction is made between
the techniques that involve shape or surface information and those that also include
volumetric features such as 3D texture.

Shape description From very simple statistics to complex topological graphs, shape
is widely used for 3D retrieval, since object matching is also one of the clearest
applications. Table 2 shows a description and classification of popular methods.
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Preprocessing

Visual data corpus

Visual description phase

3D,4D,5D features

2D features

Low level features

Feature aggregation,

feature selection,

feature modelling

High level features

Information retrieval phase

Similarity

or dissimilarity

measures

Classifiers

Training phase

Ground Truth Training Data

Results representation
Regressors

Query

Fig. 7 Overview of a generic visual information retrieval system. The high–dimensional vi-
sual data from the retrieval corpus (dashed line) is processed and used as training data for
supervised or unsupervised machine learning methods. The high–dimensional visual data from
the query (full line) is processed in a similar way but is not involved in the learning process.

Full–support data description. Both volumetric images and videos contain informa-
tion as a series of images, sampled in space and in the case of videos, also in time.
Despite the similar nature of information, different approaches are often used. For
instance, some techniques are tightly related to video, where there has been a
big effort by the Motion Picture Expert Group (MPEG) in finding a multimedia
information description model with the MPEG–7 standard; whereas visual pat-
tern description in the field of spatial–only information, often known as solid or
full–support texture [106,32], has been approached in other ways. A summary of
common full–support description techniques is shown in Table 3.

4.1.2 Low dimensional approaches

Due to the complexity of the multidimensional visual information, the high di-
mensional description task is often reduced to multiple 2D feature extractions.
For instance, a 3D model can be described by view–based techniques, i.e., a set of
2D images are computed based on views of the object from various perspectives.
By reducing the dimensionality, common 2D–descriptors can be used, often at the
cost of missing a complete characterization of the object unless the number of
views grows sufficiently. Table 4 lists some low–dimensional techniques.
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Table 2 Shape description methods in 3D.

(a) Point–based methods.

Methods Explanation Examples
Distance distributions Probability distribution of distances between points

sampled on the surface of an object.
[101,67,
100]

Shape histograms The volume that the object fills is divided in bins
(radial divisions, angular divisions, both, or other di-
visions), the object is described by the histogram of
occurrences according to these bins.

[9,122]

Geometric moments The object is considered a random process of 3 vari-
ables, described in terms of statistical moments.

[112,44]

Spherical harmonics,
raycast descriptors

The object is described by evaluating the intersection
points with a predefined set of rays casted from the
surface of a sphere containing the object.

[112,130,
64]

(b) Surface–based methods.

Methods Explanation Examples
Point signatures The object is sampled on its surface and to each point

a signature describing the local curvature of the sur-
face is assigned.

[27,26]

Extended Gaussian im-
age

The object is placed inside a Gaussian sphere, and
a histogram is computed from the intersection with
the sphere of the normal vectors on the surface of the
object.

[53,136]

(c) Topology and volume–based methods.

Methods Explanation Examples
Topological and skele-
ton based descriptors

The object is described in topological terms according
to the relationships of its subparts. A skeleton of a
volumetric model might be generated as a descriptor
of the object.

[65,121]

4.2 Information retrieval

A retrieval system needs to be able to provide relevant documents to a query
based on the concept of (visual) similarity. Although being a critical step, visual
description (or visual features) is not enough for achieving a relevant versus non–
relevant classification or to rank documents according to visual similarity. The
visual description step in a retrieval system consists of finding a set of features or
descriptors that are meaningful for the retrieval purpose: i.e., that can code the
differences and similarities among the items to be retrieved. Once these features
have been obtained, the final step involves a decision–making process to find a
mapping that aggregates the information of the visual descriptors to a class or a
ranking. To achieve this, two strategies can be used: defining of (dis–)similarity
measures and/or using machine learning methods on training data.

When using similarity or dissimilarity measures, training data is not always
required for the system to work. It can perform retrieval directly on the data set
by sorting the items according to the chosen (dis–)similarity measure with respect
to the query item. One of the the simplest and still most frequently used tech-
niques is the k–nearest neighbor (kNN) search, where the retrieved items consist
of the k documents closest to the query item in the feature space. kNN works
well if several local groupings or clusters of documents/objects exist in the feature
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Table 3 Full–support description methods in 3D.

(a) Geometry–based methods.

Methods Explanation Examples
Textons, texels full–support information is described relying on the

assumption that the observed pattern is constituted
by elementary units, called textons or texels, repeated
with varying spatial distributions, sizes and orienta-
tions.

[72,132,
133]

Measures from bina-
rized images

By binarizing the images, higher–level geometric mea-
sures can be extracted from the volumes, such as uni-
formity, granularity, volume, surface and others.

[102–104,
74]

(b) Spectral–based methods.

Methods Explanation Examples
Fourier analysis The information is approximated by a linear combi-

nation of basis functions in a given direction. In order
to have local information of the data, Fourier analy-
sis requires that the transformation is applied in a
window around the interest point.

[56,78,82]

Filter–based methods Instead of using the windowed Fourier transform, lo-
cal spectral properties are obtained by convolving the
information signal with a given template. The tem-
plate or filter is a function of limited support with
given direction, scale and phase properties. These
functions can be tailored to detect specific features:
such as edges or corners.

[2,11,16,
58,81,91,
109]

Multiscale analysis Multiscale analysis can be achieved by a a filterbank
of templates at different scales organized in a pyra-
mid. One of the most common multiscale approaches
is the Wavelet Transform (WT), but other filters or
templates can be used to describe multidimensional
patterns.

[3,31,51,
58,70,89,
103,107,
114,142,
144]

(c) Statistical and stochastic methods.

Methods Explanation Examples
Co–occurrence methods Statistical measures based on the co–occurrence be-

tween the gray or color values of pairs of pixels at
predefined relative positions.

[11,18,21,
22,52,66,
76,79,81,
126]

Run–Length methods Run–length is an encoding method that describes
data by computing the number of consecutive repeti-
tions of the same value. In multidimensional data, a
run–direction is first defined, and the number of con-
secutive voxels with the same value is computed. With
this description, higher–level statistical measures are
computed.

[76,77,
138–140]

Local Binary Patterns Local Binary Patterns (LBP) compute the statistics
of the spatial organization of voxels on the surface of
(hyper–) spherical neighborhoods of the voxels. They
are gray–scale invariants, and since they character-
ize spherical frequencies they are related to spherical
harmonics.

[46,47,58,
105,107]

Markov Random Fields 3D Gaussian Markov random fields encode the re-
lationships between values of voxels in volumetric
spherical neighborhoods.

[42,108]

(d) Video–specific methods.

Methods Explanation Examples
Compressed domain de-
scriptors

Exploiting the compression features to compose a fea-
ture vector for video comparison. For instance: the
Discrete Cosine Transform (DCT) coefficients or mo-
tion vectors derived from coding standards such as
MPEG–2 or H.264.

[92,128]

MPEG–7 descriptors MPEG–7 Visual description tools include the visual
basic structures (such as description tools for grid lay-
out, time series, and spatial coordinates) and visual
description tools that describe color, texture, shape,
motion, localization and faces.

[117,92,
128,45,60]
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Table 4 Low dimensional methods.

Methods Explanation Examples
Spin Images By defining a set of normal vectors to sampled points

on the surface of the object, a 2–dimensional his-
togram is defined by projecting the object points in
a neighborhood of the sample point onto a plane de-
fined by the vector.

[5,12,39]

Silhouettes and depth
images

The objects are described by several 2D images corre-
sponding to the views from a fixed number of points.
If the distance information is kept then the image
is called depth–image, whereas if the distance infor-
mation is discarded, the resulting image is a binary
silhouette.

[10,20,24,
88]

Slice or frame based The volume is described by individually processing
each of the slices or frames, or a selection of them.
For instance, a compressed video can be described
by the features that describe each of the so–called
keyframes.

[50,37]

space without very clear class boundaries. The definition of closest strongly de-
pends on the distance metric used. Most (dis–)similarity measures are based on the
computing the Euclidean distance between two elements in the feature space. For
example, let the query item Q be represented by the N–dimensional feature vector
fQ = (fQ1 , fQ2 , . . . , fQN ) and an item i in the dataset be represented by the feature

vector f i = (f i1, f
i
2, . . . , f

i
N ), then a dissimilarity measure based on the Euclidean

distance can be defined as di,Q =
√

(fQ1 − f i1)2 + (fQ2 − f i2)2 + · · ·+ (fQN − f iN )2.

Other distance measures are often used instead of the Euclidean distance, ac-
cording to the desired properties of the measure or the specific characteristics
of the feature vector,e.g, the Mahalanobis distance, the earth mover’s distance
or histogram intersection. Therefore, there has been much interest in comparing
distance metrics for this purpose [40,110].

Machine learning methods are also very popular in the information retrieval
step as shown in Figure 7. A machine learning method requires training data as a
previous experience in order to accurately predict the relevance of the items for the
query. Machine learning methods can be classified as supervised or unsupervised,
depending on whether ground truth was available during the training.

From a classification point of view, supervised methods try to find the best
boundaries between classes by making decisions knowing the labels assigned to a
given training set [80]. One of the most frequently found methods in supervised
learning are Support Vector Machines (SVM) [23] that also lead to best results in
many visual information retrieval benchmarks [95]. Another trend in supervised
learning are relevance feedback methods, where the retrieval system evolves by
using the manual feedback from the user [61,137].

Representation of complex concepts with low–level features as presented in
Section 4.1 remains difficult due to the so–called semantic gap between computer–
understandable low–level features and human–understandable high–level semantic
concepts. Various techniques try to reduce this gap, either using machine learn-
ing methods A relatively recent trend among machine learning methods is the
bag–of–words approach, which extends a concept from text retrieval to the visual
information retrieval field. Bag–of–words or bag–of–visual–words attempt to learn
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concepts from the features, clustering the feature space into densely populated
regions that might represent visual concepts on the images. The histogram of
visual words is subsequently used as a descriptor of a volume or part of it [50,
141]. Bag–of–words can be considered unsupervised during the clustering phase,
and supervised if the features were obtained using a supervised machine learning
method.

4.3 Fusion of descriptors and retrieved elements

As seen in Section 4.1, a visual information element can be described by different
types of features. Moreover, some domains use valuable metadata that can sig-
nificantly improve retrieval efficiency. In Section 4.2, some approaches to retrieval
have been introduced. It is therefore clear that on the one hand, some features
might be better suited for some retrieval applications than others; and on the
other hand, some information retrieval techniques might provide better, faster or
more accurate results than others. However, some applications might benefit from
a combination of techniques. E.g., results can significantly improve when integrat-
ing clinical data into content–based image retrieval, [35,147]; in the video analysis
domain, multimodal approaches7 have proven to be more effective than unimodal
approaches [120,69,7]. These situations are dealt by using fusion techniques.

Fusion techniques are often classified into early and late fusion. Based on the
definitions given by Snoek et al. [120], early and late fusion can be defined as
follows:

Definition 4 (Early Fusion) Fusion scheme that integrates unimodal features before

making decisions such as classification, concept–learning, retrieval.

Definition 5 (Late Fusion) Fusion scheme that first reduces features to separately

made decisions (classes, scores, rankings, etc.), then these are integrated.

In general, the term early fusion refers to the combination of various types of
features into a single descriptor and late fusion refers to the combination of various
lists of retrieved documents (runs) into a single, ranked list of elements.

Fusion of various sources of information can be triggered within the retrieval
system by using query expansion techniques, which modify the original query based
on available documents in the database or given rules.

Data fusion techniques, together with query expansion, have been widely used
in benchmarking events like ImageCLEF [33] and TRECVID [135,41,29].

4.3.1 Early fusion approaches

Early fusion techniques combine descriptors in order to construct a higher di-
mensionality feature space, where all relevant features are present. The major
disadvantage of this approach is the curse of dimensionality: as the the dimension-
ality of the feature space increases the density of elements in the space is reduced,

7 In video analysis, multimodality refers to the use of multiple information sources for the
same document: audio, text and visual information. This concept is easily generalized for
other domains, for instance in medical imaging, visual information and metadata included in
the DICOM headers.
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scattering meaningful clusters of instances. To solve this problem, various feature
selection, feature normalization [48] and feature weighting [143,38] schemes have
been used.

4.3.2 Late fusion approaches

Diversity among late fusion techniques is much broader than among early fusion
approaches. Late fusion includes every technique that combines outputs of various
systems into a single, sorted list of documents. Fusion techniques can be regrouped
in three subcategories:

Rank–based: items are combined attending to their position in each of the previous
lists of documents, either by intersection, union or another combination rule.
These techniques often require reordering rules.

Score–based: items are combined attending to their relevance score, similarity or
distance to the query item. These techniques require normalization of relevance
scores among all systems.

Probability–based: items are assigned a score based on the probability of rel-
evance, according to a trained fusion system [87]. These techniques require
training queries with corresponding ground truth (relevance judgements).

A specific review on rank, score and probability–based fusion techniques by Donald
and Smeaton [41] compares the performance of various techniques on TRECVID
collections.

4.4 Data representation

Human intuition is often limited to three dimensions. Representation and under-
standing of higher dimensional data requires further knowledge and training. This
limitation increases the difficulties faced by visual information retrieval systems
at the result representation stage. Different strategies have been proposed to over-
come this challenge, which can be grouped into the following categories:

Projection into lower dimensional space(s). Similar to the view–based techniques
(see Section 4.1.2), visual information is projected into one or more lower di-
mensional spaces, often with samples at one of the discarded dimensions. These
techniques are well known in the audiovisual domain [129], where audio in-
formation is often discarded for presentation and time is used as a sampled
dimension: e.g. representation of a video by a series of thumbnails.

Interaction and virtual reality. Discarding one of the dimensions is often not easily
possible, or there is no clear dimensionality that can be discarded a priori.
In these cases, interactive techniques have been proposed to enable or browse

dimensions according to users’ needs. These methods are widely used in the
medical domain, with virtual reality systems [54] or slice–browsing [36].

Addition of false visual attribute(s). When information about non–visual charac-
teristics of high dimensional elements are needed, false visual attributes can be
used. E.g.: transparency or false color have been widely used in volume render-
ing to represent concepts such as density or heat. Medical imaging makes often
use of volume rendering [36] and false color to represent various anatomical
structures and regions.
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Fig. 8 Combination of data representation techniques in visual retrieval systems. Interactive
slice–browsing and false color on the left pane and false color and transparency on the right
pane. Source: [36].

Real–life systems often implement several methods separately or combined, in
order to adapt to the users’ workflow. For instance, the system shown in Figure 8
uses false visual attributes on the right pane and interactive slice–browsing on the
left pane.

5 Conclusions and Challenges Ahead

In this paper a comprehensive review of the state of the art in high–dimensional
visual information retrieval is presented. By systematically selecting and analyzing
the publications of the past more than ten years in this field using SCOPUS, four
major areas of interest were found: video retrieval as the most popular among all
high–dimensional visual information retrieval applications; face recognition that is
quickly gaining interest for its applications in the security industry and where 3D
information has a clear added value over 2D; surface–based retrieval applications
that include machinery retrieval of objects and related applications; and finally
medical image retrieval that is by far the most popular application in spatial–only
volumetric (often 3D texture) retrieval.

High–dimensional visual information retrieval has started solving some of the
challenges regarding descriptors and machine learning in the domain. However, it
still faces many challenges in terms of usability and scalability. High–dimensional
visual information is a very large and complex data source. The main challenges
are related to the difficulty of dealing with large datasets of very dense data.
Feature extraction is time consuming and often produces a large number of visual
descriptors.

A major challenge in visual information retrieval is related to the complexity of
the data, which makes it difficult to find a small set of features that can accurately
describe the documents. However, having a too large set of features will cause most
basic machine learning methods such as k–NN to fail, due to the well–known curse
of dimensionality [63]. This is one of the reasons for the bag–of–words approach
attracting much interest, since it creates clusters of features that are relevant to
the dataset defined by lower–level features. This lower dimensional set of features
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is based on the visual descriptors actually occurring in the data and allows for
better distance measures and machine learning to be employed.

Research in high–dimensional visual information retrieval can profit from a
closer collaboration among researchers. One of the most–common problems found
in this field is the lack of publicly available datasets with annotated ground truth
that can be shared by various research groups and therefore serve as baseline
comparison for retrieval techniques. Benchmarking initiatives such as SHREC [127]
in the field of shape–based retrieval or ImageCLEF [73] in the field of 2D image
retrieval can become a powerful tool to create synergies among research groups to
compare the various approaches and select best techniques for future applications.

Challenges in the medical field and on 3D solid textures are also multiple.
Whereas 3D objects have the entire object information being relevant for retrieval
in the case of 3D tissue types, in biomedicine, detection rather than full retrieval
seems important as the volumes of interest relevant for retrieval are often very
small and contain less than 1% of the volume to be analyzed. Detecting these
regions of interest requires training data annotated by experts, a difficult task
and often expensive as well. Based on a first detection step, then retrieval of
similar volumes or cases could be performed. Whereas 3D surface models can be
visualized easily, 3D texture is already hard to display and most often several views
are required, as shown in Figure 1. Higher dimensional data will get even harder
and new visualization methods need to be developed, for example to highlight
abnormalities in ten energy levels of a 3D dual energy CT (Computer Tomography)
of one patient, where visualization is far from trivial.

In general, retrieval from data in more than three dimensions can be regarded
as one major challenge for the future. 3D cinema has already started and in
medicine a large variety of imaging techniques produce more than 3D data such
as PET/CT (Positron Emission Tomography / Computer Tomography) images,
PET/MRI (Positron Emission Tomography / Magnetic Resonance Imaging) im-
ages or dual energy scanners. This will again increase the volume of data and will
require data reduction before any retrieval can be attempted. Using approaches
similar to visual words can help but also the basic descriptors will need to be
adapted to multiple dimensions. Simple descriptors such as co–occurrence matri-
ces are easy to adapt apart from the fact that an extremely large amount of data
is being produced but for other descriptors e.g., wavelets) the formulation and
usefulness beyond 3D might not be as trivial.

This article reviewed the literature on high–dimensional visual retrieval tech-
niques. It can be shown that although video retrieval has been most popular over
the past ten years, there are now many other developments, ranging from surface–
based retrieval methods to solid 3D texture. Even higher dimensional data now
becomes increasingly common, such as 3D cinema (3D plus time equals 4D) and
also in the medical field where 4D image series become standard and where several
volumes of the same patient can be produced combining CT and MRI or creating
multiple energy images of CTs of the same patient. There are many challenges
that retrieval applications will need to deal with in the future such as combining
detection of regions of interest, dealing with computationally expensive analyses,
and extremely large feature spaces. Visual user interfaces also need to be adapted
as already 3D solid texture is hard to visualize and as dimensionality increases this
will become hard. The techniques described in this article give an idea on what
was done for past problems and how this can be employed to future challenges
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as well. This should allow to select techniques well for a problem at hand and
compare new approaches to strong baselines of existing techniques.

6 Acknowledgments

This work was partially supported by the Swiss National Science Foundation
(FNS) in the MANY project (grant 205321–130046), the EU 7th Framework Pro-
gram in the context of the Khresmoi project (FP7–257528), and the Center for
Biomedical Imaging (CIBM).

References

1. YouTube. http://www.youtube.com/t/press_statistics (2012). [Online; accessed 14-
March-2012]

2. Ahmed, M.N., Farag, A.A.: 3D segmentation and labeling using self-organizing Kohonen
network for volumetric measurements on brain CT imaging to quantify TBI recovery.
In: Proceedings of the 18th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine., EMBS 1996,
vol. 2, pp. 738–739 (1996)

3. Akbari, H., Yang, X., Halig, L.V., Fei, B.: 3D segmentation of prostate ultrasound images
using wavelet transform. In: Medical Imaging 2011: Image Processing, vol. 7962, p.
79622K. SPIE (2011)

4. Akgül, C., Rubin, D., Napel, S., Beaulieu, C., Greenspan, H., Acar, B.: Content–based
image retrieval in radiology: Current status and future directions. Journal of Digital
Imaging 24(2), 208–222 (2011)

5. de Alarcón, P., Pascual-Montano, A., Carazo, J.: Spin images and neural networks for
efficient content-based retrieval in 3D object databases. In: M. Lew, N. Sebe, J. Eakins
(eds.) Image and Video Retrieval, Lecture Notes in Computer Science, vol. 2383, pp.
225–234. Springer Berlin / Heidelberg (2002)

6. Amir, A., Basu, S., Iyengar, G., Lin, C.Y., Naphade, M., Smith, J.R., Srinivasan, S.,
Tseng, B.: A multi-modal system for the retrieval of semantic video events. Computer
Vision and Image Understanding 96(2), 216 – 236 (2004)

7. Amir, A., Berg, M., Chang, S.F., Hsu, W., Iyengar, G., Lin, C.Y., Naphade, M., Natsev,
A., Neti, C., Nock, H.J., Smith, J.R., Tseng, B., Wu, Y., Zhang, D.: IBM Research
TRECVID-2003 video retrieval system. In: Proceedings of the TRECVID 2003 conference
(2003)

8. Andriole, K.P., Wolfe, J.M., Khorasani, R.: Optimizing analysis, visualization and nav-
igation of large image data sets: One 5000–section CT scan can ruin your whole day.
Radiology 259(2), 346–362 (2011)

9. Ankerst, M., Kastenmüller, G., Kriegel, H.P., Seidl, T.: 3D shape histograms for similarity
search and classification in spatial databases. In: R. Güting, D. Papadias, F. Lochovsky
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