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Abstract 

Currently, surface electromyography (sEMG) 
prostheses are characterized by low control 
capabilities and long training times.  This is in 
contrast with recent advances in mechatronics, 
thanks to which mechanical hands have often 
many degrees-of-freedom and force control. 
Therefore, there is a need of techniques able to 
increase control capabilities with sEMG signals. 
Several reasons determine differences in the 
signal patterns, and make the classification of 
sEMG signals a challenging task. One of the 
reasons is the positioning of the electrodes on the 
subjects. In this paper we evaluate the positioning 
effect on the Ninapro database using automatic 
classification of the data for its evaluation.  
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1 Introduction 

Subjects with hand amputations often interface with 
prosthesis via surface electromyography (sEMG) but 
learning to control the device is frequently a long and 
difficult process. 

Currently, hand prosthetics usually does not offer 
more than 2-3 degrees of freedom (usually, open/close 
is the only movement possible) and a very coarse 
control of the force. This is in contrast with recent 
advances in mechatronics, thanks to which mechanical 
hands with many degrees of freedom and fine-grained 
force control are being built. The NinaPro (Non-
Invasive Adaptive Hand Prosthetics, 
http://www.idiap.ch/project/ninapro/) project started in 
January 2011 with the aim of fulfilling the need of easy 
and natural controls for the dexterous prostheses, and 
the need to provide the scientific community with a 
large dataset of sEMG signals to test and evaluate the 
classification procedures. The main goal of this project 
is to develop a family of algorithms able to significantly 
augment the dexterity control of EMG prostheses and to 
reduce the required training time.  

The current NinaPro data set is stored in a database 
with a web interface: it consists of data from 27 healthy 
human subjects. Besides basic data on the subjects such 

as age, gender, etc. it also contains signal data in the 
form of 10 repetitions of 52 different hand/wrist 
movements. 

For each subject, the sEMG signal is acquired using 
ten electrodes. Two electrodes are placed according to 
anatomical guidelines [1,2]. The remaining eight 
electrodes are placed uniformly around the forearm 
following the main trend in pattern matching research 
[3,4,5]. In order to maintain a constant positioning 
among subjects, the electrodes are placed at a constant 
distance from the radio-humeral joint. 
The inter-subject difference in the positioning of the 
electrodes is probably an important reason that 
contributes to making the classification of sEMG 
signals a challenging task. The sEMG signal 
classification has been treated in several publications 
[6,7,8]. However less papers analyse the effect of 
positioning differences and the use of spatial co-
registration methods for sEMG signals [9,10], also if 
the effect of positioning can have a very strong impact 
on classification results [9].  
In this paper we evaluate the effect of inter-subject 
differences in the positioning of the electrodes on the 
Ninapro database and on machine learning 
classification of the sEMG data, and the possibility to 
compensate it through spatial registration of the signal. 
 

2 Methods 

The acquisition setup of the Ninapro data is shown in 
Fig. 1. It is composed of: a laptop with a PCMCIA Slot 
(DELL Latitude E5520); a digital acquisition card 
(National Instruments DAQCard-6024E, PCMCIA); ten 
sEMG electrodes (Otto Bock 13E200); a Cyberglove II 
(CyberGlove Systems LLC) with 22 sensors; a 2-axes 
inclinometer (Kübler 8.IS40.23411); custom-made 
acquisition software implemented to acquire the data of 
all the peripherals in a synchronized way; a password 
protected web-based interface to the database to store 
the data. 
Intact subjects wear the sEMG electrodes, the dataglove 
and the inclinometer on the right hand, while amputated 
subjects wear the sEMG electrodes on the stump and 
the dataglove and the inclinometer on the intact limb.  

The current NinaPro database includes 10 repetitions 
of 52 different movements for 27 intact subjects. The 
movements are based on the robotics and taxonomy 
literature such as the DASH (Disabilities of the Arm, 



Shoulder and Hand) protocol for functional movements 
[11]. Each movement lasts 5 seconds, is followed by 3 
seconds of rest and is repeated 10 times.  
To evaluate the effect of changes in the positioning of 
the electrodes among subjects, we considered the eight 
electrodes that are equally spaced on the elastic 
armband and two sets of movements selected from the 
Ninapro database: 1) three grasp movements considered 
in [12] and the resting position (Tab. 1); 2) eleven of the 
twelve movements considered in [14] and the resting 
position (Tab. 2).  
We assumed the distance between each electrode and 
the axial coordinate of the armband on the forearm to be 
constant while we considered the armband liable to 
rotation. 
First, we simulated the rotation of the armband on the 
arm through the linear interpolation of the signals from 
the subsequent electrodes. The simulated rotation is 
performed both in clockwise and anticlockwise 
direction at steps of 1/10 of the distance between each 
of the electrodes (that, depending on the subject, 
corresponds approximately to 2-5 mm). The rotation 
simulation ends when the simulated position of the 
electrodes meets the position of the non-rotated 
previous or following one.  
In order to evaluate the similarity between the signals 
across subjects and the effect of the rotation simulation, 
first we measured the distance between the sEMG 
signals obtained from of each subject both in the 
original configuration and in the twenty different forms 
obtained by the rotation simulation. The mentioned 
evaluation was performed on the first 29 movements 
included in the Ninapro database. The distance between 
the sEMG signals was computed as the average along 
the timeline of the Euclidean distance between the 
synchronized electrode components. 
Then, for each pair of subjects, we identified the signals 
(simulated or not) that minimized the distance between 
the sEMG signals and we used them to evaluate 
possible classification improvements. 
We wanted to evaluate the effect of spatial registration 
on the quantitative estimate of the classification 
performance. To this extent, we employed a Least-
Squares support vector machine (LS-SVM, [16]) 
classifier to predict the movement class in the 
previously described settings. LS-SVM is a kernel-
based classifier that attempts to maximize the margin 
between two classes. It has been demonstrated 
experimentally that the classification performance of 
LS-SVM is typically comparable with the performance 
of Support Vector Machines (SVM) [17], however LS-
SVM have advantages over SVM [18]. 
In our experiments, a multi-class LS-SVM with RBF 
kernel is trained for each distinct subject using ten 
repetitions of each movement. The model is then tested 
on all remaining subjects, considering ten repetitions of 
each movement. 
Before performing the classification, the signal was pre-
processed. All data were synchronized by linearly 
interpolating all data to the highest recording frequency 
(i.e., 100Hz). Both sEMG and Cyberglove signals were 

subsequently low-pass filtered at 1Hz using a zero-
phase second order Butterworth filter. Samples with an 
ambiguous label (as those recorded during transition 
between rest and the actual movement) were removed 
by dividing each movement (including the resting 
position) into three equally sized segments and only 
retaining data from the center segment. We then 
averaged the data contained in this segment to obtain a 
single sample per movement. In order to consider the 
resting position as the other movements, 10 samples 
were randomly chosen from the set corresponding to the 
rest. Finally, the signal from individual subjects was 
normalized such that each sEMG signals had zero mean 
and unit standard deviation.  
We evaluated the effect of rotation simulation on LS-
SVM classification in two cases: first considering only 
the electrodes involved in the process (i.e. the 8 
electrodes equally spaced on the elastic armband), then 
considering all 10 electrodes included in the Ninapro 
database. The statistical significance of the results was 
evaluated with a Kolmogorov-Smirnov Test. 
 
  

!
Figure 1. Acquisition setup: A) grasp and functional 
objects, laptop with the acquisition software; B.1) 
equally spaced electrodes; B.2) electrodes placed 
anatomically; B.3) inclinometer; B.4) cyberglove. 

!
# Description Reference 
 1 Large diameter grasp   [13] 
 2  Tripod grasp  [13] 
 3  Tip pinch grasp  [13] 
 4 Resting position  

Table 1: First set of movements. 

# Description Reference 
 1 Index flexion  [14]  
 2  Index extension [14]  
 3  Middle flexion [14]  
 4  Middle extension [14]  
 5  Ring flexion [14]  
 6  Ring extension [14]  
 7  Little finger flexion [14]  
 8  Little finger extension [14]  
 9  Thumb adduction [14]  
 10  Thumb abduction [14]  
 11  Flexion of ring and little finger [15]  
12 Resting position  

Table 2: Second set of analysed movements. 



3 Results 

The evaluation of the similarity between the signals of 
different subjects and the effect of the rotation 
simulation showed that rotation simulation can increase 
the similarity of signals across subjects up to 33% 
compared to the original value, with mean value and 
standard deviation on all the subjects equal to (8.12 ± 
7.02) %.  
The maximum of the inter-subject signal similarity 
improvement due to rotation simulation (i.e. the 
reduction of the distance), computed in percentage with 
respect to the original signal is shown in Fig. 2, together 
with a representation of the rotation matrix that 
corresponds to the maximum inter-subject similarity 
improvements.  
Spatial registration obtained through rotation simulation 
affects the quantitative estimate of the LS-SVM 
classification performance improving the classification 
results. 
 

Figure 2. Maximum inter-subject signal similarity 
improvement due to rotation simulation, computed in 
percentage with respect to the original signal (top). 
Rotations correspond to the maximum of the inter-
subject similarity improvements (bottom).  
 

Considering only the 8 electrodes placed on the elastic 
armband, the classification error decreased from 
57.94% to 53.26% in the case of three movements, 
while it decreased from 84.48% to 83.27% in the case 
of eleven movements. The classification improvement 
was therefore respectively of 4.69 and 1.21 percentage 
points, with an improvement of 8.09% (p=0.01) and 
2.09% (p=0.04) of the original values.  
Considering all 10 electrodes included in the Ninapro 
database, the classification error decreased from 
60.41% to 57.54% in the case of three movements, 
while it decreased from 82.44% to 80.51% in the case 
of eleven movements. The classification improvement 
was therefore respectively of 2.87 and 1.94 percentage 
points, with an improvement of 4.74% (p=0.05) and 
3.2% (p=0.02) of the original values. 

 

Figure 3. Means and standard deviations of the LS-
SVM classification errors on the signal of the 8 
electrodes equally spaced on the elastic armband (top) 
and from all the electrodes (bottom). 



4 Conclusions  

The spatial registration was performed simulating the 
rotation of the elastic armband that is used to acquire 
the data in the Ninapro database. 
The results show the usefulness of spatial registration 
on the sEMG signal from hand movements to augment 
inter-subject similarity. Considering only the 8 
electrodes placed on the elastic armband, the average 
classification improvement over the original values is 
8.09% in the case of three movements and 2.09% in the 
case of eleven movements.  The obtained p-values 
(respectively p=0.01 and p=0.04) enhance the statistical 
significance of the results. Considering all the 10 
electrodes included in the Ninapro database, the average 
classification improvement over the original values is 
4.74% in the case of three movements and 3.3% in the 
case of eleven movements. The obtained p-values 
(respectively p=0.05 and p=0.02) enhance the statistical 
significance of the results. 
The difference between the average improvement of the 
similarity of the signals (8.12 ± 7.02)% and the average 
improvement in the classification with LS-SVM (2.99 ± 
1.43)% encourages us to go more into details for both 
the spatial registration and the features used to perform 
the LS-SVM classification. 
Unfortunately, the inter-subject classification 
performance is only slightly above chance level (i.e., 1 
– 1/c with c being the number of classes). In other 
words, the data for a given subject are still not very 
representative for the data of other subjects.  
This fact underlines that there is still considerable inter-
subject variability and that more studies are required to 
acquire a deeper understanding of the data to take into 
account factors that can help to compare several 
persons. 
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